CSC 774 Advanced Network Security. Outline. Related Work

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CSC 774 Advanced Network Security. Outline. Related Work"

Transcription

1 CC 77 Advanced Network ecurity Topic 6.3 ecure and Resilient Time ynchronization in Wireless ensor Networks 1 Outline Background of Wireless ensor Networks Related Work TinyeRync: ecure and Resilient Time ynchronization Conclusion and Future Work 2 Related Work NTP and GP are not practical for sensor networks. Recent time synchronization techniques. ingle-hop Pair-wise Time ynchronization. Receiver-Receiver based schemes. Elson et al., ACM IGOP 02; ender-receiver based schemes. Ganeriwal et al., enys 03; t1 t2 t t1 ender-receiver based Global Time ynchronization. Clock distribution schemes, Maroti et al., enys 0; Clock agreement schemes. Li and Rus, INFOCOM 0; t1 t2 R t t3 ender-receiver based 3 1

2 Threats ingle-hop Pair-wise Time ynchronization. No message authentication. Manzo et al., AN 05; Ganeriwal et al., Wise 05 Time sensitive. Jam and Replay attacks: Ganeriwal et al., Wise 05 Global Time ynchronization. Insider attacks Malicious Node Victim Nodes Our Contributions TinyeRync: Phase I ecure single-hop pair-wise time synchronization Phase II ecure and resilient global time synchronization 5 Phase I: ecure ingle-hop Pair-wise Time ynchronization 6 2

3 1 2 3 a1 a2 a3 a 0 Vcc1 GND 0 b1 b2 b3 b Overview Goal: Achieve time difference between two neighbor nodes in hostile environment. Existing work ecure TPN (Ganeriwal et al., Wise 05) Problems with secure TPN Our work: Prediction-based MAC layer timestamp. Hardware-assisted, authenticated MAC layer timestamp. 7 ecure TPN Ganeriwal et al., Wise 05 Estimate time difference and transmission delay. A t1 M1={A,B,t1,Req, MIC[KAB](A,B,t1,Req)} B ( t2! t1)! ( t! t3) " = is the time difference. 2 ( t2! t1) + ( t! t3) d = is half of the transmission delay. 2 t M2={B,A,t2,t3,Rep, MIC[KAB](B,A,t2,t3,Rep)} t2 t3 ecurity condition: d < maximum expected delay. time K AB : secret key shared between A and B. MIC: message integrity code 8 Problems in ecure TPN Authenticated MAC layer timestamp. MIC must be available when radio sends the MIC field. oftware solution in ecure TPN Calculate MIC using Tinyec (Karlof et al. enys 0) Works for low data rate radio (e.g., 38. kbps in CC1000 used by MICA2). Does not work for high data rate radio (e.g., 250kbps in CC220 used by MICAz). CPU... MIC CRC 9 3

4 Prediction-based MAC Layer Timestamp ender side: When channel is clear, it add sending time = current time + constant delay. = us. Receiver side: When the FD field is received, it records the time as receiving time. 10 Delay Uncertainty cpu Accessing and adding timestamp, Accessing timestamp ender Radio then send TXON command Interrupt handling Antenna Encoding symbol periods and preamble Encoding FD Decoding of FD Propagation of FD Propagation of FD Antenna Encoding of FD Receiver Radio Decoding of FD Encoding symbol periods and preamble Interrupt handling Accessing and adding timestamp, cpu Accessing timestamp then send TXON command t2 t3 11 Hardware-assisted, Authenticated MAC Layer Timestamp Hardware security support in CC220 Two modes stand-alone mode: 128 bit AE encryption on message in stand-alone buffer. in-line mode: begin encryption when message are being sent out; begin decryption after the whole message is received. Using in-line mode, CC220 can generate a 12-byte MIC on 98-byte message in 99 us 12

5 Distribution of ecure ingle-hop Pair-wise ynchronization Error Experimental result (1 tick = 8.68us) 80% 70% 67.76% 60% Percentage 50% 0% 30% 20% 19.8% 10% 0% 0.00% 0.01% 0.71% 8.3% 3.15% 0.09% 0.01% ynchronization Error (tick) 13 Phase II: ecure and Resilient Global Time ynchronization 1 Overview Goal: a network-wide time synchronization. The algorithm. Local broadcast authentication utela (Perrig et al., IEEE &P 01) Our work: short delayed utela 15 5

6 ecure and Resilient Global Time ynchronization Algorithm Each node i maintains a local clock time C i ecure and Resilient Global Time ynchronization Algorithm Each node i maintains a local clock time C i. For each neighbor node j, node i maintains a single-hop pair-wise time difference δ i,j ecure and Resilient Global Time ynchronization Algorithm Each node i maintains a local clock time C i. For each neighbor node j, node i maintains a single-hop pair-wise time difference δ i,j. A source node broadcasts its local time C periodically

7 ecure and Resilient Global Time ynchronization Algorithm Each node i maintains a local clock time C i. For each neighbor node j, node i maintains a single-hop pair-wise time difference δ i,j. A source node broadcasts its local time C periodically. Each direct neighbor node i of node can obtain a source clock difference δ i, from node directly. Then, it broadcasts δ i, ecure and Resilient Global Time ynchronization Algorithm Each node i maintains a local clock time C i. For each neighbor node j, node i maintains a single-hop pair-wise time difference δ i,j. A source node broadcasts its local time C periodically. Each direct neighbor node i of node can obtain a source time difference δ i, from node directly. Then, it broadcasts δ i,. For other nodes, to tolerate up to t malicious neighbor nodes, each node i needs to obtain at least 2t+1 source time differences through different neighbor nodes. Node i chooses the median one as δ i,. Then it broadcasts δ i, ecure and Resilient Global Time ynchronization Algorithm Each node i maintains a local clock time C i. For each neighbor node j, node i maintains a single-hop pair-wise time difference δ i,j. A source node broadcasts its local time C periodically. Each direct neighbor node i of node can obtain a source time difference δ i, from node directly. Then, it broadcasts δ i,. For other nodes, to tolerate up to t malicious neighbor nodes, each node i needs to obtain at least 2t+1 source time differences through different neighbor nodes. Node i chooses the median one as δ i,. Then it broadcasts δ i,. Each node i can estimate the global clock C by C = C i +δ i,

8 How to Distribute Global ynchronization Messages? Unicast Messages authenticated by secure pair-wise key. Conclusion: too heavy communication overhead and substantial message collisions. calability problem Broadcast Can reduce the communication overhead. Require local broadcast authentication. Digital signature is too expensive for sensor nodes. utela 22 Overview of utela Perrig et al., IEEE &P 01 ender: Generate one-way key chain, K i =F(K i+1 ), 0 i n-1 Release the commitment K 0 Use key K i for all messages sent in time interval I i, and disclose K i in I i+d F F F... F F K0 K1 K2 Kn-1 Kn I1 I2... In-1 In Time T0 T1 T2 Tn-2 Tn-1 Tn Receiver: ecurity condition: the key has not been disclosed by the sender when the messages are received. Verify K i =F(K i+1 ) 23 Using utela in Time ynchronization? Problems: 1. utela itself requires loose pair-wise time synchronization. 2. Delayed authentication causes clocks drift away again. 2 8

9 hort Delayed utela Tight single-hop pair-wise time synchronization. Too short time intervals waste a lot of keys in a key chain. Interleaved short and long intervals. hort interval (r) : A sender broadcasts authenticated synchronization message. Long interval (R) : A sender discloses the key used in last short interval. r R r R r R r R ender A Time Receiver B Mi ti Ki Time 25 hort Delayed utela (Cont.) Receiver: ecurity condition: the message is sent in the sender s last short interval. (t i -T 0 + +δ max ) < i*(r+r)+r. : single-hop pair-wise time difference δ max : maximum synchronization error Verify K i =F(K i+1 ) 26 ecurity Property External attacks Message authentication. ecurity condition. Internal attacks Use the median of 2t+1 source clock differences through different neighbors to tolerate up to t insiders. 27 9

10 Experimental Evaluation oftware package TinyeRync MICAz motes running TinyO 35 files Providing 8 interfaces Code size in MICAz Memory RAM Program memory Bytes Parameters # of MICAz nodes pair-wise synchronization interval global synchronization interval Tolerance (t) utela short interval utela long interval key chain length 60 seconds 10 seconds 0, 1, 2, 3, 10 ms 1 second Network Deployment 29 Data Collection ink node Broadcast reference messages to all the nodes. Query each node one by one at different time. All the nodes When receiving a reference message Records the current global time when the message is received at MAC layer. When receiving a query message end the buffered global time information to the sink node

11 ynchronization Error Precision achieved: tens of microseconds 16 ynchronization Error (tick) Avg. Error Max. Error Tolerance (t) 1 tick = 8.68 us 31 ynchronization Rate When t=, 95% in 3 rounds Percentage One Round Two Rounds Three Round Tolerance (t) 32 Communication Overhead Number of messages Global synchronization interval (seconds) Number of message each node sends per hour

12 Incremental Deployment Average synchronization error (left Y-axis) ynchronization rate when t=2 (right Y-axis) microseconds 1.E+10 1.E+09 1.E+08 1.E+07 1.E+06 1.E+05 1.E+0 1.E+03 1.E+02 1.E+01 1.E+00 Avg ync Error ync Rate percentage 0:09:00 0:09:10 0:09:20 0:09:30 0:09:0 0:09:50 0:10:00 0:10:10 0:10:20 0:10:30 0:10:0 0:10:50 0:11:00 0:11:10 0:11:20 0:11:30 0:11:0 0:11:50 0:12:00 time (hh:mm:ss) 3 Conclusion TinyeRync: ecure single-hop pair-wise time synchronization Between two nodes The building block of global time synchronization. ecure and resilient global time synchronization In the whole network Future work Adapting the linear regression technique to compensate the constant clock drifts

Time Synchronization for Predictable and Secure Data Collection in Wireless Sensor Networks

Time Synchronization for Predictable and Secure Data Collection in Wireless Sensor Networks Time Synchronization for Predictable and Secure Data Collection in Wireless Sensor Networks Shujuan Chen, Adam Dunkels, Fredrik Österlind, Thiemo Voigt Swedish Institute of Computer Science {shujuan,adam,fros,thiemo}@sics.se

More information

15 th TF-Mobility Meeting Sensor Networks. Torsten Braun Universität Bern braun@iam.unibe.ch www.iam.unibe.ch/~rvs

15 th TF-Mobility Meeting Sensor Networks. Torsten Braun Universität Bern braun@iam.unibe.ch www.iam.unibe.ch/~rvs 15 th TF-Mobility Meeting Sensor Networks Torsten Braun Universität Bern braun@iam.unibe.ch www.iam.unibe.ch/~rvs Overview 2 Ubiquitous Computing > Vision defined by Mark Weiser in 1991 Seamless integration

More information

SPINS: Security Protocols for Sensor Networks

SPINS: Security Protocols for Sensor Networks SPINS: Security Protocols for Sensor Networks Adrian Perrig, Robert Szewczyk, J.D. Tygar, Victor Wen, and David Culler Department of Electrical Engineering & Computer Sciences, University of California

More information

The Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol The Flooding Time Synchronization Protocol Miklós Maróti Branislav Kusy Gyula Simon Ákos Lédeczi Institute for Software Integrated Systems Vanderbilt University 2015 Terrace Place, Nashville, TN 37203,

More information

Providing Transparent Security Services to Sensor Networks

Providing Transparent Security Services to Sensor Networks Providing Transparent Security Services to Sensor Networks Hamed Soroush Athens Information Technology Email: hsor@ait.edu.gr Mastooreh Salajegheh Athens Information Technology Email: msal@ait.edu.gr Tassos

More information

Security & Trust in Wireless Sensor Networks

Security & Trust in Wireless Sensor Networks Security & Trust in Wireless Sensor Networks Theodore Zahariadis Ultra-wide-band Sensor Node Ultra small sensor node The smallest UW sensor node in the world: 10mm 10mm 10mm On board temperature sensor

More information

Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks

Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks Ariadne A Secure On-Demand Routing Protocol for Ad-Hoc Networks Authors: Yih-Chun Hu, Adrian Perrig, David B Johnson Presenter: Sameer Korrapati Date: 4/21/2003 Overview of presentation Introduction :

More information

Detecting Malicious Beacon Nodes for Secure Location Discovery in Wireless Sensor Networks

Detecting Malicious Beacon Nodes for Secure Location Discovery in Wireless Sensor Networks Detecting Malicious Beacon Nodes for Secure Location Discovery in Wireless Sensor Networks Donggang Liu Peng Ning North Carolina State University {dliu,pning}@ncsu.edu Wenliang Du Syracuse University wedu@ecs.syr.edu

More information

Secure System Practices and Data Access Management in Wireless Sensor Network

Secure System Practices and Data Access Management in Wireless Sensor Network Secure System Practices and Data Access Management in Wireless Sensor Network A. R. Uttarkar Student, ME Computer Engineering JSPM s JSCOE, Pune Maharashtra, India. ABSTRACT Wireless Sensor Networks (WSN)

More information

Wireless Sensor Networks Chapter 14: Security in WSNs

Wireless Sensor Networks Chapter 14: Security in WSNs Wireless Sensor Networks Chapter 14: Security in WSNs António Grilo Courtesy: see reading list Goals of this chapter To give an understanding of the security vulnerabilities of Wireless Sensor Networks

More information

Secure Time Synchronization Service for Sensor Networks

Secure Time Synchronization Service for Sensor Networks Secure Time Synchronization Service for Sensor Networks Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, Mani B. Srivastava Networked and Embedded Systems lab, 56-15B, EE-IV, University of California

More information

Efficient Distribution of Key Chain Commitments for Broadcast Authentication in Distributed Sensor Networks

Efficient Distribution of Key Chain Commitments for Broadcast Authentication in Distributed Sensor Networks Efficient Distribution of Key Chain Commitments for Broadcast Authentication in Distributed Sensor Networks Donggang Liu Peng Ning Department of Computer Science North Carolina State University Raleigh,

More information

AN RC4 BASED LIGHT WEIGHT SECURE PROTOCOL FOR SENSOR NETWORKS

AN RC4 BASED LIGHT WEIGHT SECURE PROTOCOL FOR SENSOR NETWORKS AN RC4 BASED LIGHT WEIGHT SECURE PROTOCOL FOR SENSOR NETWORKS Chang N. Zhang and Qian Yu Department of Computer Science, University of Regina 3737 Wascana Parkway, Regina, SK S4S 0A2 Canada {zhang, yu209}@cs.uregina.ca

More information

Wireless Network Security 14-814 Spring 2014

Wireless Network Security 14-814 Spring 2014 Wireless Network Security 14-814 Spring 2014 Patrick Tague Class #8 Broadcast Security & Key Mgmt 1 Announcements 2 Broadcast Communication Wireless networks can leverage the broadcast advantage property

More information

Security Sensor Network. Biswajit panja

Security Sensor Network. Biswajit panja Security Sensor Network Biswajit panja 1 Topics Security Issues in Wired Network Security Issues in Wireless Network Security Issues in Sensor Network 2 Security Issues in Wired Network 3 Security Attacks

More information

Secure Routing in Wireless Sensor Networks

Secure Routing in Wireless Sensor Networks Secure Routing in Wireless Sensor Networks Introduction to Wireless Sensor Networks Ida Siahaan / Leonardo Fernandes DIT Ida Siahaan / Leonardo Fernandes (DIT) Secure Routing in Wireless Sensor Networks

More information

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen Mobile Security Wireless Mesh Network Security Sascha Alexander Jopen Overview Introduction Wireless Ad-hoc Networks Wireless Mesh Networks Security in Wireless Networks Attacks on Wireless Mesh Networks

More information

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks

TinySec: A Link Layer Security Architecture for Wireless Sensor Networks TinySec: A Link Layer Security Architecture for Wireless Sensor Networks Chris Karlof, Naveen Sastr, David Wagner Presented By: Tristan Brown Outline Motivation Cryptography Overview TinySec Design Implementation

More information

Review of Prevention techniques for Denial of Service Attacks in Wireless Sensor Network

Review of Prevention techniques for Denial of Service Attacks in Wireless Sensor Network Review of Prevention techniques for Denial of Service s in Wireless Sensor Network Manojkumar L Mahajan MTech. student, Acropolis Technical Campus, Indore (MP), India Dushyant Verma Assistant Professor,

More information

A Practical Authentication Scheme for In-Network Programming in Wireless Sensor Networks

A Practical Authentication Scheme for In-Network Programming in Wireless Sensor Networks A Practical Authentication Scheme for In-Network Programming in Wireless Sensor Networks Ioannis Krontiris Athens Information Technology P.O.Box 68, 19.5 km Markopoulo Ave. GR- 19002, Peania, Athens, Greece

More information

RT-QoS for Wireless ad-hoc Networks of Embedded Systems

RT-QoS for Wireless ad-hoc Networks of Embedded Systems RT-QoS for Wireless ad-hoc Networks of Embedded Systems Marco accamo University of Illinois Urbana-hampaign 1 Outline Wireless RT-QoS: important MA attributes and faced challenges Some new ideas and results

More information

Prediction of DDoS Attack Scheme

Prediction of DDoS Attack Scheme Chapter 5 Prediction of DDoS Attack Scheme Distributed denial of service attack can be launched by malicious nodes participating in the attack, exploit the lack of entry point in a wireless network, and

More information

Enabling Security in the Transmission Power Grid using Wireless Sensor Networks

Enabling Security in the Transmission Power Grid using Wireless Sensor Networks 1 Enabling Security in the Transmission Power Grid using Wireless Sensor Networks Amitabha Ghosh Department of Electrical Engineering, University of Southern California Los Angeles, CA 90007. Email: amitabhg@usc.edu

More information

Adaptive Security Modules in Incrementally Deployed Sensor Networks

Adaptive Security Modules in Incrementally Deployed Sensor Networks INTERNATIONAL JOURNAL ON MART ENING AND INTELLIGENT YTEM, VOL. 1, NO. 1, MARCH 2008 Adaptive ecurity Modules in Incrementally Deployed ensor Networks Meng-Yen Hsieh 1 and Yueh-Min Huang 2 1 Department

More information

Protecting Privacy Secure Mechanism for Data Reporting In Wireless Sensor Networks

Protecting Privacy Secure Mechanism for Data Reporting In Wireless Sensor Networks ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Wireless Sensor Network Security. Seth A. Hellbusch CMPE 257

Wireless Sensor Network Security. Seth A. Hellbusch CMPE 257 Wireless Sensor Network Security Seth A. Hellbusch CMPE 257 Wireless Sensor Networks (WSN) 2 The main characteristics of a WSN include: Power consumption constrains for nodes using batteries or energy

More information

LEAP+: Efficient Security Mechanisms for Large-Scale Distributed Sensor Networks

LEAP+: Efficient Security Mechanisms for Large-Scale Distributed Sensor Networks LEAP+: Efficient Security Mechanisms for Large-Scale Distributed Sensor Networks SENCUN ZHU The Pennsylvania State University and SANJEEV SETIA George Mason University and SUSHIL JAJODIA George Mason University

More information

About the Authors Preface Acknowledgements List of Acronyms

About the Authors Preface Acknowledgements List of Acronyms Contents About the Authors Preface Acknowledgements List of Acronyms xiii xv xvii xix Part One Wireless Ad Hoc, Sensor and Mesh Networking 1 1 Introduction 3 1.1 Information Security 4 1.1.1 Computer Security

More information

Chapter 6 CDMA/802.11i

Chapter 6 CDMA/802.11i Chapter 6 CDMA/802.11i IC322 Fall 2014 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Some material copyright 1996-2012 J.F Kurose and K.W. Ross,

More information

MoteSec-Aware: A Practical Secure Mechanism for Wireless Sensor Networks

MoteSec-Aware: A Practical Secure Mechanism for Wireless Sensor Networks IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 6, JUNE 213 2817 MoteSec-Aware: A Practical Secure Mechanism for Wireless Sensor Networks Yao-Tung Tsou, Chun-Shien Lu, Member, IEEE, and Sy-Yen

More information

Secure Real-time Services for Wireless Sensor Networks in Contiki

Secure Real-time Services for Wireless Sensor Networks in Contiki Secure Real-time Services for Wireless Sensor Networks in Contiki Shujuan Chen{shuj-che@dsv.su.se} Master thesis March 17, 2007 Abstract With the widespread use of networked embedded systems operating

More information

Enhancing Base Station Security in Wireless Sensor Networks

Enhancing Base Station Security in Wireless Sensor Networks Enhancing Base Station Security in Wireless Sensor Networks Jing Deng, Richard Han, and Shivakant Mishra jing.deng@colorado.edu, {rhan,mishras}@cs.colorado.edu Technical Report CU-CS-951-3 April 23 University

More information

Security in Wireless and Mobile Networks

Security in Wireless and Mobile Networks Security in Wireless and Mobile Networks 1 Introduction This is a vast and active field, a course by itself Many references on wireless security A good book on wireless cooperation: Thwarting Malicious

More information

An experimental test bed for the evaluation of the hidden terminal problems on the IEEE 802.15.5 standard

An experimental test bed for the evaluation of the hidden terminal problems on the IEEE 802.15.5 standard ITU Kaleidoscope 2014 Living in a converged world - impossible without standards? An experimental test bed for the evaluation of the hidden terminal problems on the IEEE 802.15.5 standard David Rodenas-Herraiz,

More information

Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification

Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification LEKSHMI.M.R Department of Computer Science and Engineering, KCG College of Technology Chennai,

More information

Using Received Signal Strength Indicator to Detect Node Replacement and Replication Attacks in Wireless Sensor Networks

Using Received Signal Strength Indicator to Detect Node Replacement and Replication Attacks in Wireless Sensor Networks Using Received Signal Strength Indicator to Detect Node Replacement and Replication Attacks in Wireless Sensor Networks Sajid Hussain* and Md Shafayat Rahman Jodrey School of Computer Science, Acadia University

More information

Accurate Clock Synchronization for IEEE 802.11-Based Multi-Hop Wireless Networks

Accurate Clock Synchronization for IEEE 802.11-Based Multi-Hop Wireless Networks Accurate Clock Synchronization for IEEE 82.11-Based Multi-Hop Wireless Networks Jui-Hao Chiang Tzi-cker Chiueh Computer Science Department Stony Brook University Email: {j-chiang, chiueh}@cs.sunysb.edu

More information

18-731 Midterm. Name: Andrew user id:

18-731 Midterm. Name: Andrew user id: 18-731 Midterm 6 March 2008 Name: Andrew user id: Scores: Problem 0 (10 points): Problem 1 (10 points): Problem 2 (15 points): Problem 3 (10 points): Problem 4 (20 points): Problem 5 (10 points): Problem

More information

Securing Wireless Sensor Networks: Security Architectures

Securing Wireless Sensor Networks: Security Architectures JOURNAL OF NETWORKS, VOL. 3, NO. 1, JANUARY 2008 65 Securing Wireless Sensor Networks: Security Architectures David Boyle Department of Electronic and Computer Engineering, University of Limerick, Limerick,

More information

Secured Communication in Wireless Sensor Networks

Secured Communication in Wireless Sensor Networks Secured Communication in Wireless Sensor Networks Jian Wang \ University of Teas at Arlington, Arlington, TX 77843 Email: {wang_jane@lycos.com} Abstract Recent advancement in wireless communications and

More information

Power Consumption Analysis of Prominent Time Synchronization Protocols for Wireless Sensor Networks

Power Consumption Analysis of Prominent Time Synchronization Protocols for Wireless Sensor Networks J Inf Process Syst, Vol.10, No.2, pp.300~313, June 2014 http://dx.doi.org/10.3745/jips.03.0006 pissn 1976-913X eissn 2092-805X Power Consumption Analysis of Prominent Time Synchronization Protocols for

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK AN OVERVIEW OF MOBILE ADHOC NETWORK: INTRUSION DETECTION, TYPES OF ATTACKS AND

More information

Throughput Analysis of WEP Security in Ad Hoc Sensor Networks

Throughput Analysis of WEP Security in Ad Hoc Sensor Networks Throughput Analysis of WEP Security in Ad Hoc Sensor Networks Mohammad Saleh and Iyad Al Khatib iitc Stockholm, Sweden {mohsaleh, iyad}@iitc.se ABSTRACT This paper presents a performance investigation

More information

A STUDY OF SECURITY CHALLENGES IN WIRELESS SENSOR NETWORKS

A STUDY OF SECURITY CHALLENGES IN WIRELESS SENSOR NETWORKS A STUDY OF SECURITY CHALLENGES IN WIRELESS SENSOR NETWORKS KUTHADI VENU MADHAV 1, RAJENDRA.C 2 AND RAJA LAKSHMI SELVARAJ 3 1 University of Johannesburg South Africa, 2 Audisankaara College of Engineering

More information

Introduction to Wireless Sensor Network Security

Introduction to Wireless Sensor Network Security Smartening the Environment using Wireless Sensor Networks in a Developing Country Introduction to Wireless Sensor Network Security Presented By Al-Sakib Khan Pathan Department of Computer Science and Engineering

More information

An Overview of ZigBee Networks

An Overview of ZigBee Networks An Overview of ZigBee Networks A guide for implementers and security testers Matt Hillman Contents 1. What is ZigBee?... 3 1.1 ZigBee Versions... 3 2. How Does ZigBee Operate?... 3 2.1 The ZigBee Stack...

More information

Implementing Software on Resource- Constrained Mobile Sensors Experience with Impala and ZebraNet

Implementing Software on Resource- Constrained Mobile Sensors Experience with Impala and ZebraNet Implementing Software on Resource- Constrained Mobile Sensors Experience with Impala and ZebraNet T. Liu, C. Sadler, P. Zhang, and M. Martonosi, MobiSys 04 Presented by Fabián E. Bustamante (based on the

More information

Protecting Neighbor Discovery Against Node Compromises in Sensor Networks

Protecting Neighbor Discovery Against Node Compromises in Sensor Networks Protecting Neighbor Discovery Against Node Compromises in Sensor Networks Donggang Liu isec Laboratory, CSE Department The University of Texas at Arlington Abstract The neighborhood information has been

More information

Dr. Arjan Durresi Louisiana State University, Baton Rouge, LA 70803 durresi@csc.lsu.edu. DDoS and IP Traceback. Overview

Dr. Arjan Durresi Louisiana State University, Baton Rouge, LA 70803 durresi@csc.lsu.edu. DDoS and IP Traceback. Overview DDoS and IP Traceback Dr. Arjan Durresi Louisiana State University, Baton Rouge, LA 70803 durresi@csc.lsu.edu Louisiana State University DDoS and IP Traceback - 1 Overview Distributed Denial of Service

More information

PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks

PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks Sinem Coleri and Pravin Varaiya Department of Electrical Engineering and Computer Science University of California,

More information

Security in wireless sensor networks

Security in wireless sensor networks WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 2008; 8:1 24 Published online 12 September 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/wcm.422 Security

More information

Supporting VoIP in IEEE802.11 Distributed WLANs

Supporting VoIP in IEEE802.11 Distributed WLANs Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet

More information

Mac Protocols for Wireless Sensor Networks

Mac Protocols for Wireless Sensor Networks Mac Protocols for Wireless Sensor Networks Hans-Christian Halfbrodt Advisor: Pardeep Kumar Institute of Computer Science Freie Universität Berlin, Germany halfbrodt@inf.fu-berlin.de January 2010 Contents

More information

Authenticated In-Network Programming for Wireless Sensor Networks

Authenticated In-Network Programming for Wireless Sensor Networks Authenticated In-Network Programming for Wireless Sensor Networks Ioannis Krontiris and Tassos Dimitriou Athens Information Technology, P.O.Box 68, 19.5 km Markopoulo Ave., GR- 19002, Peania, Athens, Greece

More information

Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8

Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

www.mindteck.com 6LoWPAN Technical Overview

www.mindteck.com 6LoWPAN Technical Overview www.mindteck.com 6LoWPAN Technical Overview 6LoWPAN : Slide Index Introduction Acronyms Stack Architecture Stack Layers Applications IETF documents References Confidential Mindteck 2009 2 6LoWPAN - Introduction

More information

SECURITY KEY MANAGEMENT AND AUTHENTICATION SCHEME FOR WIRELESS SENSOR NETWORKS

SECURITY KEY MANAGEMENT AND AUTHENTICATION SCHEME FOR WIRELESS SENSOR NETWORKS SECURITY KEY MANAGEMENT AND AUTHENTICATION SCHEME FOR WIRELESS SENSOR NETWORKS S. Jayapraba 1 and A.F.Sheik Hakkani 2 1 Department of MCA, Jayam College of Engineering and Technology, Bharathiyar University,

More information

Wired LANs: Ethernet

Wired LANs: Ethernet Chapter 13 Wired LANs: Ethernet Behrouz A. Forouzan Data communication and Networking 1 13-1 IEEE STANDARDS In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards

More information

Wired Local Area Network (Ethernet)

Wired Local Area Network (Ethernet) Chapter 13 Wired Local Area Network (Ethernet) IEEE Standards In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards to enable intercommunication among equipment

More information

A Neighborhood Awareness Method for Handoff Assistance in 802.11 Wireless Networks

A Neighborhood Awareness Method for Handoff Assistance in 802.11 Wireless Networks A Neighborhood Awareness Method for Handoff Assistance in 802.11 Wireless Networks Gurpal Singh *, Ajay Pal Singh Atwal ** and B.S. Sohi *** * Deptt of CSE & IT, BBSBEC, Fatehgarh Sahib, Punjab, India,

More information

Group Security Model in Wireless Sensor Network using Identity Based Cryptographic Scheme

Group Security Model in Wireless Sensor Network using Identity Based Cryptographic Scheme Group Security Model in Wireless Sensor Network using Identity Based Cryptographic Scheme Asha A 1, Hussana Johar 2, Dr B R Sujatha 3 1 M.Tech Student, Department of ECE, GSSSIETW, Mysuru, Karnataka, India

More information

Tema 5.- Seguridad. Problemas Soluciones

Tema 5.- Seguridad. Problemas Soluciones Tema 5.- Seguridad Problemas Soluciones Wireless medium is easy to snoop on Routing security vulnerabilities Due to ad hoc connectivity and mobility, it is hard to guarantee access to any particular node

More information

A NOVEL RESOURCE EFFICIENT DMMS APPROACH

A NOVEL RESOURCE EFFICIENT DMMS APPROACH A NOVEL RESOURCE EFFICIENT DMMS APPROACH FOR NETWORK MONITORING AND CONTROLLING FUNCTIONS Golam R. Khan 1, Sharmistha Khan 2, Dhadesugoor R. Vaman 3, and Suxia Cui 4 Department of Electrical and Computer

More information

Client Server Registration Protocol

Client Server Registration Protocol Client Server Registration Protocol The Client-Server protocol involves these following steps: 1. Login 2. Discovery phase User (Alice or Bob) has K s Server (S) has hash[pw A ].The passwords hashes are

More information

Provost s Learning Innovations Grant for Faculty. (Project Report) June, Project Title:

Provost s Learning Innovations Grant for Faculty. (Project Report) June, Project Title: Provost s Learning Innovations Grant for Faculty (Project Report) June, 2006 Project Title: Improve Students Learning in Pervasive Computing From Both Science and Engineering Perspective Track #2 Adaptation

More information

Security of MICA*-based / ZigBee Wireless Sensor Networks

Security of MICA*-based / ZigBee Wireless Sensor Networks Security of MICA*-based / ZigBee Wireless Sensor Networks Cambridge University Computer Lab and myself also Brno University of Technology Department of Intelligent Systems 28 December 2008 Our approach

More information

Some Security Trends over Wireless Sensor Networks

Some Security Trends over Wireless Sensor Networks Some Security Trends over Wireless Sensor Networks ZORAN BOJKOVIC, BOJAN BAKMAZ, MIODRAG BAKMAZ Faculty of Transport and Traffic Engineering University of Belgrade Vojvode Stepe 305 SERBIA Abstract: -

More information

Controlled Random Access Methods

Controlled Random Access Methods Helsinki University of Technology S-72.333 Postgraduate Seminar on Radio Communications Controlled Random Access Methods Er Liu liuer@cc.hut.fi Communications Laboratory 09.03.2004 Content of Presentation

More information

Integrating Heterogeneous Wireless Technologies: A Cellular Aided Mobile Ad hoc Network (CAMA)

Integrating Heterogeneous Wireless Technologies: A Cellular Aided Mobile Ad hoc Network (CAMA) ACM MOBILE NETWORK AND APPLICATIONS Integrating Heterogeneous Wireless Technologies: A Cellular Aided Mobile Ad hoc Network (CAMA) Bharat Bhargava, Xiaoxin Wu, Yi Lu, and Weichao Wang Abstract A mobile

More information

Secure Neighbor Discovery in Wireless Sensor Networks

Secure Neighbor Discovery in Wireless Sensor Networks Purdue University Purdue e-pubs ECE Technical Reports Electrical and Computer Engineering 8-16-2007 Secure Neighbor Discovery in Wireless Sensor Networks Saurabh Bagchi Purdue University, sbagchi@purdue.edu

More information

Securing Topology Maintenance Protocols for Sensor Networks: Attacks and Countermeasures

Securing Topology Maintenance Protocols for Sensor Networks: Attacks and Countermeasures Securing Topology Maintenance Protocols for Sensor Networks: Attacks and Countermeasures Andrea Gabrielli and Luigi V. Mancini Dipartimento di Informatica Università di Roma La Sapienza 00198 Rome, Italy

More information

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD Ethernet dominant LAN technology: cheap -- $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token rings and ATM Kept up with speed race: 10, 100, 1000 Mbps Metcalfe s Etheret sketch

More information

SYSTEM DESIGN ISSUES IN SINGLE-HOP WIRELESS SENSOR NETWORKS

SYSTEM DESIGN ISSUES IN SINGLE-HOP WIRELESS SENSOR NETWORKS SYSTEM DESIGN ISSUES IN SINGLE-HOP WIRELESS SENSOR NETWORKS Sunayana Saha and Peter Bajcsy National Center for Supercomputing Applications (NCSA) University of Illinois at Urbana-Champaign, Illinois, USA

More information

How To Secure My Data

How To Secure My Data How To Secure My Data What to Protect??? DATA Data At Rest Data at Rest Examples Lost Infected Easily Used as Backup Lent to others Data Corruptions more common Stolen Left at airports, on trains etc Hard

More information

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers EECS 122: Introduction to Computer Networks Multiaccess Protocols Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

More information

Precision Time Protocol (PTP)

Precision Time Protocol (PTP) White Paper W H I T E P A P E R Precision Time Protocol (PTP) "Smarter Timing Solutions" The Precision Time Protocol, as defined in the IEEE-1588 standard, provides a method to precisely synchronize computers

More information

APPLICATION NOTE. AVR2130: Lightweight Mesh Developer Guide. Atmel MCU Wireless. Features. Description

APPLICATION NOTE. AVR2130: Lightweight Mesh Developer Guide. Atmel MCU Wireless. Features. Description APPLICATION NOTE AVR2130: Lightweight Mesh Developer Guide Atmel MCU Wireless Features Atmel Lightweight Mesh stack specification and APIs Lightweight Mesh Software Development Kit (SDK) Description This

More information

Energy Effective Routing Protocol for Maximizing Network Lifetime of WSN

Energy Effective Routing Protocol for Maximizing Network Lifetime of WSN Energy Effective Routing Protocol for Maximizing Network Lifetime of WSN Rachana Ballal 1, S.Girish 2 4 th sem M.tech, Dept.of CS&E, Sahyadri College of Engineering and Management, Adyar, Mangalore, India

More information

Multimedia Data Transmission over Wired/Wireless Networks

Multimedia Data Transmission over Wired/Wireless Networks Multimedia Data Transmission over Wired/Wireless Networks Bharat Bhargava Gang Ding, Xiaoxin Wu, Mohamed Hefeeda, Halima Ghafoor Purdue University Website: http://www.cs.purdue.edu/homes/bb E-mail: bb@cs.purdue.edu

More information

Intrusion Detection of Sinkhole Attacks in Wireless Sensor Networks

Intrusion Detection of Sinkhole Attacks in Wireless Sensor Networks Intrusion Detection of Sinkhole Attacks in Wireless Sensor Networks Ioannis Krontiris, Tassos Dimitriou, Thanassis Giannetsos, and Marios Mpasoukos Athens Information Technology, P.O.Box 68, 19.5 km Markopoulo

More information

Attacks on neighbor discovery

Attacks on neighbor discovery Cryptographic Protocols (EIT ICT MSc) Dr. Levente Buttyán associate professor BME Hálózati Rendszerek és Szolgáltatások Tanszék Lab of Cryptography and System Security (CrySyS) buttyan@hit.bme.hu, buttyan@crysys.hu

More information

Experimental Study of Concurrent Transmission in Wireless Sensor Networks

Experimental Study of Concurrent Transmission in Wireless Sensor Networks Experimental Study of Concurrent Transmission in Wireless Sensor Networks Dongjin Son,2 Bhaskar Krishnamachari John Heidemann 2 {dongjins, bkrishna}@usc.edu, johnh@isi.edu Department of Electrical Engineering-Systems,

More information

2.0 System Description

2.0 System Description 2.0 System Description The wireless alarm system consists of two or more alarm units within a specified range of one another. Each alarm unit employs a radio transceiver, allowing it to communicate with

More information

Attack-Resistant Location Estimation in Sensor Networks

Attack-Resistant Location Estimation in Sensor Networks Secure location determination and verification in wireless networks 1. Lazos, L. and Poovendran, R. 2004. SeRLoc: secure rangeindependent localization for wireless sensor networks. In Proceedings of the

More information

Key Exchange Issues. (Present technologies vs. StealthKey Patent # 6,590,891) Hugo Fruehauf. October 2006

Key Exchange Issues. (Present technologies vs. StealthKey Patent # 6,590,891) Hugo Fruehauf. October 2006 Key Exchange Issues (Present technologies vs. StealthKey Patent # 6,590,891) Hugo Fruehauf hxf@fei-zyfer.com October 2006 Key Exchange Issues (presently in use) Symmetric Crypto Same Key Encrypts Must

More information

Defending against Path-based DoS Attacks in Wireless Sensor Networks

Defending against Path-based DoS Attacks in Wireless Sensor Networks Defending against Path-based DoS Attacks in Wireless Sensor Networks Jing Deng, Richard Han, and Shivakant Mishra Department of Computer Science University of Colorado Boulder, Colorado, USA Jing.Deng@colorado.edu,

More information

Secure and Efficient Data Collection in Sensor Networks

Secure and Efficient Data Collection in Sensor Networks Secure and Efficient Data Collection in Sensor Networks Cristina Cano 1, Manel Guerrero 2, Boris Bellalta 1 (1) Universitat Pompeu Fabra (2) Universitat Politecnica de Catalunya cristina.cano@upf.edu,

More information

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006 CSE331: Introduction to Networks and Security Lecture 6 Fall 2006 Open Systems Interconnection (OSI) End Host Application Reference model not actual implementation. Transmits messages (e.g. FTP or HTTP)

More information

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set

More information

Workshop Presentation Chapter4. Yosuke TANAKA

Workshop Presentation Chapter4. Yosuke TANAKA Workshop Presentation Chapter4 Yosuke TANAKA Agenda(Framing in Detail) Data Frames Control Frames type RTS Duration CTS Addressing (!!important!!) Variation on Data Frame Theme Applied Data Framing ACK

More information

Secure Authentication Methods for Preventing Jamming Attacks In Wireless Networks

Secure Authentication Methods for Preventing Jamming Attacks In Wireless Networks www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 2 Issue 4 April, 2013 Page No. 962-966 Secure Authentication Methods for Preventing Jamming Attacks In Wireless

More information

UG103.5 EMBER APPLICATION DEVELOPMENT FUNDAMENTALS: SECURITY

UG103.5 EMBER APPLICATION DEVELOPMENT FUNDAMENTALS: SECURITY EMBER APPLICATION DEVELOPMENT FUNDAMENTALS: SECURITY This document introduces some basic security concepts, including network layer security, trust centers, and application support layer security features.

More information

Overview of EnOcean Security features EXPLANATION OF ENCEOAN SECURITY IN APPLICATIONS

Overview of EnOcean Security features EXPLANATION OF ENCEOAN SECURITY IN APPLICATIONS Overview of EnOcean Security features EXPLANATION OF ENCEOAN SECURITY IN APPLICATIONS EnOcean www.enocean.com Author (eo_fusszeile) September 2013 Page 1/ 23 Table of contents 1. INTRODUCTION... 3 1.1.

More information

Security in Sensor Networks: Industry Trends, Present and Future Research Directions. Sensor Networks are Here!

Security in Sensor Networks: Industry Trends, Present and Future Research Directions. Sensor Networks are Here! Security in Sensor Networks: Industry Trends, Present and Future Research Directions Adrian Perrig perrig@cmu.edu Sensor Networks are Here! Prototype sensor network deployments Burglar alarm in museum

More information

Time and Clocks. Time and Clocks. Time

Time and Clocks. Time and Clocks. Time Time and Clocks Time: we model the continuum of real-time as a directed timeline consisting of an infinite set {T} of instants with the following properties: {T} is an ordered set, i.e., if p and q are

More information

Ring Local Area Network. Ring LANs

Ring Local Area Network. Ring LANs Ring Local Area Network Ring interface (1-bit buffer) Ring interface To station From station Ring LANs The ring is a series of bit repeaters, each connected by a unidirectional transmission link All arriving

More information

Efficient and trustworthy data transmission over wireless sensor networks

Efficient and trustworthy data transmission over wireless sensor networks Volume: 2, Issue: 4, 221-225 April 2015 www.allsubjectjournal.com e-issn: 2349-4182 p-issn: 2349-5979 Impact Factor: 3.762 Girijalaxmi M.Tech scholar, Department of computer Vasudev S Senior assistant

More information

Lightweight Remote Image Management for Secure Code Dissemination in Wireless Sensor Networks

Lightweight Remote Image Management for Secure Code Dissemination in Wireless Sensor Networks Lightweight Remote Image Management for Secure Code Dissemination in Wireless Sensor Networks An Liu, Peng Ning Department of Computer Science North Carolina State University Raleigh, NC 27695, USA Email:

More information

Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks

Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks Wireless Networks 11, 21 38, 2005 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks YIH-CHUN HU and ADRIAN PERRIG

More information