TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE

Size: px
Start display at page:

Download "TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE"

Transcription

1 TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE

2 Original problem IT-DB was backuping some data to Wigner CC. High transfer rate was required in order to avoid service degradation. 4G out of... 10G Meyrin But the transfer rate was: Initial: ~1G After some tweaking: ~4G Wigner The problem lies within TCP internals! ADAM KRAJEWSKI - TCP CONGESTION CONTROL 2 / 37

3 TCP introduction TCP (Transmission Control Protocol) is a protocol providing reliable, connection-oriented transport over network. It operates at Transport Layer (4th) of the OSI reference model. Defined in RFC 793 from [10 Mb/s at that time! ] Its reliability means that it guarantees no data will be lost during communication. It is connection-oriented because it creates and maintains a logical connection between sender and receiver. Application Presentation Session Transport Network Data Link Physical ADAM KRAJEWSKI - TCP CONGESTION CONTROL 3 / 37

4 TCP operation basics: connection init Connection initiation: 3-way handshake Sequence counters setup: Client sends random SEQ number (ISN Initial Sequence Number) Server confirms it (ACK=SEQ+1) and sends its own SEQ number Client confirms and syncs to server s SEQ number Client Server ADAM KRAJEWSKI - TCP CONGESTION CONTROL 4 / 37

5 TCP is reliable TCP uses SEQ and ACK numbers to monitor which segments have been successfully transmitted. Lost packets are easily detected and retransmitted. This provides reliability....but do we really need to wait for every ACK? Timeout Client Server ADAM KRAJEWSKI - TCP CONGESTION CONTROL 5 / 37

6 TCP window (1) Let us assume that we have a client and a server connected with a 1G Ethernet link with 1 ms delay... RTT = 2ms, B = 1 Gbps 2ms CLIENT DATA ACK SERVER If we send packets of 1460 bytes each and wait for acknowledgment, then the effective transfer rate is 1460B/2ms = 5.84 Mbps. So we end up using 0.5% of available bandwidth. ADAM KRAJEWSKI - TCP CONGESTION CONTROL 6 / 37

7 TCP window (2) In order to use the full bandwidth we need to send at least B RTT unacknowledged bytes. This way we make sure we will not just sleep and wait for ACKs to come, but keep sending traffic in the meantime. 2ms CLIENT ACK-1 ACK-2 ACK-3 ACK-4 ACK-5 SERVER The B RTT factor is referred to as Bandwidth-Delay product. ADAM KRAJEWSKI - TCP CONGESTION CONTROL 7 / 37

8 TCP window (3) Client sends a certain amount of segments one after another. As soon as first ACK is received it assumes transmission is fine and continues to send segments. Basically, at each time t 0 there are W unacknowledged bytes on the wire. W is referred to as TCP Window Size W!= const Client ACK=1461 Server 1 W SEQ ACK=2921 ADAM KRAJEWSKI - TCP CONGESTION CONTROL 8 / 37

9 Window growth It starts with a default value wnd W def W DROP Then, it grows by 1 every RTT: wnd wnd + 1 But if a packet loss is detected, the window is cut in half: wnd wnd/2 W W 1 W def α α This is an AIMD algorithm (Additive Increase Multiplicative Decrease). t ADAM KRAJEWSKI - TCP CONGESTION CONTROL 9 / 37

10 Congestion control Network congestion appears when there is more traffic that the switching devices can handle. TCP prevents congestion! It starts with a small window thus low transfer rate Then the window grows linearly thus increasing transfer rate TCP assumes that congestion is happening when there are packet losses. So in case of a packet loss it cuts the window size in half thus reducing transfer rate. B [Gbps] B c 0.5 B c B 0 α α t [s] ADAM KRAJEWSKI - TCP CONGESTION CONTROL 10 / 37

11 Long Fat Network problem Long Fat Networks (LFNs) high bandwidth-delay product (B RTT) Example: CERN link to Wigner. To get full bandwith on 10G link with 25ms RTT we need a window: W 25 = 10Gbps 25ms MB If drop occurs at peak throughput... W drop = MB T Wdrop W 25 = ms 108h ADAM KRAJEWSKI - TCP CONGESTION CONTROL 11 / 37

12 TCP algorithms (1) The default TCP algorithm (reno) behaves poorly. Other congestion control algorithms have been developed such as: BIC CUBIC Scalable Compund TCP Each of them behaves differently and we want to see how they perform in our case... ADAM KRAJEWSKI - TCP CONGESTION CONTROL 12 / 37

13 Testbed Two servers connected back-to-back. How the congestion control algorithm performance changes with packet loss and delay? Tested with iperf3. Packet loss and delay emulated using NetEm in Linux: tc qdisc add dev eth2 root netem loss 0.1 delay 12.5ms ADAM KRAJEWSKI - TCP CONGESTION CONTROL 13 / 37

14 Bandwidth [Gbps] 0 ms delay, default settings cubic reno bic scalable Packet loss rate [%] ADAM KRAJEWSKI - TCP CONGESTION CONTROL 14 / 37

15 Bandwidth [Gbps] 25ms delay, default settings PROBLEM cubic reno bic scalable Packet loss rate [%] ADAM KRAJEWSKI - TCP CONGESTION CONTROL 15 / 37

16 Growing the window (1) We need... W 25 = B RTT = 10Gbps 25ms MB Default settings: net.core.rmem_max = 124K net.core.wmem_max = 124K net.ipv4.tcp_rmem = 4K 87K 4M net.ipv4.tcp_wmem = 4K 16K 4M net.core.netdev_max_backlog = 1K B max = W max RTT = 4MB 25ms Window can t grow bigger than maximum TCP send and receive buffers! Gbps WARNING: The real OS numbers are in pure bytes count so less readable. ADAM KRAJEWSKI - TCP CONGESTION CONTROL 16 / 37

17 Growing the window (2) We tune TCP settings on both server and client. Tuned settings: net.core.rmem_max = 67M net.core.wmem_max = 67M net.ipv4.tcp_rmem = 4K 87K 67M net.ipv4.tcp_wmem = 4K 65K 67M net.core.netdev_max_backlog = 30K Now it s fine WARNING: TCP buffer size doesn t translate directly to window size because TCP uses some portion of its buffers to allocate operational data structures. So the effective window size will be smaller than maximum buffer size set. Helpful link: ADAM KRAJEWSKI - TCP CONGESTION CONTROL 17 / 37

18 Bandwidth [Gbps] 25 ms delay, tuned settings Packet loss rate [%] cubic reno scalable bic ADAM KRAJEWSKI - TCP CONGESTION CONTROL 18 / 37

19 Bandwidth [Gbps] 0 ms delay, tuned settings cubic 6 5 DEFAULT CUBIC scalable reno bic Packet loss rate [%] ADAM KRAJEWSKI - TCP CONGESTION CONTROL 19 / 37

20 Bandwith fairness Goal: Each TCP flow should get a fair share of available bandwidth B 10G 10G 5G 10G 5G 5G t ADAM KRAJEWSKI - TCP CONGESTION CONTROL 20 / 37

21 Bandwith competition How do congestion control algorithms compete? Tests were done for: Reno, BIC, CUBIC, Scalable 0ms and 25ms delay Two cases: 2 flows starting at the same time 1 flow delayed by 30s 10G 10G congestion 10G ADAM KRAJEWSKI - TCP CONGESTION CONTROL 21 / 37

22 cubic vs cubic + offset ADAM KRAJEWSKI - TCP CONGESTION CONTROL 23 / 37

23 Bandwidth [Gbps] cubic vs bic 10 Congestion control 0ms 8 6 cubic 4 bic Packet loss rate [%] ADAM KRAJEWSKI - TCP CONGESTION CONTROL 24 / 37

24 Bandwidth [Gbps] cubic vs scalable Congestion control 0ms Packet loss rate [%] cubic scalable ADAM KRAJEWSKI - TCP CONGESTION CONTROL 25 / 37

25 TCP (reno) friendliness ADAM KRAJEWSKI - TCP CONGESTION CONTROL 26 / 37

26 Bandwidth [Gbps] cubic vs reno Congestion control 25ms delay Packet loss rate [%] cubic reno ADAM KRAJEWSKI - TCP CONGESTION CONTROL 27 / 37

27 Why default cubic? (1) BIC was the default Linux TCP congestion algorithm until kernel version It was changed to CUBIC in kernel with commit message: Change default congestion control used from BIC to the newer CUBIC which it the successor to BIC but has better properties over long delay links. Why? ADAM KRAJEWSKI - TCP CONGESTION CONTROL 28 / 37

28 Why default cubic? (2) It is more friendly to other congestion algorithms to Reno... ADAM KRAJEWSKI - TCP CONGESTION CONTROL 29 / 37

29 Why default cubic? (2) It is more friendly to other congestion algorithms to CTCP (Windows default)... ADAM KRAJEWSKI - TCP CONGESTION CONTROL 30 / 37

30 Why default cubic? (3) It has better RTT fairness properties 0 ms RTT 25 ms RTT Meyrin Wigner ADAM KRAJEWSKI - TCP CONGESTION CONTROL 31 / 37

31 Why default cubic? (4) RTT fairness test: 0 ms RTT 0 ms RTT 25 ms RTT 25 ms RTT ADAM KRAJEWSKI - TCP CONGESTION CONTROL 32 / 37

32 The real problem Lots of networks paths! LAG Meyrin ToR 100G 100G LAG Packet losses on: Links (dirty fibers,...) NICs (hardware limitations, bugs,...) ToR Wigner Difficult to troubleshoot! ADAM KRAJEWSKI - TCP CONGESTION CONTROL 33 / 37

33 Conclusions To achieve high transfer rate to Wigner: User part Tune TCP settings! Follow Make sure you use at least CUBIC for Linux and CTCP for Windows Networking team part Minimizing packet loss throughout the network Fiber cleaning Avoid BIC: Better performance on lossy links, but unfair to other congestion algorithms unfair to itself (RTT fairness) Submit a ticket if you observe low network performance for your data transfer Collaboration is essential! ADAM KRAJEWSKI - TCP CONGESTION CONTROL 34 / 37

34 Setting TCP algorithms (1) OS-wide setting (sysctl...): net.ipv4.tcp_congestion_control = reno Add new: # modprobe tcp_bic net.ipv4.tcp_available_congestion_control = cubic reno bic Local setting: setsockopt(), TCP_CONGESTION optname net.ipv4.tcp_allowed_congestion_control = cubic reno ADAM KRAJEWSKI - TCP CONGESTION CONTROL 35 / 37

35 Setting TCP algorithms (2) OS-wide settings: C:\> netsh interface tcp show global Add-On Congestion Control Provider: ctcp Enabled by default in Windows Server 2008 and newer. Needs to be enabled manually on client systems: Windows 7: C:\>netsh interface tcp set global congestionprovider=ctcp Windows 8/8.1 [Powershell]: Set-NetTCPSetting CongestionProvider ctcp ADAM KRAJEWSKI - TCP CONGESTION CONTROL 36 / 37

36 References [1] [2] hepix-ferrari.pdf ADAM KRAJEWSKI - TCP CONGESTION CONTROL 37 / 37

37 TCP loss sensitivity analysis ADAM KRAJEWSKI, IT-CS-CE

High-Speed TCP Performance Characterization under Various Operating Systems

High-Speed TCP Performance Characterization under Various Operating Systems High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,

More information

ALTHOUGH it is one of the first protocols

ALTHOUGH it is one of the first protocols TCP Performance - CUBIC, Vegas & Reno Ing. Luis Marrone lmarrone@linti.unlp.edu.ar Lic. Andrés Barbieri barbieri@cespi.unlp.edu.ar Mg. Matías Robles mrobles@info.unlp.edu.ar LINTI - Facultad de Informática

More information

Iperf Tutorial. Jon Dugan <jdugan@es.net> Summer JointTechs 2010, Columbus, OH

Iperf Tutorial. Jon Dugan <jdugan@es.net> Summer JointTechs 2010, Columbus, OH Iperf Tutorial Jon Dugan Summer JointTechs 2010, Columbus, OH Outline What are we measuring? TCP Measurements UDP Measurements Useful tricks Iperf Development What are we measuring? Throughput?

More information

EVALUATING NETWORK BUFFER SIZE REQUIREMENTS

EVALUATING NETWORK BUFFER SIZE REQUIREMENTS EVALUATING NETWORK BUFFER SIZE REQUIREMENTS for Very Large Data Transfers Michael Smitasin Lawrence Berkeley National Laboratory (LBNL) Brian Tierney Energy Sciences Network (ESnet) [ 2 ] Example Workflow

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

TCP Tuning Techniques for High-Speed Wide-Area Networks. Wizard Gap

TCP Tuning Techniques for High-Speed Wide-Area Networks. Wizard Gap NFNN2, 20th-21st June 2005 National e-science Centre, Edinburgh TCP Tuning Techniques for High-Speed Wide-Area Networks Distributed Systems Department Lawrence Berkeley National Laboratory http://gridmon.dl.ac.uk/nfnn/

More information

I N T E R I M R E P O R T O N N E T W O R K P E R F O R M A N C E

I N T E R I M R E P O R T O N N E T W O R K P E R F O R M A N C E I N T E R I M R E P O R T O N N E T W O R K P E R F O R M A N C E Document Filename: Activity: Partner(s): Lead Partner: Document classification: SA2 KTH, EENet, KBFI, VU, RTU, ITPA, NICH BNTU, UIIP NASB

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions 1. Q: What is the Network Data Tunnel? A: Network Data Tunnel (NDT) is a software-based solution that accelerates data transfer in point-to-point or point-to-multipoint network

More information

Linux NIC and iscsi Performance over 40GbE

Linux NIC and iscsi Performance over 40GbE Linux NIC and iscsi Performance over 4GbE Chelsio T8-CR vs. Intel Fortville XL71 Executive Summary This paper presents NIC and iscsi performance results comparing Chelsio s T8-CR and Intel s latest XL71

More information

2 TCP-like Design. Answer

2 TCP-like Design. Answer Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

More information

4 High-speed Transmission and Interoperability

4 High-speed Transmission and Interoperability 4 High-speed Transmission and Interoperability Technology 4-1 Transport Protocols for Fast Long-Distance Networks: Comparison of Their Performances in JGN KUMAZOE Kazumi, KOUYAMA Katsushi, HORI Yoshiaki,

More information

DDoS attacks on electronic payment systems. Sean Rijs and Joris Claassen Supervisor: Stefan Dusée

DDoS attacks on electronic payment systems. Sean Rijs and Joris Claassen Supervisor: Stefan Dusée DDoS attacks on electronic payment systems Sean Rijs and Joris Claassen Supervisor: Stefan Dusée Scope High volume DDoS attacks Electronic payment systems Low bandwidth requirements: 5 from account X to

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

Murari Sridharan Windows TCP/IP Networking, Microsoft Corp. (Collaborators: Kun Tan, Jingmin Song, MSRA & Qian Zhang, HKUST)

Murari Sridharan Windows TCP/IP Networking, Microsoft Corp. (Collaborators: Kun Tan, Jingmin Song, MSRA & Qian Zhang, HKUST) Murari Sridharan Windows TCP/IP Networking, Microsoft Corp. (Collaborators: Kun Tan, Jingmin Song, MSRA & Qian Zhang, HKUST) Design goals Efficiency Improve throughput by efficiently using the spare capacity

More information

TCP Behavior across Multihop Wireless Networks and the Wired Internet

TCP Behavior across Multihop Wireless Networks and the Wired Internet TCP Behavior across Multihop Wireless Networks and the Wired Internet Kaixin Xu, Sang Bae, Mario Gerla, Sungwook Lee Computer Science Department University of California, Los Angeles, CA 90095 (xkx, sbae,

More information

WEB SERVER PERFORMANCE WITH CUBIC AND COMPOUND TCP

WEB SERVER PERFORMANCE WITH CUBIC AND COMPOUND TCP WEB SERVER PERFORMANCE WITH CUBIC AND COMPOUND TCP Alae Loukili, Alexander Wijesinha, Ramesh K. Karne, and Anthony K. Tsetse Towson University Department of Computer & Information Sciences Towson, MD 21252

More information

Using Linux Traffic Control on Virtual Circuits J. Zurawski Internet2 zurawski@internet2.edu February 25 nd 2013

Using Linux Traffic Control on Virtual Circuits J. Zurawski Internet2 zurawski@internet2.edu February 25 nd 2013 Using Linux Traffic Control on Virtual Circuits J. Zurawski Internet2 zurawski@internet2.edu February 25 nd 2013 1. Abstract Research and Education (R&E) networks have experimented with the concept of

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes:

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes: Data Transfer Consider transferring an enormous file of L bytes from Host A to B using a MSS of 1460 bytes and a 66 byte header. What is the maximum value of L such that TCP sequence numbers are not exhausted?

More information

Network Probe. Figure 1.1 Cacti Utilization Graph

Network Probe. Figure 1.1 Cacti Utilization Graph Network Probe Description The MCNC Client Network Engineering group will install several open source network performance management tools on a computer provided by the LEA or charter school to build a

More information

Operating Systems and Networks Sample Solution 1

Operating Systems and Networks Sample Solution 1 Spring Term 2014 Operating Systems and Networks Sample Solution 1 1 byte = 8 bits 1 kilobyte = 1024 bytes 10 3 bytes 1 Network Performance 1.1 Delays Given a 1Gbps point to point copper wire (propagation

More information

Low-rate TCP-targeted Denial of Service Attack Defense

Low-rate TCP-targeted Denial of Service Attack Defense Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu

More information

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource

More information

RFC 6349 Testing with TrueSpeed from JDSU Experience Your Network as Your Customers Do

RFC 6349 Testing with TrueSpeed from JDSU Experience Your Network as Your Customers Do RFC 6349 Testing with TrueSpeed from JDSU Experience Your Network as Your Customers Do RFC 6349 is the new transmission control protocol (TCP) throughput test methodology that JDSU co-authored along with

More information

Achieving Reliable High Performance in LFNs

Achieving Reliable High Performance in LFNs Achieving Reliable High Performance in LFNs ven Ubik, and Pavel Cimbal, CENET, Prague, Czech Republic Abstract The PC hardware architecture and commodity operating

More information

A Survey: High Speed TCP Variants in Wireless Networks

A Survey: High Speed TCP Variants in Wireless Networks ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

More information

Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking

Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking Burjiz Soorty School of Computing and Mathematical Sciences Auckland University of Technology Auckland, New Zealand

More information

TCP/IP Over Lossy Links - TCP SACK without Congestion Control

TCP/IP Over Lossy Links - TCP SACK without Congestion Control Wireless Random Packet Networking, Part II: TCP/IP Over Lossy Links - TCP SACK without Congestion Control Roland Kempter The University of Alberta, June 17 th, 2004 Department of Electrical And Computer

More information

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details

More information

Using TrueSpeed VNF to Test TCP Throughput in a Call Center Environment

Using TrueSpeed VNF to Test TCP Throughput in a Call Center Environment Using TrueSpeed VNF to Test TCP Throughput in a Call Center Environment TrueSpeed VNF provides network operators and enterprise users with repeatable, standards-based testing to resolve complaints about

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

The new frontier of the DATA acquisition using 1 and 10 Gb/s Ethernet links. Filippo Costa on behalf of the ALICE DAQ group

The new frontier of the DATA acquisition using 1 and 10 Gb/s Ethernet links. Filippo Costa on behalf of the ALICE DAQ group The new frontier of the DATA acquisition using 1 and 10 Gb/s Ethernet links Filippo Costa on behalf of the ALICE DAQ group DATE software 2 DATE (ALICE Data Acquisition and Test Environment) ALICE is a

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

First Midterm for ECE374 03/24/11 Solution!!

First Midterm for ECE374 03/24/11 Solution!! 1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

More information

Application Note. Windows 2000/XP TCP Tuning for High Bandwidth Networks. mguard smart mguard PCI mguard blade

Application Note. Windows 2000/XP TCP Tuning for High Bandwidth Networks. mguard smart mguard PCI mguard blade Application Note Windows 2000/XP TCP Tuning for High Bandwidth Networks mguard smart mguard PCI mguard blade mguard industrial mguard delta Innominate Security Technologies AG Albert-Einstein-Str. 14 12489

More information

The Problem with TCP. Overcoming TCP s Drawbacks

The Problem with TCP. Overcoming TCP s Drawbacks White Paper on managed file transfers How to Optimize File Transfers Increase file transfer speeds in poor performing networks FileCatalyst Page 1 of 6 Introduction With the proliferation of the Internet,

More information

Optimizing Throughput on Guaranteed-Bandwidth WAN Networks for the Large Synoptic Survey Telescope (LSST)

Optimizing Throughput on Guaranteed-Bandwidth WAN Networks for the Large Synoptic Survey Telescope (LSST) Optimizing Throughput on Guaranteed-Bandwidth WAN Networks for the Large Synoptic Survey Telescope (LSST) D. Michael Freemon National Center for Supercomputing Applications University of Illinois Urbana,

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Supermicro Ethernet Switch Performance Test Straightforward Public Domain Test Demonstrates 40Gbps Wire Speed Performance

Supermicro Ethernet Switch Performance Test Straightforward Public Domain Test Demonstrates 40Gbps Wire Speed Performance Straightforward Public Domain Test Demonstrates 40Gbps Wire Speed Performance SSE-X3348S/SR Test report- 40G switch port performance on Supermicro SSE-X3348 ethernet switches. SSE-X3348T/TR 1. Summary

More information

End-to-End Network/Application Performance Troubleshooting Methodology

End-to-End Network/Application Performance Troubleshooting Methodology End-to-End Network/Application Performance Troubleshooting Methodology Wenji Wu, Andrey Bobyshev, Mark Bowden, Matt Crawford, Phil Demar, Vyto Grigaliunas, Maxim Grigoriev, Don Petravick Fermilab, P.O.

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 When you buy a broadband Wide Area Network (WAN) you want to put the entire bandwidth capacity to

More information

TCP over Wireless Networks

TCP over Wireless Networks TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/

More information

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Master s Thesis. Design, Implementation and Evaluation of

Master s Thesis. Design, Implementation and Evaluation of Master s Thesis Title Design, Implementation and Evaluation of Scalable Resource Management System for Internet Servers Supervisor Prof. Masayuki Murata Author Takuya Okamoto February, 2003 Department

More information

Mike Canney Principal Network Analyst getpackets.com

Mike Canney Principal Network Analyst getpackets.com Mike Canney Principal Network Analyst getpackets.com 1 My contact info contact Mike Canney, Principal Network Analyst, getpackets.com canney@getpackets.com 319.389.1137 2 Capture Strategies capture Capture

More information

Network Security TCP/IP Refresher

Network Security TCP/IP Refresher Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

More information

Linux TCP Implementation Issues in High-Speed Networks

Linux TCP Implementation Issues in High-Speed Networks Linux TCP Implementation Issues in High-Speed Networks D.J.Leith Hamilton Institute, Ireland www.hamilton.ie 1. Implementation Issues 1.1. SACK algorithm inefficient Packets in flight and not yet acknowledged

More information

Measure wireless network performance using testing tool iperf

Measure wireless network performance using testing tool iperf Measure wireless network performance using testing tool iperf By Lisa Phifer, SearchNetworking.com Many companies are upgrading their wireless networks to 802.11n for better throughput, reach, and reliability,

More information

Science DMZs Understanding their role in high-performance data transfers

Science DMZs Understanding their role in high-performance data transfers Science DMZs Understanding their role in high-performance data transfers Chris Tracy, Network Engineer Eli Dart, Network Engineer ESnet Engineering Group Overview Bulk Data Movement a common task Pieces

More information

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006 CSE33: Introduction to Networks and Security Lecture 9 Fall 2006 Announcements Project Due TODAY HW Due on Friday Midterm I will be held next Friday, Oct. 6th. Will cover all course material up to next

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14

Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14 1 Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit

More information

TCP/IP Inside the Data Center and Beyond. Dr. Joseph L White, Juniper Networks

TCP/IP Inside the Data Center and Beyond. Dr. Joseph L White, Juniper Networks Dr. Joseph L White, Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individual members may use this material in presentations

More information

A Passive Method for Estimating End-to-End TCP Packet Loss

A Passive Method for Estimating End-to-End TCP Packet Loss A Passive Method for Estimating End-to-End TCP Packet Loss Peter Benko and Andras Veres Traffic Analysis and Network Performance Laboratory, Ericsson Research, Budapest, Hungary {Peter.Benko, Andras.Veres}@eth.ericsson.se

More information

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of

More information

Sockets vs. RDMA Interface over 10-Gigabit Networks: An In-depth Analysis of the Memory Traffic Bottleneck

Sockets vs. RDMA Interface over 10-Gigabit Networks: An In-depth Analysis of the Memory Traffic Bottleneck Sockets vs. RDMA Interface over 1-Gigabit Networks: An In-depth Analysis of the Memory Traffic Bottleneck Pavan Balaji Hemal V. Shah D. K. Panda Network Based Computing Lab Computer Science and Engineering

More information

Answer: that dprop equals dtrans. seconds. a) d prop. b) d trans

Answer: that dprop equals dtrans. seconds. a) d prop. b) d trans Chapter 1 1) p. 98: P-6 This elementary problem begins to explore propagation delay and transmission delay, two central concepts in data networking. Consider two hosts, A and B, connected by single link

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Cours de C. Pham,

More information

TCP Offload Engines. As network interconnect speeds advance to Gigabit. Introduction to

TCP Offload Engines. As network interconnect speeds advance to Gigabit. Introduction to Introduction to TCP Offload Engines By implementing a TCP Offload Engine (TOE) in high-speed computing environments, administrators can help relieve network bottlenecks and improve application performance.

More information

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks TCP/IP Optimization for Wide Area Storage Networks Dr. Joseph L White Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals

More information

UDT: UDP-based Data Transfer for High-Speed Wide Area Networks

UDT: UDP-based Data Transfer for High-Speed Wide Area Networks UDT: UDP-based Data Transfer for High-Speed Wide Area Networks Yunhong Gu and Robert L. Grossman National Center for Data Mining, University of Illinois at Chicago 851 S Morgan St, M/C 249, Chicago, IL

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

Where IT perceptions are reality. Test Report. OCe14000 Performance. Featuring Emulex OCe14102 Network Adapters Emulex XE100 Offload Engine

Where IT perceptions are reality. Test Report. OCe14000 Performance. Featuring Emulex OCe14102 Network Adapters Emulex XE100 Offload Engine Where IT perceptions are reality Test Report OCe14000 Performance Featuring Emulex OCe14102 Network Adapters Emulex XE100 Offload Engine Document # TEST2014001 v9, October 2014 Copyright 2014 IT Brand

More information

Network Friendliness of Mobility Management Protocols

Network Friendliness of Mobility Management Protocols Network Friendliness of Mobility Management Protocols Md Sazzadur Rahman, Mohammed Atiquzzaman Telecommunications and Networks Research Lab School of Computer Science, University of Oklahoma, Norman, OK

More information

Test Methodology White Paper. Author: SamKnows Limited

Test Methodology White Paper. Author: SamKnows Limited Test Methodology White Paper Author: SamKnows Limited Contents 1 INTRODUCTION 3 2 THE ARCHITECTURE 4 2.1 Whiteboxes 4 2.2 Firmware Integration 4 2.3 Deployment 4 2.4 Operation 5 2.5 Communications 5 2.6

More information

How Router Technology Shapes Inter-Cloud Computing Service Architecture for The Future Internet

How Router Technology Shapes Inter-Cloud Computing Service Architecture for The Future Internet How Router Technology Shapes Inter-Cloud Computing Service Architecture for The Future Internet Professor Jiann-Liang Chen Friday, September 23, 2011 Wireless Networks and Evolutional Communications Laboratory

More information

Gateway Strategies for VoIP Traffic over Wireless Multihop Networks

Gateway Strategies for VoIP Traffic over Wireless Multihop Networks KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 1, January 2011 24 Copyright c 2011 KSII Gateway Strategies for VoIP Traffic over Wireless Multihop Networks Kyungtae Kim 1, Dragoş Niculescu

More information

The Fundamentals of Intrusion Prevention System Testing

The Fundamentals of Intrusion Prevention System Testing The Fundamentals of Intrusion Prevention System Testing New network-based Intrusion Prevention Systems (IPS) complement traditional security products to provide enterprises with unparalleled protection

More information

Davor Guttierrez dguttierrez@me.com 3 Gen d.o.o. Optimizing Linux Servers

Davor Guttierrez dguttierrez@me.com 3 Gen d.o.o. Optimizing Linux Servers Davor Guttierrez dguttierrez@me.com 3 Gen d.o.o. Optimizing Linux Servers Davor Guttierrez 3 Gen d.o.o since 1996 located in Ljubljana; Slovenia 33 employees large IBM mainframe systems and UNIX-oriented

More information

Burst Testing. New mobility standards and cloud-computing network. This application note will describe how TCP creates bursty

Burst Testing. New mobility standards and cloud-computing network. This application note will describe how TCP creates bursty Burst Testing Emerging high-speed protocols in mobility and access networks, combined with qualityof-service demands from business customers for services such as cloud computing, place increased performance

More information

File Transfer Protocol Performance Study for EUMETSAT Meteorological Data Distribution

File Transfer Protocol Performance Study for EUMETSAT Meteorological Data Distribution Scientific Papers, University of Latvia, 2011. Vol. 770 Computer Science and Information Technologies 56 67 P. File Transfer Protocol Performance Study for EUMETSAT Meteorological Data Distribution Leo

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

Challenges of Sending Large Files Over Public Internet

Challenges of Sending Large Files Over Public Internet Challenges of Sending Large Files Over Public Internet CLICK TO EDIT MASTER TITLE STYLE JONATHAN SOLOMON SENIOR SALES & SYSTEM ENGINEER, ASPERA, INC. CLICK TO EDIT MASTER SUBTITLE STYLE OUTLINE Ø Setting

More information

Performance Evaluation of Different TCP Congestion Control Schemes in 4G System

Performance Evaluation of Different TCP Congestion Control Schemes in 4G System Li Jie Performance Evaluation of Different TCP Congestion Control Schemes in 4G System Information Technology 2013 VAASAN AMMATTIKORKEAKOULU UNIVERSITY OF APPLIED SCIENCES Information Technology ABSTRACT

More information

TCP Labs. WACREN Network Monitoring and Measurement Workshop Antoine Delvaux a.delvaux@man.poznan.pl perfsonar developer 30.09.

TCP Labs. WACREN Network Monitoring and Measurement Workshop Antoine Delvaux a.delvaux@man.poznan.pl perfsonar developer 30.09. TCP Labs WACREN Network Monitoring and Measurement Workshop Antoine Delvaux a.delvaux@man.poznan.pl perfsonar developer 30.09.2015 Hands-on session We ll explore practical aspects of TCP Checking the effect

More information

15-441: Computer Networks Homework 2 Solution

15-441: Computer Networks Homework 2 Solution 5-44: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN

The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN By Jim Metzler, Cofounder, Webtorials Editorial/Analyst Division Background and Goal Many papers have been written

More information

Throughput Issues for High-Speed Wide-Area Networks

Throughput Issues for High-Speed Wide-Area Networks Throughput Issues for High-Speed Wide-Area Networks Brian L. Tierney ESnet Lawrence Berkeley National Laboratory http://fasterdata.es.net/ (HEPIX Oct 30, 2009) Why does the Network seem so slow? TCP Performance

More information

Architecture and Performance of the Internet

Architecture and Performance of the Internet SC250 Computer Networking I Architecture and Performance of the Internet Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Today's Objectives Understanding

More information

PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs

PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs PSM-throttling: Minimizing Energy Consumption for Bulk Data Communications in WLANs Xiaodong Zhang Ohio State University in Collaborations with Enhua Tan, Ohio State Lei Guo, Yahoo! Songqing Chen, George

More information

Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput

Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput Netest: A Tool to Measure the Maximum Burst Size, Available Bandwidth and Achievable Throughput Guojun Jin Brian Tierney Distributed Systems Department Lawrence Berkeley National Laboratory 1 Cyclotron

More information

Campus Network Design Science DMZ

Campus Network Design Science DMZ Campus Network Design Science DMZ Dale Smith Network Startup Resource Center dsmith@nsrc.org The information in this document comes largely from work done by ESnet, the USA Energy Sciences Network see

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Effects of Filler Traffic In IP Networks. Adam Feldman April 5, 2001 Master s Project

Effects of Filler Traffic In IP Networks. Adam Feldman April 5, 2001 Master s Project Effects of Filler Traffic In IP Networks Adam Feldman April 5, 2001 Master s Project Abstract On the Internet, there is a well-documented requirement that much more bandwidth be available than is used

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Based on Computer Networking, 4 th Edition by Kurose and Ross

Based on Computer Networking, 4 th Edition by Kurose and Ross Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information