Math 2001 Homework #10 Solutions


 Joy Payne
 2 years ago
 Views:
Transcription
1 Math 00 Homework #0 Solutions. Section.: ab. For each map below, determine the number of southerly paths from point to point. Solution: We just have to use the same process as we did in building Pascal s triangle: mark a to count the paths coming directly out of, then below that at each vertex add up all the paths coming into that vertex. For part (a) we obtain 8 paths, and for part (b) we obtain 0 paths as shown Section.:. For each map below, determine the number of southerly paths from to that pass through. Solution: The strategy here is to first figure out how many paths there are from to, then figure out how many paths there are from to. We then multiply these possibilities (since once I get to, it doesn t matter how I got there when I start heading out to ). In part (a) we get 0 paths from to using the standard Pascal s triangle (since it s a regular grid) which are colored green. Then we start over in red and get another 0 paths from to again using Pascal s triangle. So in total there are 00 paths from to that pass through. In part (b) we get paths from to colored in green. Then starting over in red we get paths from to. So in total there are southerly paths from to that pass through.
2 0 0. Section.:. social studies test consists of ten multiplechoice questions, each with five possible choices; ten True/False questions; and ten matching questions in which the ten correct answers are given and are to be matched with the appropriate question. (a) How many ways can each section of the test be randomly completed if, in the matching section, each answer is used exactly once? Solution: For the multiplechoice portion, there are ten questions and five choices for each question, so there are 0 ways to answer it. For the true/false question, there are ten questions and two choices for each question, so we get 0 ways to complete this. Finally for the matching question, since each answer must be used only once, we have 0! ways of permuting the answers and pairing with the questions. (b) How many ways may the entire test be randomly completed? Solution: Just multiply the number of ways to complete each portion: that s. Section.: ! = 0 0 0!. (a) How many different license plates are possible if each is to contain three letters followed by three digits? Solution: There are choices for each of the first three slots, then 0 choices for each of the next three slots, so a total of 0 plates. (b) How many different license plates are possible if each is to contain three letters and three digits in any order? Solution: To build such a license plate, we would have to first decide which three of the six slots will be letter slots (and all the rest will be number slots). This is the same as the number of subsets of size from the six element set {,,,,, } where the digits represent which slot we re in; so there are ( ) ways to do this.
3 Once we ve decided which slots have letters and which have numbers, the answer is the same as before: 0. So in total we have ( ) 0 possible license plates of this form.. Section.: egj. alculate: ( ) (e) = = =,88, (Here I took a 7 out of to get 7, the out of 8 to get, and the out of to get.) (g) ( ) = = 8 =,7,80. Here I factored =, 0 =, 7 =, =, ( ) (j) = = = 8, Section.: ace. =, and =. (a) Find the coefficient of x y 7 in the expansion of (x + y) 0. Solution: From the binomial theorem, it s ( ) = = 7 = 77, (b) Find the coefficient of x 7 in the expansion of (x ). Solution: The expansion will have a term like ( ) 7 x 7 ( ), so the coefficient of x 7 is ( ) ( ) 0 8 = = 8 =,. 7 (c) Find the coefficient of x in the expansion of (x + ). Solution: s before, the expansion has a term like ( ) x, so the coefficient of x is ( ) = = 7 =,78.
4 7. Suppose you remove all prime numbers from a standard deck of cards because they re unlucky, as well as removing the jacks because what s a jack? So the only faces left are {,,, 8,, 0, Q, K}, with all four suits of each. (a) How many fivecard poker hands are there with such a deck? Solution: There are cards and we need to choose, so ( ) 0 8 = = 8 8 = 0,7. (b) How many full house hands are there? (Three of one face, two of another face, such as ces of clubs, diamonds, and hearts, and s of spades and diamonds.) ( Solution: First we choose the triplet: 8 ). Then we choose the suits for the triplet: ( ( ). Next we choose the doublet: 7 ). Then we choose the suits for the doublet: ( ). The total number is 8 7 =. (c) How many straight flush hands are there? (Five cards in a row, all of the same suit, such as ce,,, 8, of hearts. (Note that {,,, 8, } and {, 0, Q, K, } both count since ce can be considered either the highest or the lowest card.) Solution: First we choose the starting card (which can be {,,, 8, }), then we choose the suit. In total there are = 0 such hands. (d) How many flush hands are there? (Five cards all of the same suit, but not in a row.) ( Solution: We need to choose the suit: ). Then we choose any five cards in that suit; there are ( ) 8 = 8 7 = ways to do this. Thus in total there are = flushes. However 0 of them are straight flushes, so only 0 of them are genuinely flushes. 8. Section.:. Refer to the maps of Exercise of Section.. For each map, what is the probability that a randomly selected southerly path from point to point passes through point? Solution: We have already done half the work here: we counted all the paths from to that pass through. To find the probability, we just need to count all the paths from to. In part (a), we fill in the usual terms of Pascal s triangle to find paths from to. n alternate way of doing it without filling in the triangle is to just use the fact that point is ten rows down and right in the middle, so it s ( ) 0 = = 7 =.
5 Either way, the probability in part (a) of a random path going through point is 00 =.7%. In part (b) we do the nonstandard Pascal s triangle to get from point to point. dding up at each vertex the numbers from all attached vertices above it, we eventually obtain paths from to. Since we already calculated that there are paths that pass through, the probability of a random path going through on the way to is = 7.%
Poker Probability from Wikipedia. Frequency of 5card poker hands 36 0.00139% 0.00154% 72,192.33 : 1
Poker Probability from Wikipedia Frequency of 5card poker hands The following enumerates the frequency of each hand, given all combinations of 5 cards randomly drawn from a full deck of 52 without replacement.
More informationLECTURE 3. Probability Computations
LECTURE 3 Probability Computations Pg. 67, #42 is one of the hardest problems in the course. The answer is a simple fraction there should be a simple way to do it. I don t know a simple way I used the
More informationCombinations If 5 sprinters compete in a race, how many different ways can the medals for first, second and third place, be awarded
Combinations If 5 sprinters compete in a race, how many different ways can the medals for first, second and third place, be awarded If 5 sprinters compete in a race and the fastest 3 qualify for the relay
More informationCombinatorial Proofs
Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A
More informationHomework 2 Solutions
CSE 21  Winter 2012 Homework #2 Homework 2 Solutions 2.1 In this homework, we will consider ordinary decks of playing cards which have 52 cards, with 13 of each of the four suits (Hearts, Spades, Diamonds
More informationExam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
More informationPoker. 10,Jack,Queen,King,Ace. 10, Jack, Queen, King, Ace of the same suit Five consecutive ranks of the same suit that is not a 5,6,7,8,9
Poker Poker is an ideal setting to study probabilities. Computing the probabilities of different will require a variety of approaches. We will not concern ourselves with betting strategies, however. Our
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationUNDERGROUND TONK LEAGUE
UNDERGROUND TONK LEAGUE WWW.TONKOUT.COM RULES Players are dealt (5) five cards to start. Player to left of dealer has first play. Player must draw a card from the deck or Go For Low. If a player draws
More informationWhat is the probability of throwing a fair die and receiving a six? Introduction to Probability. Basic Concepts
Basic Concepts Introduction to Probability A probability experiment is any experiment whose outcomes relies purely on chance (e.g. throwing a die). It has several possible outcomes, collectively called
More informationMATH 105: Finite Mathematics 65: Combinations
MATH 105: Finite Mathematics 65: Combinations Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Developing Combinations 2 s of Combinations 3 Combinations vs. Permutations 4 Conclusion
More informationEXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS
EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the
More informationTexas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows:
Texas Hold em Poker is one of the most popular card games, especially among betting games. While poker is played in a multitude of variations, Texas Hold em is the version played most often at casinos
More informationSECTION 105 Multiplication Principle, Permutations, and Combinations
105 Multiplication Principle, Permutations, and Combinations 761 54. Can you guess what the next two rows in Pascal s triangle, shown at right, are? Compare the numbers in the triangle with the binomial
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2. (b) 1.5. (c) 0.52.
Stats: Test 1 Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the given frequency distribution to find the (a) class width. (b) class
More informationMATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker)
Last modified: February, 00 References: MATHEMATICS 5, SPRING 00 PROBABILITY THEORY Outline # (Combinatorics, bridge, poker) PRP(Probability and Random Processes, by Grimmett and Stirzaker), Section.7.
More informationPOKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game.
POKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game. 1.0 Rules 1.1 POKER LOTTO is governed by the Rules Respecting Lottery Games of
More informationCombinatorics 3 poker hands and Some general probability
Combinatorics 3 poker hands and Some general probability Play cards 13 ranks Heart 4 Suits Spade Diamond Club Total: 4X13=52 cards You pick one card from a shuffled deck. What is the probability that it
More informationFundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
More informationRemember to leave your answers as unreduced fractions.
Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,
More informationFind the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
More informationTopic 1 Probability spaces
CSE 103: Probability and statistics Fall 2010 Topic 1 Probability spaces 1.1 Definition In order to properly understand a statement like the chance of getting a flush in fivecard poker is about 0.2%,
More informationChapter 3: The basic concepts of probability
Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording
More informationSlide 1 Math 1520, Lecture 23. This lecture covers mean, median, mode, odds, and expected value.
Slide 1 Math 1520, Lecture 23 This lecture covers mean, median, mode, odds, and expected value. Slide 2 Mean, Median and Mode Mean, Median and mode are 3 concepts used to get a sense of the central tendencies
More information4. Binomial Expansions
4. Binomial Expansions 4.. Pascal's Triangle The expansion of (a + x) 2 is (a + x) 2 = a 2 + 2ax + x 2 Hence, (a + x) 3 = (a + x)(a + x) 2 = (a + x)(a 2 + 2ax + x 2 ) = a 3 + ( + 2)a 2 x + (2 + )ax 2 +
More informationA permutation can also be represented by describing its cycles. What do you suppose is meant by this?
Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs
More informationJan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 5054)
Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0 Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample
More informationStatistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
More informationProbabilities of Poker Hands with Variations
Probabilities of Poker Hands with Variations Jeff Duda Acknowledgements: Brian Alspach and Yiu Poon for providing a means to check my numbers Poker is one of the many games involving the use of a 52card
More information2.5 Conditional Probabilities and 2Way Tables
2.5 Conditional Probabilities and 2Way Tables Learning Objectives Understand how to calculate conditional probabilities Understand how to calculate probabilities using a contingency or 2way table It
More information. In combinations, order does not matter. 1. Given a standard 52card deck, how many different fivecard hands are possible?
Worksheet ombinations (answers) Mr. hvatal A combination of n objects taken r at a time is denoted by n r. In combinations, order does not matter. Playing cards Examples 1. Given a standard 52card deck,
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
More informationIntroductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
More informationSpring 2007 Math 510 Hints for practice problems
Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an chessboard There are doors between all adjacent cells A prisoner in one
More informationAP Statistics 7!3! 6!
Lesson 64 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
More informationPigeonhole Principle Solutions
Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such
More informationSection 6.4: Counting Subsets of a Set: Combinations
Section 6.4: Counting Subsets of a Set: Combinations In section 6.2, we learnt how to count the number of rpermutations from an nelement set (recall that an rpermutation is an ordered selection of r
More informationCombinatorics. Chapter 1. 1.1 Factorials
Chapter 1 Combinatorics Copyright 2009 by David Morin, morin@physics.harvard.edu (Version 4, August 30, 2009) This file contains the first three chapters (plus some appendices) of a potential book on Probability
More informationDiscrete Mathematics Lecture 5. Harper Langston New York University
Discrete Mathematics Lecture 5 Harper Langston New York University Empty Set S = {x R, x 2 = 1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of
More information1 Combinations, Permutations, and Elementary Probability
1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order
More information(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.
Examples for Chapter 3 Probability Math 10401 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More information6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
More informationnumber of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.
12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.
More informationWHAT ARE THE ODDS? The Wizard of Odds Analyzes the New Casino Games
The Wizard of Odds Analyzes the New Casino Games BY MICHAEL SHACKLEFORD The insurance business has always been a gamble but actuaries haven t exactly been considered high rollers at the gaming table. Until
More informationAnswer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
More informationBasic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
More informationHoover High School Math League. Counting and Probability
Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches
More information1 Bet Threat Texas Hold Em Gaming Equipment Rules of the Games Temporary Amendments: N.J.A.C. 19:401.2; and 19:461.17, 1.18 and 1.
1 Bet Threat Texas Hold Em Gaming Equipment Rules of the Games Temporary Amendments: N.J.A.C. 19:401.2; and 19:461.17, 1.18 and 1.19 Temporary New Rules: N.J.A.C. 19:461.13X and 19:4735 Authority:
More informationThe cloth covering a Three Card Poker 6 Card Bonus table (the layout) shall have wagering areas for eight players.
*Three Card Poker 6 Card Bonus is owned, patented and/or copyrighted by SHFL Entertainment, Inc. Please submit your agreement with Owner authorizing play of Game in your gambling establishment together
More informationAn Introduction to Combinatorics and Graph Theory. David Guichard
An Introduction to Combinatorics and Graph Theory David Guichard This work is licensed under the Creative Commons AttributionNonCommercialShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/byncsa/3.0/
More informationFactoring. Factoring Monomials Monomials can often be factored in more than one way.
Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,
More informationName Intro to Algebra 2. Unit 1: Polynomials and Factoring
Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332
More informationSection 65 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
More informationLesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations)
Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations) Note: At my school, there is only room for one math main lesson block in ninth grade. Therefore,
More informationDetermine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
More informationWorksheet A2 : Fundamental Counting Principle, Factorials, Permutations Intro
Worksheet A2 : Fundamental Counting Principle, Factorials, Permutations Intro 1. A restaurant offers four sizes of pizza, two types of crust, and eight toppings. How many possible combinations of pizza
More informationExample Hand Say you are dealt the following cards: Suits Suits are ranked in the following order.
Chinese Poker or 13 Card Poker This game is played with 4 players. Each player is dealt 13 cards. The object is to arrange them into 3 groups: one consisting of 3 cards (front hand), and two consisting
More informationName: Date: Use the following to answer questions 24:
Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More information13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
More informationOptional 6 Card Bonus Wager In Three Card Poker Gaming Equipment Rules of the Games Proposed Amendments: N.J.A.C. 19:461.10A; 19:4720.1, 20.
Optional 6 Card Bonus Wager In Three Card Poker Gaming Equipment Rules of the Games Proposed Amendments: N.J.A.C. 19:461.10A; 19:4720.1, 20.6, 20.10 and 20.11 Proposed New Rule: N.J.A.C. 19:4720.12A
More informationExample Hand. Suits Suits are ranked in the following order. Suits Spade (highest rank)
Chinese Poker or 13 Card Poker There are 3 or 4 players (3 in Double Combo variation, 4 in all other variations). Each player is dealt 13 cards. The object is to arrange them into 3 groups: one consisting
More informationProbability Worksheet 4. Simplify the expressions. n n 10! 2!8! 1.) 2.) 3.) ) 7! 5! 5! 5.) 4.) 14 7.) 8.) 2 2 n!
M408 Probability Worksheet 4 Name Simplify the expressions. 1.) 10! 2!8! 2.) n n 1 1 3.) 5 P 2 4.) 14 C 9 5.) 14 0 6.) 3! 7! 5! 5! 7.) x 3 4 n 3! x 2 4 n 1! 8.) x 1 2 2 n! x 4 2 2n 2! 9.) Find the value
More information111 Permutations and Combinations
Fundamental Counting Principal 111 Permutations and Combinations Using the Fundamental Counting Principle 1a. A makeyourownadventure story lets you choose 6 starting points, gives 4 plot choices, and
More informationHow to Play. Player vs. Dealer
How to Play You receive five cards to make your best fourcard poker hand. A fourcard Straight is a Straight, a fourcard Flush is a Flush, etc. Player vs. Dealer Make equal bets on the Ante and Super
More information0018 DATA ANALYSIS, PROBABILITY and STATISTICS
008 DATA ANALYSIS, PROBABILITY and STATISTICS A permutation tells us the number of ways we can combine a set where {a, b, c} is different from {c, b, a} and without repetition. r is the size of of the
More informationSection 64 Multiplication Principle, Permutations, and Combinations
78 SEQUENCES, SERIES, ND PROBBILITY (B) Find the cycles per second for C, three notes higher than. 91. Puzzle. If you place 1 on the first square of a chessboard, on the second square, on the third, and
More informationMath 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
More informationThe game also features three optional bonus bets.
Type of Game The game of Commission Free Fortune Gow Poker utilizes a playerdealer position and is a California game. The playerdealer shall collect all losing wagers, pay all winning wagers, and may
More informationSlots... 1. seven card stud...22
GAMING GUIDE table of contents Slots... 1 Blackjack...3 Lucky Ladies...5 Craps...7 Roulette... 13 Three Card Poker... 15 Four Card Poker... 17 Texas Hold em Bonus Poker... 18 omaha Poker... 21 seven card
More informationProbability definitions
Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a datagenerating
More informationStandard 12: The student will explain and evaluate the financial impact and consequences of gambling.
STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every
More informationCoin Flip Questions. Suppose you flip a coin five times and write down the sequence of results, like HHHHH or HTTHT.
Coin Flip Questions Suppose you flip a coin five times and write down the sequence of results, like HHHHH or HTTHT. 1 How many ways can you get exactly 1 head? 2 How many ways can you get exactly 2 heads?
More informationIntroduction Assignment
PRECALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying
More informationContemporary Mathematics Online Math 1030 Sample Exam I Chapters 1214 No Time Limit No Scratch Paper Calculator Allowed: Scientific
Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 1214 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the lefthand margin. You
More informationProbability Review Solutions
Probability Review Solutions. A family has three children. Using b to stand for and g to stand for, and using ordered triples such as bbg, find the following. a. draw a tree diagram to determine the sample
More informationAll zombies that are not in play are kept in a pile off to the side, known as the Zombie Pile.
One Against the Dead By Scott Slomiany (scott@ledgaming.com) (Read my incredibly biased opinions and notes on game design at http://meeplespeak.blogspot.com/) Players: 1 Game Style: Exploration, Survival,
More informationObject of the Game The object of the game is for each player to form a fivecard hand that ranks higher than the playerdealer s hand.
*Ultimate Texas Hold em is owned, patented and/or copyrighted by Bally Technologies, Inc. Please note that the Bureau is making the details of this game available to the public as required by subdivision
More informationProbability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
More informationCurriculum Design for Mathematic Lesson Probability
Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.
More informationThe Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
More informationUltimate Texas Hold'em features headtohead play against the player/dealer and an optional bonus bet.
*Uultimate Texas Hold'em is owned, patented and/or copyrighted by ShuffleMaster Inc. Please submit your agreement with Owner authorizing play of Game in your gambling establishment together with any request
More information8.3 Probability Applications of Counting Principles
8. Probability Applications of Counting Principles In this section, we will see how we can apply the counting principles from the previous two sections in solving probability problems. Many of the probability
More informationFOUR CARD POKER EXPERIENCEEVERYTHING. 24/7 ACTION SilverReefCasino.com (866) 3830777
FOUR CARD POKER Four Card Poker is a game that rewards skill, patience and nerve. It is similar to Three Card poker but with one major difference. In Three Card Poker, the play wager must equal the ante;
More informationCS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin
CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework
More informationSection 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
More informationGREEN CHICKEN EXAM  NOVEMBER 2012
GREEN CHICKEN EXAM  NOVEMBER 2012 GREEN CHICKEN AND STEVEN J. MILLER Question 1: The Green Chicken is planning a surprise party for his grandfather and grandmother. The sum of the ages of the grandmother
More informationProbabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6sided dice. What s the probability of rolling at least one 6? There is a 1
More informationMath 301: Permutations and Combinations PRACTICE EXAM
A. B. C. D. Math 301: Permutations and Combinations PRACTICE EXAM n! 1. The expression is equivalent to: (n  2)! 2. A Grade 12 student is taking Biology, English, Math, and Physics in her first term.
More information3 Some Integer Functions
3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple
More informationShapes Puzzle 1. Shapes Puzzle 2. Shapes Puzzle 3
Shapes Puzzle The twelve pentominoes are shown on the left. On the right, they have been placed together in pairs. Can you show which two pentominoes have been used to make each shape? (Each pentomino
More informationMath 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
More informationSession 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More informationFactoring (pp. 1 of 4)
Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common
More informationJoint distributions Math 217 Probability and Statistics Prof. D. Joyce, Fall 2014
Joint distributions Math 17 Probability and Statistics Prof. D. Joyce, Fall 14 Today we ll look at joint random variables and joint distributions in detail. Product distributions. If Ω 1 and Ω are sample
More informationGAMING MANAGEMENT SEMINAR SERIES. Prices of Casino Games. Jason Zhicheng Gao 高 志 成
GAMING MANAGEMENT SEMINAR SERIES Prices of Casino Games Jason Zhicheng Gao 高 志 成 CasinosGamesPlayers Casinos make money by offering games to the players. Games are casinos major products, and players
More informationReady, Set, Go! Math Games for Serious Minds
Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 
More informationSolution (Done in class)
MATH 115 CHAPTER 4 HOMEWORK Sections 4.14.2 N. PSOMAS 4.6 Winning at craps. The game of craps starts with a comeout roll where the shooter rolls a pair of dice. If the total is 7 or 11, the shooter wins
More information