Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks

Size: px
Start display at page:

Download "Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks"

Transcription

1 Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security in Ad Hoc Wireless Networks Network Security Requirements Issues and challenges in security Network security attacks Key Management Secure Routing 1

2 Introduction The objectives of a transport layer protocol include setting up of: End-to-end connection End-to-end delivery of data packets Flow control Congestion control Transport layer protocols User datagram protocol (UDP): unreliable and connection-less transport layer protocols Transmission control protocol (TCP): reliable, byte-stream-based, and connection-oriented transport layer protocols These traditional wired transport layer protocols are not suitable for ad hoc wireless networks. 2

3 Issues Issues while designing a transport layer protocol for ad hoc wireless networks: Induced traffic refers to the traffic at any given link due to the relay traffic through neighboring links. Induced throughput unfairness refers to the throughput unfairness at the transport layer due to the throughput/delay unfairness existing at the lower layers such as the network and MAC layers. Separation of congestion control, reliability, and flow control could improve the performance of the transport layer. Power and bandwidth constraints affects the performance of a transport layer protocol. Misinterpretation of congestion occurs in ad hoc wireless networks. Completely decoupled transport layer needs to adapt to the changing network environment. Dynamic topology affects the performance of a transport layer. 3

4 Design Goal The protocol should maximize the throughput per connection. It should provide throughout fairness across contending flows. It should minimize connection setup and connection maintenance overheads. The protocol should have mechanisms for congestion control and flow control in the network. It should be able to provide both reliable and unreliable connections. The protocol should be able to adapt to the dynamics of the network. One of the important resources must be used efficiently. The protocol should be aware of resource constraints. The protocol should make use of information from the lower layer. It should have a well-defined cross-layer interaction framework. The protocol should maintain end-to-end semantics. 4

5 Classification of Transport Layer Solutions Transport Layer Solutions for Ad Hoc Wireless Networks TCP over ad hoc wireless networks Other transport layer approach Split Approach End-to-end approach ACTP ATP Split-TCP TCP-ELFN TCP-F TCP-Bus ATCP 5

6 TCP over Ad Hoc Wireless Networks TCP taking 90% of the traffic is predominant in the Internet. This chapter focuses on TCP extension in ad hoc wireless networks. Transport protocol should be independent of the network layer technology, e.g., no matter fiber or radio is used But TCP is optimized for wired network Congestion control TCP assumes timeout is due to congestion Wireless links are not reliable, packet loss may be as high as 20% In wired network, packet loss is due to congestion slow down In wireless network, due to wireless links try harder 6

7 Why does TCP not perform well in Ad Hoc Wireless Networks Misinterpretation of packet loss Frequent path breaks Effect of path length Misinterpretation of congestion window Asymmetric link behavior Uni-directional path: TCP ACK requires RTS-CTS-Data-ACK exchange Multipath routing Network partitioning and remerging The use of sliding-window-based transmission 7

8 TCP Over Ad Hoc Wireless Network Feedback-based TCP (TCP Feedback TCP-F) Requires the support of a reliable link layer and a routing protocol that can provide feedback to the TCP sender about the path breaks. The routing protocol is expected to repair the broken path within a reasonable time period. Advantages: Simple, permits the TCP congestion control mechanism to respond to congestion Disadvantages: If a route to the sender is not available at the failure point (FP), then additional control packets may need to be generated for routing the route failure notification (RFN) packet. Requires modification to the existing TCP. The congestion window after a new route is obtained may not reflect the achievable transmission rate acceptable to the network and the TCP-F receiver. 8

9 TCP Over Ad Hoc Wireless Network TCP with explicit link failure notification (TCP-ELFN) Handle explicit link failure notification Use TCP probe packets for detecting the route reestablishment. The ELFN is originated by the node detecting a path break upon detection of a link failure to the TCP sender. Advantages: improves the TCP performance by decoupling the path break information from the congestion information by the use of ELFN. Less dependent on the routing protocol and requires only link failure notification Disadvantages When the network is partitioned, the path failure may last longer The congestion window after a new route is obtained may not reflect the achievable transmission rate acceptable to the network and TCP receiver. 9

10 TCP Over Ad Hoc Wireless Network TCP with buffering capability and sequence information (TCP- BuS) Use feedback information from an intermediate node on detection of a path break. Use localized query (LQ) and REPLY to find a partial path Upon detection of a path break, an upstream intermediate node originates an explicit route disconnection notification (ERDN) message. Advantages Performance improvement and avoidance of fast retransmission Use on-demand routing protocol Disadvantages Increased dependency on the routing protocol and the buffering at the intermediate nodes The failure of intermediate nodes may lead to loss of packets. The dependency of TCP-BuS on the routing protocol many degrade its performance. 10

11 TCP Over Ad Hoc Wireless Network Ad Hoc TCP (ATCP) uses a network layer feedback mechanism to make the TCP sender aware of the status of the network path Based on the feedback information received from the intermediate nodes, the TCP sender changes its state to the persist state, congestion control state, or the retransmit state. When an intermediate node finds that the network is partitioned, then the TCP sender state is changed to the persist state. The ATCP layer makes use of the explicit congestion notification (ECN) for maintenance for the states. Advantages Maintain the end-to-end semantics of TCP Compatible with traditional TCP Provides a feasible and efficient solution to improve throughput of TCP Disadvantages The dependency on the network layer protocol to detect the route changes and partitions The addition of a thin ATCP layer to the TCP/IP protocol changes the interface functions currently being used. 11

12 TCP Over Ad Hoc Wireless Network Split-TCP provides a unique solution to the channel fairness problem by splitting the transport layer objectives into congestion control and end-to-end reliability. Splits a long TCP connection into a set of short concatenated TCP connections with a number of selected intermediate nodes as terminating points of these short connections. Advantages Improved throughput Improved throughput fairness Lessened impact of mobility Disadvantages It requires modifications to TCP protocol. The end-to-end connection handling of traditional TCP is violated. The failure of proxy nodes can lead to throughput degradation. 12

13 Other Transport Layer Protocols Application controlled transport protocol (ACTP) A light-weight transport layer protocol and not an extension to TCP. ACTP assigns the responsibility of ensuring reliability to the application layer. ACTP stands in between TCP and UDP where TCP experiences low performance with high reliability and UDP provides better performance with high packet loss in ad hoc wireless networks. Advantages Provides the freedom of choosing the required reliability level to the application layer. Scalable for large networks There is no congestion window Disadvantages It is not compatible with TCP. Could lead to heavy congestion 13

14 Other Transport Layer Protocols Ad hoc transport protocol (ATP) specifically designed for ad hoc wireless networks and is not a variant of TCP and differ from TCP in the following ways: Coordination among multiple layers Rate based transmissions Decoupling congestion control and reliability Assisted congestion control ATP uses information from lower layers for Estimation of the initial transmission rate Detection, avoidance, and control of congestion Detection of path breaks Advantages: improved performance, decoupling of the congestion control and reliability mechanisms, and avoidance of congestion window fluctuations Disadvantages The lack of interoperability with TCP Fine-grained per-flow timer may cause the scalable problem 14

15 Security in Ad Hoc Wireless Networks A security protocol should meet following requirements Data confidentiality/secrecy is concerned with ensuring that data is not exposed to unauthorized users. Data integrity means that unauthorized users should not be able to modify any data without the owner's permission. System availability means that nobody can disturb the system to have it unusable. Authentication is concerned with verifying the identity of a user. Non-repudiation means that the sender cannot deny having sent a message and the recipient cannot deny have received the message. 15

16 Security in Ad Hoc Wireless Networks Issues and challenges in security provisioning Shared broadcast radio channel: The radio channel in ad hoc wireless networks is broadcast and is shared by all nodes in the network. Insecure operational environment: The operating environments where ad hoc wireless networks are used may not always be secure. For example, battlefields. Lack of central authority: There is no central monitor in ad hoc wireless networks. Lack of association: A node can join and leave the network at any point. Limited resource availability: Resources such as bandwidth, battery power, and computational power are scarce. Physical vulnerability: Nodes in these networks are usually compact and hand-held in nature. 16

17 Need for Security Some people who cause security problems and why. 17

18 Security Threats Four types of security threats: Interception refers to the situation that an unauthorized party has gained access to a service or data. Interruption refers to the situation in which services or data become unavailable, unusable, or destroyed. Modifications involve unauthorized changing of data or tampering with a service. Fabrication refers to the situation in which additional data or activity are generated that would normally not exist. 18

19 Network Security Attacks Network Layer Attacks Wormhole attack: an attacker receives packets at one location in the network and tunnels them to another location in the network. Blackhole attack: A malicious node could divert the packets. Byzantine attack: A compromised intermediate node could create routing loops. Information disclosure: A compromised node may leak confidential infomraiton to unauthorized nodes in the network. Resource consumption attack: A malicious node tries to consume/waste away resources of other nodes present in the network. Routing attacks Routing table overflow: An adversary node advertises routes to nonexistent nodes. Routing table poisoning: The compromised nodes send fictitious routing updates. Packet replication: An adversary node replicates stale packets. Route cache poisoning: Each node maintains a route cache that can be poisoned by a adversary node. Rushing attack: On-demand routing protocols that use duplicate suppression during the route discovery process are vulnerable to this attack. 19

20 Network Security Attacks Transport Layer Attacks Session hijacking: An adversary takes control over a session between two nodes. Application Layer Attacks Repudiation: Repudiation refers to the denial or attempted denial by a node involved in a communication. Other Attacks Multi-layer attacks could occur in any layer of the network protocol stack. Denial of service: An adversary attempts to prevent authorized users from accessing the service. Jamming: Transmitting signals on the frequency of senders and receivers to hinder the communication. SYN flooding: An adversary send a large number of SYN packets to a victim node. Distributed DoS attack: Several adversaries attack a service at the same time. Impersonation: An adversary pretends to be other node. Device tampering: Mobile devices get damaged or stolen easily. 20

21 Network Security Attacks Security Attacks Passive Attacks Active Attacks Snooping MAC Layer Attacks Network Layer Attacks Transport Layer Attacks Application Layer Attacks Other attacks Jamming Wormhole attack Blackhole attack Byzantine attack Routing attacks Session hijacking Information disclosure Resource consumption attack Repudiation DoS Impersonation Manipulation of network traffic Device tampering 21

22 Key Management Cryptography is one of the most common and reliable means to ensure security. The purpose of cryptography is to take a message or a file, called the plaintext (P), and encrypt it into the ciphertext (C) in such a way that only authorized people know how to convert it back to the plaintext. The secrecy depends on parameters to the algorithms called keys. The four main goals of cryptography are confidentiality, integrity, authentication, and non-repudiation. Usually, the encryption method E is made public, but let the encryption as a whole be parameterized by means of a key k (same for decryption). Three types of intruders: Passive intruder only listens to messages. Active intruder can alter messages. Active intruder can insert messages. 22

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

TRANSPORT LAYER AND SECURITY PROTOCOLS FOR AD HOC WIRELESS NETWORKS

TRANSPORT LAYER AND SECURITY PROTOCOLS FOR AD HOC WIRELESS NETWORKS Chapter 9 TRANSPORT LAYER AND SECURITY PROTOCOLS FOR AD HOC WIRELESS NETWORKS 9.1 INTRODUCTION The objectives of a transport layer protocol include the setting up of an end-to-end connection, end-to-end

More information

Transport layer protocols for ad hoc networks

Transport layer protocols for ad hoc networks Transport layer protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ Which transport layer protocol? Classification of transport

More information

Tema 5.- Seguridad. Problemas Soluciones

Tema 5.- Seguridad. Problemas Soluciones Tema 5.- Seguridad Problemas Soluciones Wireless medium is easy to snoop on Routing security vulnerabilities Due to ad hoc connectivity and mobility, it is hard to guarantee access to any particular node

More information

SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS)

SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS) SECURITY ASPECTS IN MOBILE AD HOC NETWORK (MANETS) Neha Maurya, ASM S IBMR ABSTRACT: Mobile Ad hoc networks (MANETs) are a new paradigm of wireless network, offering unrestricted mobility without any underlying

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK AN OVERVIEW OF MOBILE ADHOC NETWORK: INTRUSION DETECTION, TYPES OF ATTACKS AND

More information

Wireless Sensor Networks Chapter 14: Security in WSNs

Wireless Sensor Networks Chapter 14: Security in WSNs Wireless Sensor Networks Chapter 14: Security in WSNs António Grilo Courtesy: see reading list Goals of this chapter To give an understanding of the security vulnerabilities of Wireless Sensor Networks

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

SECURITY TRENDS-ATTACKS-SERVICES

SECURITY TRENDS-ATTACKS-SERVICES SECURITY TRENDS-ATTACKS-SERVICES 1.1 INTRODUCTION Computer data often travels from one computer to another, leaving the safety of its protected physical surroundings. Once the data is out of hand, people

More information

Security in Ad Hoc Network

Security in Ad Hoc Network Security in Ad Hoc Network Bingwen He Joakim Hägglund Qing Gu Abstract Security in wireless network is becoming more and more important while the using of mobile equipments such as cellular phones or laptops

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

Security Sensor Network. Biswajit panja

Security Sensor Network. Biswajit panja Security Sensor Network Biswajit panja 1 Topics Security Issues in Wired Network Security Issues in Wireless Network Security Issues in Sensor Network 2 Security Issues in Wired Network 3 Security Attacks

More information

To Study the Various Attacks and Protocols in MANET

To Study the Various Attacks and Protocols in MANET International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Issue-4 E-ISSN: 2347-2693 To Study the Various Attacks and Protocols in MANET Harkiranpreet Kaur 1* and Rasneet

More information

CS5008: Internet Computing

CS5008: Internet Computing CS5008: Internet Computing Lecture 22: Internet Security A. O Riordan, 2009, latest revision 2015 Internet Security When a computer connects to the Internet and begins communicating with others, it is

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

Network Security 網 路 安 全. Lecture 1 February 20, 2012 洪 國 寶

Network Security 網 路 安 全. Lecture 1 February 20, 2012 洪 國 寶 Network Security 網 路 安 全 Lecture 1 February 20, 2012 洪 國 寶 1 Outline Course information Motivation Introduction to security Basic network concepts Network security models Outline of the course 2 Course

More information

Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System

Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System Shams Fathima M.Tech,Department of Computer Science Kakatiya Institute of Technology & Science, Warangal,India

More information

Security vulnerabilities in the Internet and possible solutions

Security vulnerabilities in the Internet and possible solutions Security vulnerabilities in the Internet and possible solutions 1. Introduction The foundation of today's Internet is the TCP/IP protocol suite. Since the time when these specifications were finished in

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs

Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs Why Network Security? Keep the bad guys out. (1) Closed networks

More information

Comparison of Various Passive Distributed Denial of Service Attack in Mobile Adhoc Networks

Comparison of Various Passive Distributed Denial of Service Attack in Mobile Adhoc Networks Comparison of Various Passive Distributed Denial of Service in Mobile Adhoc Networks YOGESH CHABA #, YUDHVIR SINGH, PRABHA RANI Department of Computer Science & Engineering GJ University of Science & Technology,

More information

Cryptography and Network Security 1. Overview. Lectured by Nguyễn Đức Thái

Cryptography and Network Security 1. Overview. Lectured by Nguyễn Đức Thái Cryptography and Network Security 1. Overview Lectured by Nguyễn Đức Thái Outline Security concepts X.800 security architecture Security attacks, services, mechanisms Models for network (access) security

More information

Denial of Service in Sensor Networks

Denial of Service in Sensor Networks Denial of Service in Sensor Networks Authors : From: Anthony D. Wood John A. Stankovic University of Virginia Presented by: Luba Sakharuk Agenda for the DOS in Sensor Networks Abstract Theory and Application

More information

Content Teaching Academy at James Madison University

Content Teaching Academy at James Madison University Content Teaching Academy at James Madison University 1 2 The Battle Field: Computers, LANs & Internetworks 3 Definitions Computer Security - generic name for the collection of tools designed to protect

More information

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks

More information

Chapter 8 MOBILE IP AND TCP

Chapter 8 MOBILE IP AND TCP Distributed Computing Group Chapter 8 MOBILE IP AND TCP Mobile Computing Summer 2002 Overview Network Protocols / Mobile IP Motivation Data transfer Encapsulation Problems DHCP Mobile Transport Layer /

More information

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji

More information

Security Requirements for Wireless Networks and their Satisfaction in IEEE 802.11b and Bluetooth

Security Requirements for Wireless Networks and their Satisfaction in IEEE 802.11b and Bluetooth Security Requirements for Wireless Networks and their Satisfaction in IEEE 802.11b and Bluetooth Henrich C. Poehls Master s Thesis M.Sc. in Information Security Information Security Group Royal Holloway,

More information

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,

More information

Security Issues in Mobile Ad Hoc Networks - A Survey

Security Issues in Mobile Ad Hoc Networks - A Survey Security Issues in Mobile Ad Hoc Networks - A Survey Wenjia Li and Anupam Joshi Department of Computer Science and Electrical Engineering University of Maryland, Baltimore County Abstract In this paper,

More information

Chap. 1: Introduction

Chap. 1: Introduction Chap. 1: Introduction Introduction Services, Mechanisms, and Attacks The OSI Security Architecture Cryptography 1 1 Introduction Computer Security the generic name for the collection of tools designed

More information

Wireless Sensor Network Security. Seth A. Hellbusch CMPE 257

Wireless Sensor Network Security. Seth A. Hellbusch CMPE 257 Wireless Sensor Network Security Seth A. Hellbusch CMPE 257 Wireless Sensor Networks (WSN) 2 The main characteristics of a WSN include: Power consumption constrains for nodes using batteries or energy

More information

SECURITY ISSUES: THE BIG CHALLENGE IN MANET

SECURITY ISSUES: THE BIG CHALLENGE IN MANET Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 3, March 2014,

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks

DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks David B. Johnson David A. Maltz Josh Broch Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213-3891

More information

Security for Ad Hoc Networks. Hang Zhao

Security for Ad Hoc Networks. Hang Zhao Security for Ad Hoc Networks Hang Zhao 1 Ad Hoc Networks Ad hoc -- a Latin phrase which means "for this [purpose]". An autonomous system of mobile hosts connected by wireless links, often called Mobile

More information

Security (II) ISO 7498-2: Security Architecture of OSI Reference Model. Outline. Course Outline: Fundamental Topics. EE5723/EE4723 Spring 2012

Security (II) ISO 7498-2: Security Architecture of OSI Reference Model. Outline. Course Outline: Fundamental Topics. EE5723/EE4723 Spring 2012 Course Outline: Fundamental Topics System View of Network Security Network Security Model Security Threat Model & Security Services Model Overview of Network Security Security Basis: Cryptography Secret

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

Introduction to Wireless Sensor Network Security

Introduction to Wireless Sensor Network Security Smartening the Environment using Wireless Sensor Networks in a Developing Country Introduction to Wireless Sensor Network Security Presented By Al-Sakib Khan Pathan Department of Computer Science and Engineering

More information

12/3/08. Security in Wireless LANs and Mobile Networks. Wireless Magnifies Exposure Vulnerability. Mobility Makes it Difficult to Establish Trust

12/3/08. Security in Wireless LANs and Mobile Networks. Wireless Magnifies Exposure Vulnerability. Mobility Makes it Difficult to Establish Trust Security in Wireless LANs and Mobile Networks Wireless Magnifies Exposure Vulnerability Information going across the wireless link is exposed to anyone within radio range RF may extend beyond a room or

More information

ssumathy@vit.ac.in upendra_mcs2@yahoo.com

ssumathy@vit.ac.in upendra_mcs2@yahoo.com S. Sumathy 1 and B.Upendra Kumar 2 1 School of Computing Sciences, VIT University, Vellore-632 014, Tamilnadu, India ssumathy@vit.ac.in 2 School of Computing Sciences, VIT University, Vellore-632 014,

More information

Security and Privacy Issues in Wireless Ad Hoc, Mesh, and Sensor Networks

Security and Privacy Issues in Wireless Ad Hoc, Mesh, and Sensor Networks Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 381-388 Research India Publications http://www.ripublication.com/aeee.htm Security and Privacy Issues in Wireless

More information

Guide to TCP/IP Fourth Edition. Chapter 9: TCP/IP Transport Layer Protocols

Guide to TCP/IP Fourth Edition. Chapter 9: TCP/IP Transport Layer Protocols Guide to TCP/IP Fourth Edition Chapter 9: TCP/IP Transport Layer Protocols Objectives Explain the key features and functions of the User Datagram Protocol and the Transmission Control Protocol Explain,

More information

Security and Privacy Issues in Wireless Mesh Networks: A Survey

Security and Privacy Issues in Wireless Mesh Networks: A Survey Security and Privacy Issues in Wireless Mesh Networks: A Survey Jaydip Sen Innovation Labs, Tata Consultancy Services Ltd. Kolkata, INDIA email: jaydip.sen@acm.org 1. Introduction Wireless mesh networking

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

SY0-201. system so that an unauthorized individual can take over an authorized session, or to disrupt service to authorized users.

SY0-201. system so that an unauthorized individual can take over an authorized session, or to disrupt service to authorized users. system so that an unauthorized individual can take over an authorized session, or to disrupt service to authorized users. From a high-level standpoint, attacks on computer systems and networks can be grouped

More information

Session Hijacking Exploiting TCP, UDP and HTTP Sessions

Session Hijacking Exploiting TCP, UDP and HTTP Sessions Session Hijacking Exploiting TCP, UDP and HTTP Sessions Shray Kapoor shray.kapoor@gmail.com Preface With the emerging fields in e-commerce, financial and identity information are at a higher risk of being

More information

IY2760/CS3760: Part 6. IY2760: Part 6

IY2760/CS3760: Part 6. IY2760: Part 6 IY2760/CS3760: Part 6 In this part of the course we give a general introduction to network security. We introduce widely used security-specific concepts and terminology. This discussion is based primarily

More information

SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET

SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET MR. ARVIND P. PANDE 1, PROF. UTTAM A. PATIL 2, PROF. B.S PATIL 3 Dept. Of Electronics Textile and Engineering

More information

CIS 551 / TCOM 401 Computer and Network Security

CIS 551 / TCOM 401 Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2008 Lecture 11 2/26/08 CIS/TCOM 551 1 Wireless (802.11) Spread spectrum radio 2.4GHz frequency band Bandwidth ranges 1, 2, 5.5, 11, 22, 54, 248

More information

Notes on Network Security - Introduction

Notes on Network Security - Introduction Notes on Network Security - Introduction Security comes in all shapes and sizes, ranging from problems with software on a computer, to the integrity of messages and emails being sent on the Internet. Network

More information

Review of Prevention techniques for Denial of Service Attacks in Wireless Sensor Network

Review of Prevention techniques for Denial of Service Attacks in Wireless Sensor Network Review of Prevention techniques for Denial of Service s in Wireless Sensor Network Manojkumar L Mahajan MTech. student, Acropolis Technical Campus, Indore (MP), India Dushyant Verma Assistant Professor,

More information

Cryptography and Network Security Sixth Edition by William Stallings

Cryptography and Network Security Sixth Edition by William Stallings Cryptography and Network Security Sixth Edition by William Stallings Chapter 1 Overview The combination of space, time, and strength that must be considered as the basic elements of this theory of defense

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7 20-CS-6053-00X Network Security Spring, 2014 An Introduction To Network Security Week 1 January 7 Attacks Criminal: fraud, scams, destruction; IP, ID, brand theft Privacy: surveillance, databases, traffic

More information

TCP - Introduction. Features of TCP

TCP - Introduction. Features of TCP TCP - Introduction The Internet Protocol (IP) provides unreliable datagram service between hosts The Transmission Control Protocol (TCP) provides reliable data delivery It uses IP for datagram delivery

More information

Guide to TCP/IP, Third Edition. Chapter 5: Transport Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 5: Transport Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 5: Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol Explain the mechanisms that drive segmentation,

More information

Why SSL is better than IPsec for Fully Transparent Mobile Network Access

Why SSL is better than IPsec for Fully Transparent Mobile Network Access Why SSL is better than IPsec for Fully Transparent Mobile Network Access SESSION ID: SP01-R03 Aidan Gogarty HOB Inc. aidan.gogarty@hob.de What are we all trying to achieve? Fully transparent network access

More information

Abstract. Introduction. Section I. What is Denial of Service Attack?

Abstract. Introduction. Section I. What is Denial of Service Attack? Abstract In this report, I am describing the main types of DoS attacks and their effect on computer and network environment. This report will form the basis of my forthcoming report which will discuss

More information

Dynamic Source Routing in Ad Hoc Wireless Networks

Dynamic Source Routing in Ad Hoc Wireless Networks Dynamic Source Routing in Ad Hoc Wireless Networks David B. Johnson David A. Maltz Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 dbj@cs.cmu.edu Abstract

More information

COSC 472 Network Security

COSC 472 Network Security COSC 472 Network Security Instructor: Dr. Enyue (Annie) Lu Office hours: http://faculty.salisbury.edu/~ealu/schedule.htm Office room: HS114 Email: ealu@salisbury.edu Course information: http://faculty.salisbury.edu/~ealu/cosc472/cosc472.html

More information

Security Technology White Paper

Security Technology White Paper Security Technology White Paper Issue 01 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2004 Final Review Stefan Savage Final Mechanics Will cover entire year of material (but likely with some bias to the material post-midterm) Based on lecture material,

More information

All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices

All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices Wireless Security All vulnerabilities that exist in conventional wired networks apply and likely easier Theft, tampering of devices Portability Tamper-proof devices? Intrusion and interception of poorly

More information

A Review of Secure Ad-hoc Routing

A Review of Secure Ad-hoc Routing www..org 30 A Review of Secure Ad-hoc Routing Tannu Arora 1, Deepika Arora 2 1 Computer Science, M.D.U/GIET, Sonipat, Haryana, India tannu.arora@gmail.com 2 Computer Science, C.D.L.U, Sirsa, Haryana, India

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

Security for Ubiquitous and Adhoc Networks

Security for Ubiquitous and Adhoc Networks Security for Ubiquitous and Adhoc Networks Mobile Adhoc Networks Collection of nodes that do not rely on a predefined infrastructure Adhoc networks can be formed merged together partitioned to separate

More information

Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress

Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress Security Considerations for Intrinsic Monitoring within IPv6 Networks: Work in Progress Alan Davy and Lei Shi Telecommunication Software&Systems Group, Waterford Institute of Technology, Ireland adavy,lshi@tssg.org

More information

CIT 480: Securing Computer Systems. TCP/IP Security

CIT 480: Securing Computer Systems. TCP/IP Security CIT 480: Securing Computer Systems TCP/IP Security Topics 1. Internet Protocol (IP) 2. IP Spoofing and Other Vulnerabilities 3. ICMP 4. Transmission Control Protocol (TCP) 5. TCP Session Hijacking 6. UDP

More information

High Performance VPN Solutions Over Satellite Networks

High Performance VPN Solutions Over Satellite Networks High Performance VPN Solutions Over Satellite Networks Enhanced Packet Handling Both Accelerates And Encrypts High-Delay Satellite Circuits Characteristics of Satellite Networks? Satellite Networks have

More information

Network Concepts. IT 4823 Information Security Concepts and Administration. The Network Environment. Resilience. Network Topology. Transmission Media

Network Concepts. IT 4823 Information Security Concepts and Administration. The Network Environment. Resilience. Network Topology. Transmission Media IT 4823 Information Security Concepts and Administration March 17 Network Threats Notice: This session is being recorded. Happy 50 th, Vanguard II March 17, 1958 R.I.P. John Backus March 17, 2007 Copyright

More information

Secure Routing in Wireless Sensor Networks

Secure Routing in Wireless Sensor Networks Secure Routing in Wireless Sensor Networks Introduction to Wireless Sensor Networks Ida Siahaan / Leonardo Fernandes DIT Ida Siahaan / Leonardo Fernandes (DIT) Secure Routing in Wireless Sensor Networks

More information

Routing Security in Ad Hoc Wireless Networks 1

Routing Security in Ad Hoc Wireless Networks 1 Network Security Scott Huang, David MacCallum, and Ding Zhu Du(Eds.) pp. - c 2005 Springer Routing Security in Ad Hoc Wireless Networks 1 Mohammad O. Pervaiz, Mihaela Cardei, and Jie Wu Department of Computer

More information

Security issues with Mobile IP

Security issues with Mobile IP Technical report, IDE1107, February 2011 Security issues with Mobile IP Master s Thesis in Computer Network Engineering Abdel Rahman Alkhawaja & Hatem Sheibani School of Information Science, Computer and

More information

Security and Scalability of MANET Routing Protocols in Homogeneous & Heterogeneous Networks

Security and Scalability of MANET Routing Protocols in Homogeneous & Heterogeneous Networks Security and Scalability of MANET Routing Protocols in Homogeneous & Heterogeneous Networks T.V.P. Sundararajan 1, Karthik 2, A. Shanmugam 3 1. Assistant Professor, Bannari Amman Institute Of Technology,

More information

Intrusion Detection System in MANET : A Survey

Intrusion Detection System in MANET : A Survey International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-4, April 2014 Intrusion Detection System in MANET : A Survey S.Parameswari, G.Michael Abstract MANET

More information

Lecture Objectives. Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks. Agenda. References

Lecture Objectives. Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks. Agenda. References Lecture Objectives Wireless Networks and Mobile Systems Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks Introduce security vulnerabilities and defenses Describe security functions

More information

For Your Eyes Only: Protecting Data-in-Motion with Dispersive Virtualized Networks

For Your Eyes Only: Protecting Data-in-Motion with Dispersive Virtualized Networks For Your Eyes Only: Protecting Data-in-Motion with Dispersive Virtualized Networks Dispersive Technologies software and cloud-based virtualized networks deliver mission-critical communications over the

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Analysis of Denial-of-Service attacks on Wireless Sensor Networks Using Simulation

Analysis of Denial-of-Service attacks on Wireless Sensor Networks Using Simulation Analysis of Denial-of-Service attacks on Wireless Sensor Networks Using Simulation 1 Doddapaneni.krishna Chaitanya, 2 Ghosh.Arindam Middlesex University Abstract Evaluation of Wireless Sensor Networks

More information

Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks

Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks Acta Polytechnica Hungarica Vol. 8, No. 6, 2011 Secure Unicast Position-based Routing Protocols for Ad-Hoc Networks Liana Khamis Qabajeh, Miss Laiha Mat Kiah Faculty of Computer Science and Information

More information

Attacks on neighbor discovery

Attacks on neighbor discovery Cryptographic Protocols (EIT ICT MSc) Dr. Levente Buttyán associate professor BME Hálózati Rendszerek és Szolgáltatások Tanszék Lab of Cryptography and System Security (CrySyS) buttyan@hit.bme.hu, buttyan@crysys.hu

More information

Low-rate TCP-targeted Denial of Service Attack Defense

Low-rate TCP-targeted Denial of Service Attack Defense Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu

More information

5. Security in the IPN

5. Security in the IPN 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working conclusions 5. Security 5.1. Introduction

More information

WIRELESS SECURITY. Information Security in Systems & Networks Public Development Program. Sanjay Goel University at Albany, SUNY Fall 2006

WIRELESS SECURITY. Information Security in Systems & Networks Public Development Program. Sanjay Goel University at Albany, SUNY Fall 2006 WIRELESS SECURITY Information Security in Systems & Networks Public Development Program Sanjay Goel University at Albany, SUNY Fall 2006 1 Wireless LAN Security Learning Objectives Students should be able

More information

Compter Networks Chapter 9: Network Security

Compter Networks Chapter 9: Network Security Goals of this chapter Compter Networks Chapter 9: Network Security Give a brief glimpse of security in communication networks Basic goals and mechanisms Holger Karl Slide set: Günter Schäfer, TU Ilmenau

More information

Client Server Registration Protocol

Client Server Registration Protocol Client Server Registration Protocol The Client-Server protocol involves these following steps: 1. Login 2. Discovery phase User (Alice or Bob) has K s Server (S) has hash[pw A ].The passwords hashes are

More information

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol

More information

Improved Digital Media Delivery with Telestream HyperLaunch

Improved Digital Media Delivery with Telestream HyperLaunch WHITE PAPER Improved Digital Media Delivery with Telestream THE CHALLENGE Increasingly, Internet Protocol (IP) based networks are being used to deliver digital media. Applications include delivery of news

More information

Security Threats in Mobile Ad Hoc Networks

Security Threats in Mobile Ad Hoc Networks Security Threats in Mobile Ad Hoc Networks Hande Bakiler, Aysel Şafak Department of Electrical & Electronics Engineering Baskent University Ankara, Turkey 21020013@baskent.edu.tr, asafak@baskent.edu.tr

More information

Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem

Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem Ernesto Jiménez Caballero Helsinki University of Technology erjica@gmail.com Abstract intrusion detection

More information

A Simple method in ATP for Wireless Network

A Simple method in ATP for Wireless Network A Simple method in ATP for Wireless Network Mr. Achutha J C Asst. Professor,Dept. of MCA The Oxford College of Engineering Bommanhalli, Hosur Road, Bangalore-68 Email: achutha.sir@gmail.com Abstract- Adhoc

More information

Advanced Topics in Distributed Systems. Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech

Advanced Topics in Distributed Systems. Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Advanced Topics in Distributed Systems Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Security Introduction Based on Ch1, Cryptography and Network Security 4 th Ed Security Dr. Ayman Abdel-Hamid,

More information

Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks

Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks Vikram Gupta +, Srikanth Krishnamurthy, and Michalis Faloutsos Abstract Department of Computer Science and Engineering, UC Riverside,

More information

AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS

AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS Srikanth Tiyyagura Department of Computer Science and Engineering JNTUA College of Engg., pulivendula, Andhra Pradesh, India.

More information

A Comparison of TCP Performance over Three Routing Protocols for Mobile Ad Hoc Networks

A Comparison of TCP Performance over Three Routing Protocols for Mobile Ad Hoc Networks A Comparison of TCP Performance over Three Routing Protocols for Mobile Ad Hoc Networks Thomas D. Dyer Computer Science Division The Univ. of Texas at San Antonio San Antonio, TX 8249 tdyer@cs.utsa.edu

More information