Security & Trust in Wireless Sensor Networks
|
|
|
- Bennett Hicks
- 10 years ago
- Views:
Transcription
1 Security & Trust in Wireless Sensor Networks Theodore Zahariadis
2 Ultra-wide-band Sensor Node Ultra small sensor node The smallest UW sensor node in the world: 10mm 10mm 10mm On board temperature sensor Ultra low power Low power communication: 3nW/bps More than 9 years battery life using button cell (CR-2032) (Communication every five minutes) High speed communication From 250kbps to10mbps Power supply board Antenna Main board
3 Chips will be invisible Newly developed ultra small µ-chip, size of 50 µm x 50 µm Thickness 7.5 µm For sensors directly embedding into paper Compared with crystal of granulated sugar
4 Wireless Sensor Networks Are expected to: form an integral part of the foreseen Future Internet (of Things) play a key role in the vision of offering mobile, personalised services, whenever and wherever needed Support applications with broadband, wireless connectivity anytime and anywhere. Applications: environmental surveillance, asset management, physical phenomenon monitoring, creation of smart, interactive and immerse spaces However, they face essential security and resilience limitations, especially across insecure, heterogeneous and multiadministration domains
5 Security and Operational Requirements Privacy/Confidentiality: ensures that the data is well protected and remains secret from unauthorized parties Data Integrity: ensures that any received data has not been altered or modified Data Freshness: data is recent and old messages are not replayed. Non-repudiation: ensure that a node cannot deny sending of a message that it originated. Availability of services and information: services and information can be accessed at the time they are required, despite of the presence of attacks. Network reliability: is the capability to keep the functionality even if some nodes fail and is tightly coupled to resilience. Authentication-survivability: is the capability to verify that the data received was really sent by a trusted sender and not by an adversary that injected data in the network. Self-Organization and self-healing: is the ability to mitigate adverse situations as well as frequent nodes movement. Secure Localization: is the ability to accurately locate each sensor. Scalability: is the ability to support a large number of wireless sensor nodes.
6 Sensor Node Constraints Energy Limitation. Every security measure taken in order to mitigate attacks has an impact on energy consumption (encryption, hashing, overhead bits). Transmission Range. The transmission range of wireless ad-hoc/sensor nodes is limited in order to conserve energy thus allowing the nodes to restrict their transmission range. Limited memory and storage capacities. Telos: 16-bit, 8 MHz RISC CPU, 10K RAM, 48K Program Memory, 1024K FLASH Mica mote2: 4 MHz 8-bit CPU, 4 K of RAM, 128K Program memory, 512KFLASH. Unattended Operation. The nodes may be deployed in an environment open to adversaries, interference, harsh environmental conditions, etc. The likelihood that a node suffers a physical attack is much higher than in another typical network which is located in a secure place and mainly faces attacks from a network.
7 Network Constraints Mobility and Hierarchy. During the network mission, the composition of the network and its routing topology may change. Data Rate and Packet Size. oth data rate and packet size affect the overall sensor node energy consumption. Packet sizes are relatively small, while data rates are relatively low. Unreliable Communications. Normally the packet-based routing is connectionless and thus inherently unreliable. Furthermore, the unreliable wireless communication channel also results in damaged packets. Conflicts. Even if the channel is reliable, the communication may still be unreliable. This is due to the broadcast nature of the wireless sensor network. Latency. The multi-hop routing, network congestion and node processing can lead to greater latency in the network, thus making it difficult to achieve synchronization among nodes.
8 Summary optimisations focus on four key principles: Discovery, evaluation and selection of trusted routes based on multiple security metrics and trust measuring methods. Secure Service Discovery, providing network-level security framework, which will protect service discovery messages inside the sensor network, when crossing unknown domains or when interacting with public service providers. Intrusion detection and intruder identification based on distributed trust to provide security against malicious attacks. Highly Secure sensor nodes against attacks from malicious users having actual access to the sensor nodes. The results will be packed in a security toolbox, which will be prototyped and validated in a large trial of more than 100 sensor nodes.
9 Thank you Theodore Zahariadis Synelixis Ltd
10 TRUST MODELING Direct Trust Forwarding (E1) Network-ACK (E2) Packet precision- Integrity (E3) Authentication (E4) Cryptography-Confidentiality (E5) Reputation RES (E6) Reputation Validation (E7) Remaining Energy (E8) Network ACK History Log (E9) Number of Interactions (E10) Distance to the sink node (E11) # of Success # of Failures # of Success # of Failures # of Success # of Failures # of Success # of Failures # of Success # of Failures # of Response # of no Response a S b F i i i i T i = aisi + bi Fi T 8 = a8v a V 8 now now b8v + b V 8 initial initial, 1 C A = 1 noi + a 10 DT = C ( k i= 1 W i * T i )
11 TRUST MODELING: Indirect & Total Trust Direct Trust of responding node DT Nj Reputation RES Reputation value of responding node DT Nj, Reputation Correctness History Log # of Response # of no Response IT = n j= 1 W ( DT N j ) DT N, j Total Trust TT = W ( DT ) DT + W ( IT ) IT
Wireless Sensor Network Security. Seth A. Hellbusch CMPE 257
Wireless Sensor Network Security Seth A. Hellbusch CMPE 257 Wireless Sensor Networks (WSN) 2 The main characteristics of a WSN include: Power consumption constrains for nodes using batteries or energy
Introduction to Wireless Sensor Network Security
Smartening the Environment using Wireless Sensor Networks in a Developing Country Introduction to Wireless Sensor Network Security Presented By Al-Sakib Khan Pathan Department of Computer Science and Engineering
Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen
Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks
Security Sensor Network. Biswajit panja
Security Sensor Network Biswajit panja 1 Topics Security Issues in Wired Network Security Issues in Wireless Network Security Issues in Sensor Network 2 Security Issues in Wired Network 3 Security Attacks
SPINS: Security Protocols for Sensor Networks
SPINS: Security Protocols for Sensor Networks Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victor Wen, and David Culler Department of Electrical Engineering & Computer Sciences, University of California
CSC 774 Advanced Network Security. Outline. Related Work
CC 77 Advanced Network ecurity Topic 6.3 ecure and Resilient Time ynchronization in Wireless ensor Networks 1 Outline Background of Wireless ensor Networks Related Work TinyeRync: ecure and Resilient Time
How To Write A Transport Layer Protocol For Wireless Networks
Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security
Security and Privacy Issues in Wireless Ad Hoc, Mesh, and Sensor Networks
Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 381-388 Research India Publications http://www.ripublication.com/aeee.htm Security and Privacy Issues in Wireless
Data Management in Sensor Networks
Data Management in Sensor Networks Ellen Munthe-Kaas Jarle Søberg Hans Vatne Hansen INF5100 Autumn 2011 1 Outline Sensor networks Characteristics TinyOS TinyDB Motes Application domains Data management
Wireless Sensor Network: Challenges, Issues and Research
ISBN 978-93-84468-20-0 Proceedings of 2015 International Conference on Future Computational Technologies (ICFCT'2015) Singapore, March 29-30, 2015, pp. 224-228 Wireless Sensor Network: Challenges, Issues
Secure Routing in Wireless Sensor Networks
Secure Routing in Wireless Sensor Networks Introduction to Wireless Sensor Networks Ida Siahaan / Leonardo Fernandes DIT Ida Siahaan / Leonardo Fernandes (DIT) Secure Routing in Wireless Sensor Networks
A Transport Protocol for Multimedia Wireless Sensor Networks
A Transport Protocol for Multimedia Wireless Sensor Networks Duarte Meneses, António Grilo, Paulo Rogério Pereira 1 NGI'2011: A Transport Protocol for Multimedia Wireless Sensor Networks Introduction Wireless
Demystifying Wireless for Real-World Measurement Applications
Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Demystifying Wireless for Real-World Measurement Applications Kurt Veggeberg, Business,
Some Security Trends over Wireless Sensor Networks
Some Security Trends over Wireless Sensor Networks ZORAN BOJKOVIC, BOJAN BAKMAZ, MIODRAG BAKMAZ Faculty of Transport and Traffic Engineering University of Belgrade Vojvode Stepe 305 SERBIA Abstract: -
Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs
Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs Why Network Security? Keep the bad guys out. (1) Closed networks
Defense in Cyber Space Beating Cyber Threats that Target Mesh Networks
Beating Cyber Threats that Target Mesh Networks Trent Nelson, Cyber Security Assessment Lead, Idaho National Laboratory Jeff Becker, Global Wireless Business Director, Honeywell Process Solutions Table
Security Solutions for Wireless Sensor Networks
Dirk WESTHOFF, Joao GIRAO, Amardeo SARMA Abstract This paper describes security solutions for collecting and processing data in Wireless Sensor Networks (WSNs). Adequate security capabilities for medium
INTRODUCTION TO WIRELESS SENSOR NETWORKS. Marco Zennaro, ICTP Trieste-Italy
INTRODUCTION TO WIRELESS SENSOR NETWORKS Marco Zennaro, ICTP Trieste-Italy Wireless sensor networks A Wireless Sensor Network is a self-configuring network of small sensor nodes communicating among themselves
SECURITY VULNERABILITY ISSUES IN WIRELESS
SECURITY VULNERABILITY ISSUES IN WIRELESS SENSOR NETWORKS: A SHORT SURVEY C K Marigowda 1, Manjunath Shingadi 2 Associate Professor, Department of Information Science & Eng, Acharya Institute of Technology,
The 5G Infrastructure Public-Private Partnership
The 5G Infrastructure Public-Private Partnership NetFutures 2015 5G PPP Vision 25/03/2015 19/06/2015 1 5G new service capabilities User experience continuity in challenging situations such as high mobility
End-to-End Security in Wireless Sensor Networks (WSNs) Talk by Claudio Anliker Supervised by Dr. Corinna Schmitt CSG@IFI, University of Zurich
End-to-End Security in Wireless Sensor (WSNs) Talk by Supervised by Dr. Corinna Schmitt CSG@IFI, University of Zurich Content 1. Motivation 2. Security Issues and Principles 3. Internet-of-Things and Wireless
Security of MICA*-based / ZigBee Wireless Sensor Networks
Security of MICA*-based / ZigBee Wireless Sensor Networks Cambridge University Computer Lab and myself also Brno University of Technology Department of Intelligent Systems 28 December 2008 Our approach
PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks
PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks Sinem Coleri and Pravin Varaiya Department of Electrical Engineering and Computer Science University of California,
Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem
Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem Ernesto Jiménez Caballero Helsinki University of Technology [email protected] Abstract intrusion detection
Wireless Sensor Networks: Security, Attacks and Challenges
Wireless Sensor Networks: Security, Attacks and Challenges Chaudhari H.C. and Kadam L.U. Swami Vivekanand Mahavidyalaya, Udgir e-mail: [email protected] Abstract The significant advances of
Chapter 17 Wireless Sensor Network Security: A Survey
Security in Distributed, Grid, and Pervasive Computing Yang Xiao,(Eds.) pp. - c 2006 Auerbach Publications, CRC Press Chapter 17 Wireless Sensor Network Security: A Survey John Paul Walters, Zhengqiang
USE CASES BROADBAND EXPERIENCE EVERYWHERE, ANYTIME SMART VEHICLES, TRANSPORT & INFRASTRUCTURE MEDIA EVERYWHERE CRITICAL CONTROL OF REMOTE DEVICES
5g Use Cases BROADBAND EXPERIENCE EVERYWHERE, ANYTIME 5g USE CASES SMART VEHICLES, TRANSPORT & INFRASTRUCTURE MEDIA EVERYWHERE CRITICAL CONTROL OF REMOTE DEVICES INTERACTION HUMAN-IOT Ericsson Internal
Security in Ad Hoc Network
Security in Ad Hoc Network Bingwen He Joakim Hägglund Qing Gu Abstract Security in wireless network is becoming more and more important while the using of mobile equipments such as cellular phones or laptops
An Overview of ZigBee Networks
An Overview of ZigBee Networks A guide for implementers and security testers Matt Hillman Contents 1. What is ZigBee?... 3 1.1 ZigBee Versions... 3 2. How Does ZigBee Operate?... 3 2.1 The ZigBee Stack...
Wireless Sensor Networks: Security Issues and Challenges
COPYRIGHT 2011 IJCIT, ISSN 2078-5828 (PRINT), ISSN 2218-5224 (ONLINE), VOLUME 02, ISSUE 01, MANUSCRIPT CODE: 110746 Wireless Sensor Networks: Security Issues and Challenges Dr. Manoj Kumar Jain Abstract
Wireless Sensor Networks Chapter 14: Security in WSNs
Wireless Sensor Networks Chapter 14: Security in WSNs António Grilo Courtesy: see reading list Goals of this chapter To give an understanding of the security vulnerabilities of Wireless Sensor Networks
Chapter 17 Wireless Sensor Network Security: A Survey
Security in Distributed, Grid, and Pervasive Computing Yang Xiao,(Eds.) pp. - c 2006 Auerbach Publications, CRC Press Chapter 17 Wireless Sensor Network Security: A Survey John Paul Walters, Zhengqiang
Using Received Signal Strength Indicator to Detect Node Replacement and Replication Attacks in Wireless Sensor Networks
Using Received Signal Strength Indicator to Detect Node Replacement and Replication Attacks in Wireless Sensor Networks Sajid Hussain* and Md Shafayat Rahman Jodrey School of Computer Science, Acadia University
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK AN OVERVIEW OF MOBILE ADHOC NETWORK: INTRUSION DETECTION, TYPES OF ATTACKS AND
TRUST MANAGEMENT SCHEMES FOR INTRUSION DETECTION SYSTEMS -A SURVEY
TRUST MANAGEMENT SCHEMES FOR INTRUSION DETECTION SYSTEMS -A SURVEY 1 DEEPA S, 2 SUPRIYA M 1,2 Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore,
DAG based In-Network Aggregation for Sensor Network Monitoring
DAG based In-Network Aggregation for Sensor Network Monitoring Shinji Motegi, Kiyohito Yoshihara and Hiroki Horiuchi KDDI R&D Laboratories Inc. {motegi, yosshy, hr-horiuchi}@kddilabs.jp Abstract Wireless
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering
Problems of Security in Ad Hoc Sensor Network
Problems of Security in Ad Hoc Sensor Network Petr Hanáček * [email protected] Abstract: The paper deals with a problem of secure communication between autonomous agents that form an ad hoc sensor wireless
Testing Overview [Document subtitle]
10/16/2015 ZigBee Penetration Testing Overview [Document subtitle] PURE INTEGRATION Introduction Penetration testers have been focusing on wireless technologies for over a decade now, and industry researchers
A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS
A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS Sumanta Saha, Md. Safiqul Islam, Md. Sakhawat Hossen School of Information and Communication Technology The Royal Institute of Technology (KTH) Stockholm,
Efficient Data Transmission For Wireless Sensor Networks
Volume: 2, Issue: 4, 221-225 April 2015 www.allsubjectjournal.com e-issn: 2349-4182 p-issn: 2349-5979 Impact Factor: 3.762 Girijalaxmi M.Tech scholar, Department of computer Vasudev S Senior assistant
A REMOTE HOME SECURITY SYSTEM BASED ON WIRELESS SENSOR NETWORK AND GSM TECHNOLOGY
A REMOTE HOME SECURITY SYSTEM BASED ON WIRELESS SENSOR NETWORK AND GSM TECHNOLOGY AIM: The main aim of this project is to implement Remote Home Security System Based on Wireless Sensor Network and GSM
About the Authors Preface Acknowledgements List of Acronyms
Contents About the Authors Preface Acknowledgements List of Acronyms xiii xv xvii xix Part One Wireless Ad Hoc, Sensor and Mesh Networking 1 1 Introduction 3 1.1 Information Security 4 1.1.1 Computer Security
Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks
Acta Polytechnica Hungarica Vol. 8, No. 6, 2011 Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks Liana Khamis Qabajeh, Miss Laiha Mat Kiah Faculty of Computer Science and Information
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 3, Issue 1, January 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analysis of
ENHANCED GREEN FIREWALL FOR EFFICIENT DETECTION AND PREVENTION OF MOBILE INTRUDER USING GREYLISTING METHOD
ENHANCED GREEN FIREWALL FOR EFFICIENT DETECTION AND PREVENTION OF MOBILE INTRUDER USING GREYLISTING METHOD G.Pradeep Kumar 1, R.Chakkaravarthy 2, S.Arun kishorre 3, L.S.Sathiyamurthy 4 1- Assistant Professor,
Enhancing Base Station Security in Wireless Sensor Networks
Enhancing Base Station Security in Wireless Sensor Networks Jing Deng, Richard Han, and Shivakant Mishra [email protected], {rhan,mishras}@cs.colorado.edu Technical Report CU-CS-951-3 April 23 University
Wireless Temperature
Wireless Temperature connected freedom and Humidity Sensor Using TELRAN Application note TZ1053AN-06 Oct 2011 Abstract Dr. C. Uche This application note describes the complete system design (hardware and
Effective Communication in Schools of Submersibles
Oceans 06, Singapore (authors manuscript do not distribute) Effective Communication in Schools of Submersibles Felix Schill & Uwe R. Zimmer Research School of Information Sciences and Engineering Autonomous
Image Transmission over IEEE 802.15.4 and ZigBee Networks
MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Image Transmission over IEEE 802.15.4 and ZigBee Networks Georgiy Pekhteryev, Zafer Sahinoglu, Philip Orlik, and Ghulam Bhatti TR2005-030 May
MOBILE AD HOC NETWORKS UNDER WORMHOLE ATTACK: A SIMULATION STUDY
MOBILE AD HOC NETWORKS UNDER WORMHOLE ATTACK: A SIMULATION STUDY Nadher M. A. Al_Safwani, Suhaidi Hassan, and Mohammed M. Kadhum Universiti Utara Malaysia, Malaysia, {suhaidi, khadum}@uum.edu.my, [email protected]
DEVELOPMENT OF INDIVIDUAL HOME SECURITY SYSTEM USING CAN AND ZIGBEE PROTOCOL
DEVELOPMENT OF INDIVIDUAL HOME SECURITY SYSTEM USING CAN AND ZIGBEE PROTOCOL P.Mohan 1, M. Vinoth Kumar 2 1 PG Scholar, Masters Degree in Embedded System Technologies, Rajiv Gandhi College of Engineering,
Scalable Video Streaming in Wireless Mesh Networks for Education
Scalable Video Streaming in Wireless Mesh Networks for Education LIU Yan WANG Xinheng LIU Caixing 1. School of Engineering, Swansea University, Swansea, UK 2. College of Informatics, South China Agricultural
Securing MANET Using Diffie Hellman Digital Signature Scheme
Securing MANET Using Diffie Hellman Digital Signature Scheme Karamvir Singh 1, Harmanjot Singh 2 1 Research Scholar, ECE Department, Punjabi University, Patiala, Punjab, India 1 [email protected] 2
Information Security
Information Security Dr. Vedat Coşkun Malardalen September 15th, 2009 08:00 10:00 [email protected] www.isikun.edu.tr/~vedatcoskun What needs to be secured? With the rapid advances in networked
Chapter 3 Safeguarding Your Network
Chapter 3 Safeguarding Your Network The RangeMax NEXT Wireless Router WNR834B provides highly effective security features which are covered in detail in this chapter. This chapter includes: Choosing Appropriate
Provide Practical Security Mechanism to Wireless Sensor Networks Using Modified Motesec Protocol
RESEARCH ARTICLE Provide Practical Security Mechanism to Wireless Sensor Networks Using Modified Motesec Protocol Monali Madne 1, Prof Manjusha Yeola 2 1(Computer Department, University of pune, Pune)
8 Conclusion and Future Work
8 Conclusion and Future Work This chapter concludes this thesis and provides an outlook on future work in the area of mobile ad hoc networks and peer-to-peer overlay networks 8.1 Conclusion Due to the
Secure Data Aggregation in Wireless Sensor Networks
Secure Data Aggregation in Wireless Sensor Networks by Hani Alzaid Bachelor of Computer Engineering (King Saud University) 2000 Master of Computer Science and Engineering (University of New South Wales)
Providing End-to-end Secure Communications in Wireless Sensor Networks
1 Providing End-to-end Secure Communications in Wireless Sensor Networks Wenjun Gu, Neelanjana Dutta, Sriram Chellappan and Xiaole Bai Abstract In many Wireless Sensor Networks (WSNs), providing end to
Easy-Flow: Comparing and integrating Wireless and PLC Medium Access Control Protocols.
1 LCA Easy-Flow: Comparing and integrating Wireless and PLC Medium Access Control Protocols. Christina Vlachou, Julien Herzen, Patrick Thiran (EPFL) Marc Sommer, Hervé Dedieu (HEIG-VD) Gérôme Bovet, Jean
Internet of Things 2015/2016
Internet of Things 2015/2016 The Things Johan Lukkien John Carpenter, 1982 1 What makes up the IoT? IoT versus WSN What are examples? Guiding questions 2 Some definitions of IoT (march 2015) Whatis.com:
Frequently Asked Questions For Investors
Frequently Asked Questions For Investors 1. What is trade day (T) and settlement day (T+2)? Trade day (T) means a normal working day for securities trading under the regulation of stock exchange. To a
Review of Prevention techniques for Denial of Service Attacks in Wireless Sensor Network
Review of Prevention techniques for Denial of Service s in Wireless Sensor Network Manojkumar L Mahajan MTech. student, Acropolis Technical Campus, Indore (MP), India Dushyant Verma Assistant Professor,
SmartMesh Embedded Wireless Sensor Networking
SmartMesh Embedded Wireless Sensor Networking >99.999% Data Reliability >10 Year Battery Life l Complete Wireless Mesh Solution l l Linear Technology s Dust Networks product group provides complete embedded
Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation
Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation Anthony Kleerekoper 2nd year PhD Multi-Service Networks 2011 The Energy Hole Problem Uniform distribution of motes Regular,
SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS)
SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS) Neha Maurya, ASM S IBMR ABSTRACT: Mobile Ad hoc networks (MANETs) are a new paradigm of wireless network, offering unrestricted mobility without any underlying
Ad hoc and Sensor Networks Chapter 1: Motivation & Applications
Ad hoc and Sensor Networks Chapter 1: Motivation & Applications Holger Karl Computer Networks Group Universität Paderborn Goals of this chapter Give an understanding what ad hoc & sensor networks are good
www.mindteck.com 6LoWPAN Technical Overview
www.mindteck.com 6LoWPAN Technical Overview 6LoWPAN : Slide Index Introduction Acronyms Stack Architecture Stack Layers Applications IETF documents References Confidential Mindteck 2009 2 6LoWPAN - Introduction
Intrusion Detection: Game Theory, Stochastic Processes and Data Mining
Intrusion Detection: Game Theory, Stochastic Processes and Data Mining Joseph Spring 7COM1028 Secure Systems Programming 1 Discussion Points Introduction Firewalls Intrusion Detection Schemes Models Stochastic
Security for 802 Access Networks: A Problem Statement
Security for 802 Access Networks: A Problem Statement Norman Finn, Cisco Systems Session Number 1 Why bother with Link Layer security? Why not just use IPSEC? There are many protocols that are not securable
Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks
Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks Authors: Yih-Chun Hu, Adrian Perrig, David B Johnson Presenter: Sameer Korrapati Date: 4/21/2003 Overview of presentation Introduction :
TinySec: A Link Layer Security Architecture for Wireless Sensor Networks
TinySec: A Link Layer Security Architecture for Wireless Sensor Networks Chris Karlof, Naveen Sastr, David Wagner Presented By: Tristan Brown Outline Motivation Cryptography Overview TinySec Design Implementation
SECURITY ISSUES: THE BIG CHALLENGE IN MANET
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 3, March 2014,
Single Sign-On Secure Authentication Password Mechanism
Single Sign-On Secure Authentication Password Mechanism Deepali M. Devkate, N.D.Kale ME Student, Department of CE, PVPIT, Bavdhan, SavitribaiPhule University Pune, Maharashtra,India. Assistant Professor,
Fundamentals of Mobile and Pervasive Computing
Fundamentals of Mobile and Pervasive Computing Frank Adelstein Sandeep K. S. Gupta Golden G. Richard III Loren Schwiebert Technische Universitat Darmstadt FACHBEREICH INFORMATIK B1BLIOTHEK Inventar-Nr.:
A Secure Intrusion detection system against DDOS attack in Wireless Mobile Ad-hoc Network Abstract
A Secure Intrusion detection system against DDOS attack in Wireless Mobile Ad-hoc Network Abstract Wireless Mobile ad-hoc network (MANET) is an emerging technology and have great strength to be applied
Protocols and Architectures for Wireless Sensor Netwoks. by Holger Karl and Andreas Willig
Protocols and Architectures for Wireless Sensor Netwoks by Holger Karl and Andreas Willig Grade Midterm Exam. 25% Exercises 35% (5 ~ 7 times) Term Project 30% Class Attitude 10% 2 Ad hoc and Sensor Networks
A Security Architecture for. Wireless Sensor Networks Environmental
Contemporary Engineering Sciences, Vol. 7, 2014, no. 15, 737-742 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2014.4683 A Security Architecture for Wireless Sensor Networks Environmental
Comparison of Various Passive Distributed Denial of Service Attack in Mobile Adhoc Networks
Comparison of Various Passive Distributed Denial of Service in Mobile Adhoc Networks YOGESH CHABA #, YUDHVIR SINGH, PRABHA RANI Department of Computer Science & Engineering GJ University of Science & Technology,
An Implementation of Secure Wireless Network for Avoiding Black hole Attack
An Implementation of Secure Wireless Network for Avoiding Black hole Attack Neelima Gupta Research Scholar, Department of Computer Science and Engineering Jagadguru Dattaray College of Technology Indore,
A survey on Wireless Mesh Networks
A survey on Wireless Mesh Networks IF Akyildiz, X Wang - Communications Magazine, IEEE, 2005 Youngbin Im [email protected] 2007.10.15. Contents Introduction to WMNs Network architecture Critical design
Application Intrusion Detection
Application Intrusion Detection Drew Miller Black Hat Consulting Application Intrusion Detection Introduction Mitigating Exposures Monitoring Exposures Response Times Proactive Risk Analysis Summary Introduction
All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices
Wireless Security All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices Portability Tamper-proof devices? Intrusion and interception of poorly
APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
Getting the Most Out of Your WirelessHART System
Getting the Most Out of Your WirelessHART System A White Paper presented by: Garrett Schmidt Wireless Product Manager Phoenix Contact Americas Business Unit P.O. Box 4100 Harrisburg, PA 17111-0100 Phone:
