gamma globulins immunoglobulin myeloma proteins monoclonal antibodies mab

Size: px
Start display at page:

Download "gamma globulins immunoglobulin myeloma proteins monoclonal antibodies mab"

Transcription

1 Antibodies

2 Molecular structure Antibodies are plasma glycoproteins, called gamma globulins because of their mobility in an electric field and immunoglobulin (Ig) because of their role in immunity. Antibodies were initially characterized using myeloma proteins, homogenous antibodies produced by cancerous plasma cells in individuals with multiple myeloma. Antibodies which are identical with each other at every amino acid (because they have all been produced by the descendants of a single B cell) are called monoclonal antibodies (mab).

3 Myeloma proteins are naturally occurring monoclonal antibodies, because the myeloma develops from a single cancerous plasma cell (a clonal tumor). Monoclonal antibodies can also be produced in the lab. Serum antibodies are polyclonal antibodies, because they are produced by the descendants of several B cells that recognize different epitopes on the same antigen.

4 To produce monoclonal antibodies, one removes B-cells from the spleen or lymph nodes of an animal that has been challenged with the antigen. These B-cells are then fused with myeloma tumor cells that can grow indefinitely in culture (myeloma is a B-cell cancer). This fusion is done by making the cell membranes more permeable. The fused hybrid cells (called hybridomas), being cancer cells, will multiply rapidly and indefinitely and will produce large amounts of antibodies.

5

6

7

8 All antibodies share a basic structure, each antibody "monomer" is composed of two identical heavy (H) polypeptide chains and two identical light (L) chains, covalently bonded via interchain disulfide (S-S) linkages between cysteine residues. Each H chain is about 440 amino acids long; each L chain is about 220 amino acids long. H and L chains each contain intrachain disulfide bonds which stabilize their folding into 110- amino acid domains.

9 Immunoglobulin domains are a common feature of many soluble molecules and membrane-bound receptors of the immune system, comprising the Ig superfamily. All antibodies have one of two kinds of L chain, kappa (k) or lambda (l); each antibody has two identical k chains or two identical l chains. Five different H chains have been found: alpha (a), gamma (g), delta (d), epsilon (e), and mu (m). Antibody isotypes (classes) are named IgA, IgG, IgD, IgE, and IgM to correspond to their H chain types, which influence the effector functions of the antibody molecules.

10 The amino acid sequence of the H and L amino terminal domains vary considerably from one Ig to the next and are responsible for the antigen-binding diversity of antibodies; these make up the variable regions, VH and VL. Each light chain has one VL domain and each heavy chain has one VH domain. One VH and one VL fold together to form an antigen-binding site, so each Ig molecule has two identical antigenbinding sites.

11 The amino acid sequence of the carboxyl half of the L chain and three-fourths of the H chain show relatively limited variability, and make up the constant regions (CH and CL). Each light chain has one CL domain, and each heavy chain has three (a, g, and d chains) or four (e and m chains) CH domains. The hinge region is a more extended region (not folded into a domain) between H chain CH1 and CH2 that is present in a, g, and d chains. It allows the two antigen-binding regions of each antibody molecule to move independently to bind antigen.

12

13 Limited proteolytic digestion with papain cleaves the Ig prototype into three fragments. Two identical amino terminal fragments, each containing one entire L chain and about half an H chain, are the antigen binding fragments (Fab). The third fragment, similar in size but containing the carboxyl terminal half of both H chains with their interchain disulfide bond, is the crystalizable fragment (Fc).

14 The Fc contains carbohydrates, complement-binding, and FcRbinding sites. Limited pepsin digestion yields a single F(ab')2 fragment containing both Fab pieces and the hinge region, including the H-H interchain disulfide bond. F(ab')2 is divalent for antigen binding. Pepsin digests the carboxyl halves of the H chains.

15

16 Within VH and VL there are hypervariable regions which show the most sequence variability from one antibody to another and framework regions which are less variable. Folding brings the hypervariable regions together to form the antigen-binding pockets. These sites of closest contact between antibody and antigen are the complementarity determining regions (CDR) of the antibody.

17

18

19 The antigen-binding site of a typical antibody is a cleft formed by folded VH and VL regions. It can accommodate approximately four to seven amino acids or sugar residues. Contact between large antigens and antibodies probably extends along the surface of the antibody outside as well as inside the antigen-binding pocket. Antigen-binding specificity of antibody resembles that of enzyme binding substrate.

20 Antibodies bind their specific antigens using hydrogen bonds, ionic bonds, hydrophobic interactions, and Van der Waals interactions. Covalent bonds are not formed between antigen and antibody, so binding is reversible.

21 An epitope is the portion of an antigen bound by an antibody. Viral capsid proteins and bacterial cell wall components usually have multiple epitopes. Antibody is produced to each epitope in relation to its immunogenicity; epitopes to which the most antibody is produced are called immunodominant epitopes. Antibodies distinguish antigenic differences (serotypes) between members of the same bacterial or viral species.

22

23 Some epitopes are shared by different antigens, so that antibody made to one also binds the other (is cross-reactive). Crossreactive antibodies are one mechanism by which autoimmunity is induced. For example, antibodies made by some people to Streptococcus pyogenes bind a crossreactive antigen on their heart valves and cause rheumatic heart disease.

24 The strength of the interaction between a single antigen-binding site on the antibody and its specific antigen epitope is called the binding affinity of the antibody. The higher the affinity, the tighter the association between antigen and antibody, and the more likely the antigen is to remain in the binding site. Antibody affinity generally increases with repeated exposure to antigen because B cells with higher affinity antigen receptors are selected to produce larger clones of antibody-secreting plasma cells.

25 The affinity constant Ka is the ratio between the rate constants for binding and dissociation of antibody and antigen. Typical affinities for IgG antibodies are L/mole. Antibody affinity is measured by equilibrium dialysis. The relationship between bound and free antigen and antibody affinity is expressed by the Scatchard equation, r/c = Kn - Kr, where r = the ratio of [bound antigen] to [total antibody], c = [free antigen], K = affinity, and n = number of binding sites per antibody molecule (valence). Antibodies have the same affinity for antigen (monoclonal antibody), the antibody is heterogeneous (polyclonal).

26 IgG, IgD, IgE, and "monomeric" IgA have two identical antigen-binding sites (valence = 2). Dimeric IgA has four. Serum IgM has ten, although the observed valence of IgM is five because all the binding sites cannot make contact with antigen simultaneously due to steric hindrance. Avidity is the functional affinity of multivalent antigen binding to multivalent antibody molecules. Avidity strengthens binding to antigens with repeating identical epitopes.

27 The more antigen-binding sites an individual antibody molecule has, the higher its avidity for antigen. Crosslinking antibody by binding two different Ig molecules to the same antigen, common with pathogens which have many copies of the same epitopes on their surface, is crucial for activating both complement and B cells.

28

29 Immunoglobulins can be used as antigens to generate antibodies that distinguish several Ig epitopes: isotypes, allotypes, and idiotypes. Anti-isotype sera differentiate epitopes in the constant regions of H and L chains. All members of a species share the same isotypes. For example, antiisotype made against one cloned human m chain would bind to all human m chains. Humans have four subisotypes of g chain ( g1- g4) and two subisotypes of a chain. Subisotypes differ in amino acid sequence and biological functions but are more closely related to each other than to other isotypes.

30 Within a species there is some variation in amino acid sequence within an isotype or subisotype; these differentiate Ig allotypes. Allotypic epitopes are in CH and CL. Each individual B cell or plasma cell produces antibody of a single allotype (allotypic exclusion), and both H chains or both L chains of an individual antibody molecule have the same allotype. Each person has antibodies with one (homozygous) or two (heterozygous) allotypes, depending on whether they inherited the same or different allotypes from each parent.

31 For example, a person who inherited GM1 from one parent and GM3 from the other would have B cells making either GM1 or GM3 H chains, but their serum would contain roughly equal numbers of IgG molecules with each allotype. Idiotypic epitopes are due to sequence differences within VH and VL, so each individual makes antibodies with many idiotypes. Monoclonal antibody molecules share the same idiotype. Polyclonal antibodies, even those made against the same epitope, may have different idiotypes. Antiidiotype antibody and antigen usually compete for the antigen-binding region of the Ig.

32 Biological Functions Properties of Antibody Isotypes Isotype % of total Ig (adult serum) Biological half-life (days) Biological Functions IgA IgA Pathogen neutralization in mucosal secretions IgD Membrane BCR IgE Mast cell histamine release IgG Pathogen neutralization in tissues Classical complement activation Opsonization NK cell ADCC Transplacental transfer IgG Pathogen neutralization in tissues IgG Pathogen neutralization in tissues Classical complement activation Opsonization NK cell ADCC Transplacental transfer IgG IgM Pathogen neutralization in tissues Transplacental transfer Classical complement activation Membrane BCR (monomer)

33 While antibody VH and VL bind antigen, antibody constant regions determine its biological functions. CH2 domains bind complement and control the rate of Ig catabolism (breakdown). CH2 and CH3 domains bind phagocyte FcR (Fc Receptor) to stimulate antigen uptake. The biological functions of the C domains are independent of the antigen specificity of the molecule.

34 Antibody is synthesized on membranebound polyribosomes (rough endoplasmic reticulum, RER) in the cytoplasm of the B cell or plasma cell. A signal recognition protein attached to the H and L chain leader sequences sends the chains into the endoplasmic reticulum (ER). H and L chains assemble into H2L2 monomers with formation of the interchain disulfide bonds; carbohydrate is added to the CH regions.

35 The vesicle containing antibody moves via the Golgi apparatus to the plasma membrane and exocytosis releases secreted antibody from the plasma cell. Membrane-bound antibody has an additional transmembrane sequence on its carboxyl terminal CH region which anchors the molecule to the lipid bilayer.

36

37

38 IgM is the first antigen receptor (BCR) made during B cell development and the first antibody secreted during an immune response. Membrane IgM is a four-chain "monomer" of two m chains and two light chains (either both k or both l). Serum IgM is a "pentamer" containing five four-chain monomers held together by interchain disulfide bridges in the CH3 and CH4 regions plus an extra polypeptide chain called J chain.

39 Pentameric IgM is the most efficient antibody for activating complement because the five adjacent C regions easily bind two complement (C1) molecules. IgM is too large to efficiently leave the circulation, reducing its effectiveness in the tissues. Low levels of IgM are present in mucosal secretions.

40

41 IgG is the predominant serum antibody with the longest half-life. Four subisotypes of IgG in humans have somewhat varied biological functions. IgG is made later in a primary response than IgM, but it is produced more rapidly in a memory response. IgG crosses the placenta to transfer maternal immunity to the fetus and leaves the circulation to neutralize virus and toxin binding to host cells. Two molecules of IgG are required to activate complement. IgGantigen complexes bound to FcR stimulate phagocytosis (opsonization).

42

43 IgA is present in serum and predominates in mucosal secretions: breast milk, saliva, tears, and respiratory, digestive, and genital tract mucus. Secretory IgA provides a first-line defense where pathogens enter the body. More IgA is made than any other isotype. Serum IgA is usually monomeric, although dimers, trimers and tetramers are present. Secretory IgA is dimeric or tetrameric and contains one J chain and one additional chain called secretory component (SC), which protects it from proteolytic degradation.

44

45 Plasma cells make IgA and J chain and assemble and secrete polymeric IgA. IgA then travels through the circulation to the mucosal epithelial cells, which have binding molecules called poly-ig receptor on their apical membranes. Poly-Ig receptor binds to J chain and allows IgA (and some IgM) to enter the epithelial cell, cross the cytoplasm, and exit on the luminal side with part of the poly Ig receptor still attached as secretory component.

46

47 IgE is produced in response to helminth parasites and to allergens. Epsilon chain binds very efficiently to mast cell FceR. Antigen cross-linking of IgE on FceR signals the mast cell to release histamine, which increases fluid entry into the tissues and mucus production. IgE also helps eosinophils destroy helminth (worm) parasites.

48

49 IgD, with IgM, is the BCR for antigen. Its presence on the B cell membrane signals that the B cell is mature and ready to leave the marrow and respond to antigen in the secondary lymphoid organs. IgD is present in serum in low amounts; no effector functions have been identified for serum IgD.

50

51

52 Isotype Distribution and Function Microbes usually enter the body through the epithelial cells of the respiratory, digestive, or genital tracts or through skin broken by a scrape, cut, insect bite or hypodermic needle. Once inside, the microbe may begin replicating locally or get into the circulation and move throughout the body. Bacterial toxins also travel from the initial infection site. The Fc regions of the Ig isotypes allow them to bind Fc receptors and cross tissue barriers to reach pathogens throughout the body.

53 IgM is secreted first in a primary response. No somatic hypermutation has yet occurred, so it is low affinity antibody. IgM avidity is high, however, because it is a pentamer, and IgM fixes complement very efficiently to promote inflammation and pathogen lysis. Because IgM is so large, it cannot enter the tissues very efficiently; but it is effective in controlling pathogens in the circulation.

54 Once isotype switching occurs, IgG predominates in serum and in tissues. IgG both neutralizes pathogens and their toxins and opsonizes them for phagocytosis by neutrophils and macrophages. IgG can also activate complement on the pathogen surface once concentrations are high enough for two IgG molecules to bind nearby epitopes.

55 IgA is the predominant antibody that is secreted across epithelial cells of the respiratory, digestive and genital tracts to block pathogen entry into the body. IgE binds FceR on mast cells lining the blood vessels throughout the body. When pathogen binds to the mast cell IgE, the mast cells immediately release inflammatory mediators that trigger coughing, sneezing or vomiting to expel pathogens from the body.

56 The selective transport of various Ig isotypes to particular regions of the body occurs because of isotype-specific Fc receptors on different tissues. Dimeric Ig A (and, to a lesser extent, pentameric IgM) bind to the poly Ig receptor on the body side of epitheilial cells in the intestines, respiratory tract, tear and salivary glands, and lactating mammary gland. The antibody-poly Ig receptor complex is endocytosed into the epithelial cell and travels in an endocytic vesicle across the cytoplasm (transcytosis) to be secreted on the outer surface of the epithelium (into the intestine or lung surface or tears, saliva, or milk).

57 Maternal IgA in milk can neutralize pathogen in the infant's digestive tract until the infant's immune system is mature enough to take over that task. IgG which has crossed the placenta into the fetal circulation offers additional protection during the first few months of life. An FcRn has been identified on placental cells for transport of IgG across the placenta, and a similar molecule has been identified on intestinal cells of some mammals that may allow uptake of IgG in colostrum, the first fluid secreted by the mammary gland after birth.

58 Numerous bacteria cause disease by releasing toxins that damage cells. Like viruses, bacterial toxins must enter cells via specific receptors in order to damage the cells. Neutralizing antibodies, usually IgG, block binding to the target cells. Toxins may kill us before we can produce neutralizing antibodies, so they are a natural target for vaccination. We are immunized as infants with inactivated diphtheria and tetanus toxins (toxoids); we may become infected with Corynebacterium diphtheriae or Clostridium tetani, but any toxin they produce will be neutralized before it can harm our cells. For snake venoms, passive immunization with antitoxins produced in horses can neutralize the venom.

59 Bactericidal agents released in response to FcR binding include oxygen radicals and peroxides, nitric oxide, defensins, and lysozyme. Respiratory burst is the process by which phagocytes generate the toxic oxygen compounds that inactivate key microbial enzymes and structural proteins by oxidizing them. Phagocytes also acidify their phagocytic vesicles to activate degradative enzymes and release molecules such as lactoferrin and vitamin B12-binding protein that compete with microbes for essential nutrients.

60

61 For antibody-coated microbes which are too large to phagocytose, phagocytes excrete these bactericidal agents into the extracellular space. Helminth parasites generally induce secretion of IgE, which on eosinophil FceR1 signals eosinophils to kill the parasite.

62 Cells infected with enveloped viruses express the envelope proteins on their membranes before the viruses take pieces of membrane for their envelope as they but from the cell. Antibodies to those viral proteins can bind to FcgRIII (CD16) on NK cells and activate them to kill the virusinfected cell, a process called ADCC (Antibody-Dependent Cell-mediated Cytotoxicity). NK cells use perforin and granzymes, present in their granules (remember NK cells are also called Large Granular Lymphocytes), to kill their target cells.

63

64 In response to some antigen challenges, especially helminth parasites and allergens, the body responds by producing IgE. Mast cells with their membrane FceR1 are found just below the skin and respiratory and digestive epithelia. Mast cell cytoplasm is packed with granules containing histamine and other mediators of inflammation. Unlike other FcR, FceR1 binds free IgE (without bound antigen), so most IgE in the body is found on mast cell surfaces and on circulating basophils.

65 When antigen enters the body, it cross-links the IgE on mast cells and ITAMs signal the mast cells to immediately secrete their granule contents. Mast cells also secrete cytokines, including IL-4 that stimulates IgE synthesis by B cells. Eosinophils express FceR1 when activated at an infection site. Experiments with mice deficient in mast cells show that these mice have difficulty eliminating helminth parasites compared to their normal counterparts. Mast cells, IgE, basophils and eosinophils have been implicated in resistance of mice to certain bloodsucking ticks, such as those that transmit Lyme disease.

66

67 FcgRII-B1 (CD32) on B cells and mast cells has cytoplasmic ITIMS instead of ITAMS, and inhibits cell function. On B cells, CD32 binds Ig with a lower affinity than FcgRI, so high amounts of IgG antibody inhibit activation of naïve B cells (late in immune responses) and mast cells.

68

69

70

71

72 Chimeric and humanized antibodies One problem in medical applications is that the standard procedure of producing monoclonal antibodies yields mouse antibodies. Although murine antibodies are very similar to human ones there are differences. The human immune system hence recognizes mouse antibodies as foreign, rapidly removing them from circulation and causing systemic inflammatory effects.

73 A solution to this problem would be to generate human antibodies directly from humans. However, this is not easy primarily because it is clearly not ethical to challenge humans with antigen in order to produce antibody. Furthermore, it is not easy to generate human antibodies against human tissues.

74 Various approaches using recombinant DNA technology to overcome this problem have been tried since the late 1980s. In one approach, one takes the DNA that encodes the binding portion of monoclonal mouse antibodies and merges it with human antibody producing DNA. One then uses mammalian cell cultures to express this DNA and produce these half-mouse and halfhuman antibodies. Depending on how big a part of the mouse antibody is used, one talks about chimeric antibodies or humanized antibodies. Another approach involves mice genetically engineered to produce more human-like antibodies.

75

76

Microbiology AN INTRODUCTION EIGHTH EDITION

Microbiology AN INTRODUCTION EIGHTH EDITION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION Differentiate between innate and acquired immunity. Chapter 17 Specific Defenses of the Host: The Immune Response B.E Pruitt & Jane J. Stein

More information

Basics of Immunology

Basics of Immunology Basics of Immunology 2 Basics of Immunology What is the immune system? Biological mechanism for identifying and destroying pathogens within a larger organism. Pathogens: agents that cause disease Bacteria,

More information

Some terms: An antigen is a molecule or pathogen capable of eliciting an immune response

Some terms: An antigen is a molecule or pathogen capable of eliciting an immune response Overview of the immune system We continue our discussion of protein structure by considering the structure of antibodies. All organisms are continually subject to attack by microorganisms and viruses.

More information

LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES

LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES Introduction to immunology. LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES Today we will get to know: The antibodies How antibodies are produced, their classes and their maturation processes Antigen recognition

More information

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins Adaptive Immunity Chapter 17: Adaptive (specific) Immunity Bio 139 Dr. Amy Rogers Host defenses that are specific to a particular infectious agent Can be innate or genetic for humans as a group: most microbes

More information

CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS

CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS Although the process by which a functional gene for immunoglobulin HEAVY and LIGHT CHAINS is formed is highly unusual, the SYNTHESIS, POST- TRANSLATIONAL PROCESSING

More information

Antibody Structure, and the Generation of B-cell Diversity CHAPTER 4 04/05/15. Different Immunoglobulins

Antibody Structure, and the Generation of B-cell Diversity CHAPTER 4 04/05/15. Different Immunoglobulins Antibody Structure, and the Generation of B-cell Diversity B cells recognize their antigen without needing an antigen presenting cell CHAPTER 4 Structure of Immunoglobulin G Different Immunoglobulins Differences

More information

Antibody Function & Structure

Antibody Function & Structure Antibody Function & Structure Specifically bind to antigens in both the recognition phase (cellular receptors) and during the effector phase (synthesis and secretion) of humoral immunity Serology: the

More information

Name (print) Name (signature) Period. (Total 30 points)

Name (print) Name (signature) Period. (Total 30 points) AP Biology Worksheet Chapter 43 The Immune System Lambdin April 4, 2011 Due Date: Thurs. April 7, 2011 You may use the following: Text Notes Power point Internet One other person in class "On my honor,

More information

ANIMALS FORM & FUNCTION BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES. Animals Form & Function Activity #4 page 1

ANIMALS FORM & FUNCTION BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES. Animals Form & Function Activity #4 page 1 AP BIOLOGY ANIMALS FORM & FUNCTION ACTIVITY #4 NAME DATE HOUR BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES Animals Form & Function Activity #4 page 1 INFLAMMATORY RESPONSE ANTIMICROBIAL

More information

The Use of Antibodies in Immunoassays

The Use of Antibodies in Immunoassays TECHNICAL NOTE The Use of Antibodies in Immunoassays Introduction Structure of an IgG Antibody Immunological reagents are the backbone of every immunoassay system. Immunoassays can be utilized to quantitatively

More information

The Immune System: A Tutorial

The Immune System: A Tutorial The Immune System: A Tutorial Modeling and Simulation of Biological Systems 21-366B Shlomo Ta asan Images taken from http://rex.nci.nih.gov/behindthenews/uis/uisframe.htm http://copewithcytokines.de/ The

More information

Types, production of antibodies and Antibody/antigen interaction

Types, production of antibodies and Antibody/antigen interaction Types, production of antibodies and Antibody/antigen interaction Antibodies Secreted by B lymphocytes Great diversity and specificity: >109 different antibodies; can distinguish between very similar molecules

More information

B cell activation and Humoral Immunity

B cell activation and Humoral Immunity B cell activation and Humoral Immunity Humoral immunity is mediated by secreted antibodies and its physiological function is defense against extracellular microbes (including viruses) and microbial exotoxins.

More information

1) Siderophores are bacterial proteins that compete with animal A) Antibodies. B) Red blood cells. C) Transferrin. D) White blood cells. E) Receptors.

1) Siderophores are bacterial proteins that compete with animal A) Antibodies. B) Red blood cells. C) Transferrin. D) White blood cells. E) Receptors. Prof. Lester s BIOL 210 Practice Exam 4 (There is no answer key. Please do not email or ask me for answers.) Chapters 15, 16, 17, 19, HIV/AIDS, TB, Quorum Sensing 1) Siderophores are bacterial proteins

More information

HUMORAL IMMUNE RE- SPONSES: ACTIVATION OF B CELLS AND ANTIBODIES JASON CYSTER SECTION 13

HUMORAL IMMUNE RE- SPONSES: ACTIVATION OF B CELLS AND ANTIBODIES JASON CYSTER SECTION 13 SECTION 13 HUMORAL IMMUNE RE- SPONSES: ACTIVATION OF B CELLS AND ANTIBODIES CONTACT INFORMATION Jason Cyster, PhD (Email) READING Basic Immunology: Functions and Disorders of the Immune System. Abbas,

More information

Chapter 43: The Immune System

Chapter 43: The Immune System Name Period Our students consider this chapter to be a particularly challenging and important one. Expect to work your way slowly through the first three concepts. Take particular care with Concepts 43.2

More information

Effector Mechanisms of Humoral Immunity

Effector Mechanisms of Humoral Immunity Immunologie II für Naturwissenschaftler Effector Mechanisms of Humoral Immunity Beda M. Stadler Institute of Immunology Inselspital Bern, Switzerland http://www.immunology.unibe.ch/teaching/imm2/immuno2.htm

More information

B Cells and Antibodies

B Cells and Antibodies B Cells and Antibodies Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School Lecture outline Functions of antibodies B cell activation; the role of helper T cells in antibody production

More information

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies A Brief Review of Antibody Structure A Brief Review of Antibody Structure The basic antibody is a dimer of dimer (2 heavy chain-light chain pairs) composed of repeats of a single structural unit known

More information

Chapter 16: Innate Immunity

Chapter 16: Innate Immunity Chapter 16: Innate Immunity 1. Overview of Innate Immunity 2. Inflammation & Phagocytosis 3. Antimicrobial Substances 1. Overview of Innate Immunity The Body s Defenses The body has 2 types of defense

More information

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells. Virus and Immune System Review Directions: Write your answers on a separate piece of paper. 1. Why does a cut in the skin threaten the body s nonspecific defenses against disease? a. If a cut bleeds, disease-fighting

More information

Corso di Immunologia A.A. 2011-12. Immunoglobuline. Struttura e Funzione

Corso di Immunologia A.A. 2011-12. Immunoglobuline. Struttura e Funzione Corso di Immunologia A.A. 2011-12 Immunoglobuline Struttura e Funzione 1 Definitions Immunoglobulins (Ig) - Glycoprotein molecules which are produced by plasma cells in response to an immunogen and which

More information

Chapter 3. Immunity and how vaccines work

Chapter 3. Immunity and how vaccines work Chapter 3 Immunity and how vaccines work 3.1 Objectives: To understand and describe the immune system and how vaccines produce immunity To understand the differences between Passive and Active immunity

More information

2) Macrophages function to engulf and present antigen to other immune cells.

2) Macrophages function to engulf and present antigen to other immune cells. Immunology The immune system has specificity and memory. It specifically recognizes different antigens and has memory for these same antigens the next time they are encountered. The Cellular Components

More information

Immunology. Immunoglobulins: Structure and Function. Amit Bhattacharya Department of Zoology University of Delhi Delhi - 110007

Immunology. Immunoglobulins: Structure and Function. Amit Bhattacharya Department of Zoology University of Delhi Delhi - 110007 Immunology Immunoglobulins: Structure and Function Amit Bhattacharya Department of Zoology University of Delhi Delhi - 110007 Correspondence Address: H-3/ 56, Mahavir Enclave, Palam Dabri Road, New Delhi

More information

Chapter 5: Organization and Expression of Immunoglobulin Genes

Chapter 5: Organization and Expression of Immunoglobulin Genes Chapter 5: Organization and Expression of Immunoglobulin Genes I. Genetic Model Compatible with Ig Structure A. Two models for Ab structure diversity 1. Germ-line theory: maintained that the genome contributed

More information

The Body s Defenses CHAPTER 24

The Body s Defenses CHAPTER 24 CHAPTER 24 The Body s Defenses PowerPoint Lectures for Essential Biology, Third Edition Neil Campbell, Jane Reece, and Eric Simon Essential Biology with Physiology, Second Edition Neil Campbell, Jane Reece,

More information

Activation and effector functions of HMI

Activation and effector functions of HMI Activation and effector functions of HMI Hathairat Thananchai, DPhil Department of Microbiology Faculty of Medicine Chiang Mai University 25 August 2015 ว ตถ ประสงค หล งจากช วโมงบรรยายน แล วน กศ กษาสามารถ

More information

Grundlagen und Anwendung der Genom- und Proteomforschung

Grundlagen und Anwendung der Genom- und Proteomforschung Grundlagen und Anwendung der Genom- und Proteomforschung Profilmodul (Vorlesung/Seminar WS 2012/13) Philipps-Universität Marburg Fachbereich Biologie Professor Dr. Egon Amann & Dr. Frank Vitzthum Gastbeiträge

More information

CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES

CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES See APPENDIX: (3) OUCHTERLONY; (4) AFFINITY CHROMATOGRAPHY Human immunoglobulins are made up of LIGHT and HEAVY chains encoded by a total of

More information

Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer

Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer Name: Part A: Components of Blood 1. List the 3 plasma proteins and describe the function of each Albumins osmotic balance Globulins antibodies,

More information

Why use passive immunity?

Why use passive immunity? Vaccines Active vs Passive Immunization Active is longer acting and makes memory and effector cells Passive is shorter acting, no memory and no effector cells Both can be obtained through natural processes:

More information

high performance immunoassays Antibody Isotyping Guide

high performance immunoassays Antibody Isotyping Guide high performance immunoassays Antibody Isotyping Guide Table of Contents high performance immunoassays ebioscience is committed to developing and manufacturing highquality, innovative reagents in an ISO

More information

Analyzing antibody sequence for recombinant antibody expression. Hangxing Yu, Ph.D Senior Scientist, GenScript May 20, 2015

Analyzing antibody sequence for recombinant antibody expression. Hangxing Yu, Ph.D Senior Scientist, GenScript May 20, 2015 Analyzing antibody sequence for recombinant antibody expression Hangxing Yu, Ph.D Senior Scientist, GenScript May 20, 2015 Presentation Outline 1 2 3 4 Antibody basics, structure and function Antibody

More information

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense The Immune System 2 Types of Defense Mechanisms Immune System the system that fights infection by producing cells to inactivate foreign substances to avoid infection and disease. Immunity the body s ability

More information

One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types:

One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types: Immune system. One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types: (pathogen - disease causing organism) 1) Non specific. Anything foreign

More information

Lymph capillaries, Lymphatic collecting vessels, Valves, Lymph Duct, Lymph node, Vein

Lymph capillaries, Lymphatic collecting vessels, Valves, Lymph Duct, Lymph node, Vein WLHS/A&P/Oppelt Name Lymphatic System Practice 1. Figure 12-1 provides an overview of the lymphatic vessels. First color code the following structures. Color code in Figure 12-1 Heart Veins Lymphatic vessels/lymph

More information

Chapter 2 Antibodies. Contents. Introduction

Chapter 2 Antibodies. Contents. Introduction Chapter 2 Antibodies Keywords Immunohistochemistry Antibody labeling Fluorescence microscopy Fluorescent immunocytochemistry Fluorescent immunohistochemistry Indirect immunocytochemistry Immunostaining

More information

B Cells and Antibodies

B Cells and Antibodies LECTURE 3 B Cells and Antibodies REVIEW Let s quickly review the material we covered in the last lecture. We talked about the complement system of proteins, and how complement fragments can function as

More information

Chapter 18: Applications of Immunology

Chapter 18: Applications of Immunology Chapter 18: Applications of Immunology 1. Vaccinations 2. Monoclonal vs Polyclonal Ab 3. Diagnostic Immunology 1. Vaccinations What is Vaccination? A method of inducing artificial immunity by exposing

More information

Supplemental Material CBE Life Sciences Education. Su et al.

Supplemental Material CBE Life Sciences Education. Su et al. Supplemental Material CBE Life Sciences Education Su et al. APPENDIX Human Body's Immune System Test This test consists of 31 questions, with only 1 answer to be selected for each question. Please select

More information

Core Topic 2. The immune system and how vaccines work

Core Topic 2. The immune system and how vaccines work Core Topic 2 The immune system and how vaccines work Learning outcome To be able to describe in outline the immune system and how vaccines work in individuals and populations Learning objectives Explain

More information

Thought for the Day. Courage is not simply one of the virtues, but the form of every virtue at the testing point. ~ C. S. Lewis

Thought for the Day. Courage is not simply one of the virtues, but the form of every virtue at the testing point. ~ C. S. Lewis Thought for the Day Courage is not simply one of the virtues, but the form of every virtue at the testing point. ~ C. S. Lewis Anatomy & Physiology Bio 2401 Lecture Instructor: Daryl Beatty Section 2 Lecture

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Interpreting Sameness of Monoclonal Antibody Products Under the Orphan Drug Regulations U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation

More information

Unit 9: The Lymphatic and Immune Systems NURSING PHYSIOLOGY (NRSG237)

Unit 9: The Lymphatic and Immune Systems NURSING PHYSIOLOGY (NRSG237) Unit 9: The Lymphatic and Immune Systems Dr. Moattar Raza Rizvi NURSING PHYSIOLOGY (NRSG237) Functions: Transports Excess Interstitial Fluid Back to Bloodstream Lymphatic vessels collect lymph from loose

More information

Module 2: Antibodies and Antigens

Module 2: Antibodies and Antigens Module 2: Antibodies and Antigens Lecture 7: Antibodies and Antigens (part I) Antibodies may be defined as the proteins that recognize and neutralize any microbial toxin or foreign substance such as bacteria

More information

Hypersensitivity. TYPE I Hypersensitivity Classic allergy. Allergens. Characteristics of allergens. Allergens. Mediated by IgE attached to Mast cells.

Hypersensitivity. TYPE I Hypersensitivity Classic allergy. Allergens. Characteristics of allergens. Allergens. Mediated by IgE attached to Mast cells. Gel and Coombs classification of hypersensitivities. Hypersensitivity Robert Beatty Type I Type II Type III Type IV MCB150 IgE Mediated IgG/IgM Mediated IgG Mediated T cell Classic Allergy rbc lysis Immune

More information

T Cell Maturation,Activation and Differentiation

T Cell Maturation,Activation and Differentiation T Cell Maturation,Activation and Differentiation Positive Selection- In thymus, permits survival of only those T cells whose TCRs recognize self- MHC molecules (self-mhc restriction) Negative Selection-

More information

THE HUMORAL IMMUNE SYSTEM

THE HUMORAL IMMUNE SYSTEM MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel HUMORAL IMMUNOLOGY We are surrounded by a sea of microorganisms

More information

Immunology. B lymphocytes & Antibodies. 20.10.2014, Ruhr-Universität Bochum Marcus Peters, marcus.peters@rub.de

Immunology. B lymphocytes & Antibodies. 20.10.2014, Ruhr-Universität Bochum Marcus Peters, marcus.peters@rub.de Immunology B lymphocytes & Antibodies 20.10.2014, Ruhr-Universität Bochum Marcus Peters, marcus.peters@rub.de What is an antibody? An antibody is a glycoprotein, which specifically binds to a substance,

More information

Hapten - a small molecule that is antigenic but not (by itself) immunogenic.

Hapten - a small molecule that is antigenic but not (by itself) immunogenic. Chapter 3. Antigens Terminology: Antigen: Substances that can be recognized by the surface antibody (B cells) or by the TCR (T cells) when associated with MHC molecules Immunogenicity VS Antigenicity:

More information

Essentials of Anatomy and Physiology, 5e (Martini/Nath) Chapter 14 The Lymphoid System and Immunity. Multiple-Choice Questions

Essentials of Anatomy and Physiology, 5e (Martini/Nath) Chapter 14 The Lymphoid System and Immunity. Multiple-Choice Questions Essentials of Anatomy and Physiology, 5e (Martini/Nath) Chapter 14 The Lymphoid System and Immunity Multiple-Choice Questions 1) The lymphoid system is composed of A) lymphatic vessels. B) lymph nodes.

More information

Functions of Blood. Collects O 2 from lungs, nutrients from digestive tract, and waste products from tissues Helps maintain homeostasis

Functions of Blood. Collects O 2 from lungs, nutrients from digestive tract, and waste products from tissues Helps maintain homeostasis Blood Objectives Describe the functions of blood Describe blood plasma Explain the functions of red blood cells, white blood cells, and platelets Summarize the process of blood clotting What is Blood?

More information

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Immunity Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Everyone is born with innate (or natural) immunity, a type of general protection. Many of the germs that affect

More information

Overview of the Cattle Immune System 1

Overview of the Cattle Immune System 1 Oregon State University BEEF043 Beef Cattle Library Beef Cattle Sciences Overview of the Cattle Immune System 1 Reinaldo F. Cooke 2 Introduction On average, the U.S. cattle industry loses more than $1

More information

4 Antibodies IMMUNOGLOBULINS A FAMILY OF PROTEINS

4 Antibodies IMMUNOGLOBULINS A FAMILY OF PROTEINS 4 Antibodies Circulating antibodies recognize antigen in serum and tissue fluids. There are five classes of antibody IgG, IgA, IgM, IgD and IgE. Immunoglobulins have a basic unit of two light chains and

More information

FIGHTING AIDS AT THE GATE

FIGHTING AIDS AT THE GATE FIGHTING AIDS AT THE GATE T h e r a m p a n t s p r e a d o f H I V i n f e c t i o n a c r o s s t h e g l o b e i s n o l o n g e r t h e m e d i a c r i s i s o f t h e m o m e n t. B u t A I D S h

More information

Optimal Conditions for F(ab ) 2 Antibody Fragment Production from Mouse IgG2a

Optimal Conditions for F(ab ) 2 Antibody Fragment Production from Mouse IgG2a Optimal Conditions for F(ab ) 2 Antibody Fragment Production from Mouse IgG2a Ryan S. Stowers, 1 Jacqueline A. Callihan, 2 James D. Bryers 2 1 Department of Bioengineering, Clemson University, Clemson,

More information

CHAPTER 35 HUMAN IMMUNE SYSTEM STANDARDS:SC.912.L.14.52 & SC.912.L.14.6

CHAPTER 35 HUMAN IMMUNE SYSTEM STANDARDS:SC.912.L.14.52 & SC.912.L.14.6 CHAPTER 35 HUMAN IMMUNE SYSTEM STANDARDS:SC.912.L.14.52 & SC.912.L.14.6 SECTION 1 - Infectious Disease 1.Identify the causes of infectious disease. 2.Explain how infectious diseases are spread. Causes

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

ELISA BIO 110 Lab 1. Immunity and Disease

ELISA BIO 110 Lab 1. Immunity and Disease ELISA BIO 110 Lab 1 Immunity and Disease Introduction The principal role of the mammalian immune response is to contain infectious disease agents. This response is mediated by several cellular and molecular

More information

MHC (MAJOR HISTOCOMPATIBILITY COMPLEX)

MHC (MAJOR HISTOCOMPATIBILITY COMPLEX) MHC (MAJOR HISTOCOMPATIBILITY COMPLEX) MHC complex is group of genes on a single chromosome that codes the MHC antigens. Major as well as minor histocompatibility antigens (also called transplantation

More information

B Cell Generation, Activation & Differentiation. B cell maturation

B Cell Generation, Activation & Differentiation. B cell maturation B Cell Generation, Activation & Differentiation Naïve B cells- have not encountered Ag. Have IgM and IgD on cell surface : have same binding VDJ regions but different constant region leaves bone marrow

More information

Immunity and how vaccines work

Immunity and how vaccines work 1 Introduction Immunity is the ability of the human body to protect itself from infectious disease. The defence mechanisms of the body are complex and include innate (non-specific, non-adaptive) mechanisms

More information

Applications of Ab Molecules. Chapter 4 Monoclonal Ab (p.99) Chapter 5 Ab genes and Ab Engineering (p.128)

Applications of Ab Molecules. Chapter 4 Monoclonal Ab (p.99) Chapter 5 Ab genes and Ab Engineering (p.128) Applications of Ab Molecules Chapter 4 Monoclonal Ab (p.99) Chapter 5 Ab genes and Ab Engineering (p.128) Monoclonal Antibodies Clonal Selection of B Lymphocytes Hybridoma Köhler and Milsten (1975) - continuous

More information

Chapter 14: The Lymphatic System and Immunity

Chapter 14: The Lymphatic System and Immunity Chapter 14: The Lymphatic System and Immunity Major function of the Lymphatic System o Network of vessels that collect and carry excess fluid from interstitial spaces back to blood circulation o Organs

More information

Immune System Memory Game

Immune System Memory Game Immune System Memory Game Recommended Age: 12 years old Time: 45 minutes Everyday our bodies come in contact with millions of tiny organisms and particles that could potentially make us sick. Despite this,

More information

VPM 152. INFLAMMATION: Chemical Mediators

VPM 152. INFLAMMATION: Chemical Mediators General Pathology VPM 152 INFLAMMATION: Chemical Mediators CHEMICAL MEDIATORS OF INFLAMMATION Definition: any messenger that acts on blood vessels, inflammatory cells or other cells to contribute to an

More information

KEY CHAPTER 14: BLOOD OBJECTIVES. 1. Describe blood according to its tissue type and major functions.

KEY CHAPTER 14: BLOOD OBJECTIVES. 1. Describe blood according to its tissue type and major functions. KEY CHAPTER 14: BLOOD OBJECTIVES 1. Describe blood according to its tissue type and major functions. TISSUE TYPE? MAJOR FUNCTIONS connective Transport Maintenance of body temperature 2. Define the term

More information

MONOCLONAL ANTIBODY PRODUCTION

MONOCLONAL ANTIBODY PRODUCTION MONOCLONAL ANTIBODY PRODUCTION Antibodies having single specificity produced from a single clone of B cell are referred as Mono clonal antibodies (MAbs). In 1975, Georges Köhler and Cesar Milstein devised

More information

The Immune System and Disease

The Immune System and Disease Chapter 40 The Immune System and Disease Section 40 1 Infectious Disease (pages 1029 1033) This section describes the causes of disease and explains how infectious diseases are transmitted Introduction

More information

Figure 14.2 Overview of Innate and Adaptive Immunity

Figure 14.2 Overview of Innate and Adaptive Immunity I M M U N I T Y Innate (inborn) Immunity does not distinguish one pathogen from another Figure 14.2 Overview of Innate and Adaptive Immunity Our first line of defense includes physical and chemical barriers

More information

Principles of Vaccination

Principles of Vaccination Immunology and Vaccine-Preventable Diseases Immunology is a complicated subject, and a detailed discussion of it is beyond the scope of this text. However, an understanding of the basic function of the

More information

Blood Group Incompatibility

Blood Group Incompatibility Joyce Poole, International Blood Group Reference Laboratory, Bristol, UK Blood group antibodies present in plasma can bind with blood group antigens on red cells and cause a reaction (blood group incompatibility).

More information

Recognition of T cell epitopes (Abbas Chapter 6)

Recognition of T cell epitopes (Abbas Chapter 6) Recognition of T cell epitopes (Abbas Chapter 6) Functions of different APCs (Abbas Chapter 6)!!! Directon Routes of antigen entry (Abbas Chapter 6) Flow of Information Barrier APCs LNs Sequence of Events

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

The Human Immune System

The Human Immune System The Human Immune System What is the immune system? The body s defense against disease causing organisms, malfunctioning cells, and foreign particles The First Line of Defense Skin The dead, outer layer

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism.

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism. Central Dogma Final Review Section Week 10 DNA RNA Protein DNA DNA replication DNA RNA transcription RNA Protein translation **RNA DNA reverse transcription http://bass.bio.uci.edu/~hudel/bs99a/lecture20/lecture1_1.html

More information

A Web-Based Antibody Database Page1. A Web-Based Antibody Database. Thesis Proposal. For the degree of Master of Science in Computer Science

A Web-Based Antibody Database Page1. A Web-Based Antibody Database. Thesis Proposal. For the degree of Master of Science in Computer Science A Web-Based Antibody Database Page1 A Web-Based Antibody Database Thesis Proposal For the degree of Master of Science in Computer Science At Southern Connecticut State University Baorong Shi August 2003

More information

Unit Four. Human Anatomy & Physiology

Unit Four. Human Anatomy & Physiology Human Anatomy & Physiology 16 Lymphatic System URLs http://www.howstuffworks.com/immune-system.htm http://www.thebody.com/step/immune.html http://www.emc.maricopa.edu/faculty/farabee/biobk/ BioBookIMMUN.html

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

Custom Antibodies & Recombinant Proteins

Custom Antibodies & Recombinant Proteins Custom Antibodies & Recombinant Proteins INTRODUCTION Custom services to meet your research and development requirements Improvements in health, medicine and diagnostics over the past century can be largely

More information

Immune and Lymphatic Systems

Immune and Lymphatic Systems 1. All of the following organs actively FIGHT pathogens EXCEPT: a. Cervical lymph nodes b. Tonsils c. Spleen d. Thymus e. Axillary lymph nodes 2. T lymphocytes gain immunocompetence within the: a. Bone

More information

CHAPTER 8 IMMUNOLOGICAL IMPLICATIONS OF PEPTIDE CARBOHYDRATE MIMICRY

CHAPTER 8 IMMUNOLOGICAL IMPLICATIONS OF PEPTIDE CARBOHYDRATE MIMICRY CHAPTER 8 IMMUNOLOGICAL IMPLICATIONS OF PEPTIDE CARBOHYDRATE MIMICRY Immunological Implications of Peptide-Carbohydrate Mimicry 8.1 Introduction The two chemically dissimilar molecules, a peptide (12mer)

More information

IMMUNOLOGY. Done By: Banan Dabousi. Dr. Hassan Abu Al-Ragheb

IMMUNOLOGY. Done By: Banan Dabousi. Dr. Hassan Abu Al-Ragheb IMMUNOLOGY Done By: # 6 Dr. Hassan Abu Al-Ragheb Immunity lecture #6 #Functions of complement system: 1-opsonin. 2-lysis. 3- Production of inflammation. 4-chemotaxis. 5-clearance of immune complexes. 6-

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope Viruses Chapter 10: Viruses Lecture Exam #3 Wednesday, November 22 nd (This lecture WILL be on Exam #3) Dr. Amy Rogers Office Hours: MW 9-10 AM Too small to see with a light microscope Visible with electron

More information

Making the switch to a safer CAR-T cell therapy

Making the switch to a safer CAR-T cell therapy Making the switch to a safer CAR-T cell therapy HaemaLogiX 2015 Technical Journal Club May 24 th 2016 Christina Müller - chimeric antigen receptor = CAR - CAR T cells are generated by lentiviral transduction

More information

Chapter 6: Antigen-Antibody Interactions

Chapter 6: Antigen-Antibody Interactions Chapter 6: Antigen-Antibody Interactions I. Strength of Ag-Ab interactions A. Antibody Affinity - strength of total noncovalent interactions between single Ag-binding site on an Ab and a single epitope

More information

Review of the Cell and Its Organelles

Review of the Cell and Its Organelles Biology Learning Centre Review of the Cell and Its Organelles Tips for most effective learning of this material: Memorize the names and structures over several days. This will help you retain what you

More information

CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS

CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS See APPENDIX (1) THE PRECIPITIN CURVE; (2) LABELING OF ANTIBODIES The defining characteristic of HUMORAL immune responses (which distinguishes them from CELL-MEDIATED

More information

Ch. 8 - The Cell Membrane

Ch. 8 - The Cell Membrane Ch. 8 - The Cell Membrane 2007-2008 Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

Idiotypes. Introduction. Structure and Expression of Idiotypes. Advanced article

Idiotypes. Introduction. Structure and Expression of Idiotypes. Advanced article Aysegul Uner, Hacettepe University, Ankara, Turkey Jerrie Gavalchin, SUNY Upstate Medical University, Syracuse, New York, USA Idiotypes, the unique and characteristic determinants of an immunoglobulin

More information

1 The Immune System. j 5. 1.1 Introduction. 1.2 Host Defence Against Infection

1 The Immune System. j 5. 1.1 Introduction. 1.2 Host Defence Against Infection j 5 1 The Immune System 1.1 Introduction All living things animals, plants and even bacteria can act as hosts for infectious organisms and thus have evolved mechanisms to defend themselves against infection.

More information

Viral Infection: Receptors

Viral Infection: Receptors Viral Infection: Receptors Receptors: Identification of receptors has come from expressing the gene for the receptor in a cell to which a virus does not normally bind -OR- By blocking virus attachment

More information