# Assessing Measurement System Variation

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Assessing Measurement System Variation Example 1: Fuel Injector Nozzle Diameters Problem A manufacturer of fuel injector nozzles installs a new digital measuring system. Investigators want to determine how well the new system measures the nozzles. Data collection Technicians randomly sample, across all major sources of process variation (machine, time, shift, job change), 9 nozzles that represent those that are typically produced. They code the nozzles to identify the measurements taken on each nozzle. The first operator measures the 9 nozzles in random order. Then, the second operator measures the 9 nozzles in a different random order. Each operator repeats the process twice, for a total of 36 measurements. Note For valid measurement system analyses, you must randomly sample and measure parts. The specification for the nozzle diameters is 9012 ± 4 microns. The tolerance is 8 microns. Tools Gage R&R Study (Crossed) Data set Nozzle.MPJ Variable Nozzle Operator Run Order Diam Description Fuel injector nozzle measured Operator who measured Original run order of the experiment Measured diameter of nozzle (microns) Gage Studies for Continuous Data 3

2 Measurement systems analysis What is measurement systems analysis Measurement systems analysis assesses the adequacy of a measurement system for a given application. When measuring the output from a process, consider two sources of variation: Part-to-part variation Measurement system variation If measurement system variation is large compared to part-to-part variation, the measurements may not provide useful information. When to use measurement systems analysis Before you collect data from your process (for example, to analyze process control or capability), use measurement system analysis to confirm that the measurement system measures consistently and accurately, and adequately discriminates between parts. Why use measurement systems analysis Measurement systems analysis answers questions such as: Can the measurement system adequately discriminate between different parts? Is the measurement system stable over time? Is the measurement system accurate throughout the range of parts? For example: Can a viscometer adequately discriminate between the viscosity of several paint samples? Does a scale need to be periodically recalibrated to accurately measure the fill weight of bags of potato chips? Does a thermometer accurately measure the temperature for all heat settings that are used in the process? Gage Studies for Continuous Data 4

3 Gage R&R study (crossed) What is a gage R&R study (crossed) A crossed gage R&R study estimates how much total process variation is caused by the measurement system. Total process variation consists of part-to-part variation plus measurement system variation. Measurement system variation consists of: Repeatability variation due to the measuring device, or the variation observed when the same operator measures the same part repeatedly with the same device Reproducibility variation due to the measuring system, or the variation observed when different operators measure the same part using the same device When you estimate repeatability, each operator measures each part at least twice. When you estimate reproducibility, at least two operators must measure the parts. Operators measure the parts in random order, and the selected parts represent the possible range of measurements. When to use a gage R&R study (crossed) Use gage R&R to evaluate a measurement system before using it to monitor or improve a process. Use the crossed analysis when each operator measures each part (or batch, for a destructive test) multiple times. Why use a gage R&R study (crossed) This study compares measurement system variation to total process variation or tolerance. If the measurement system variation is large in proportion to total variation, the system may not adequately distinguish between parts. A crossed gage R&R study can answer questions such as: Is the variability of a measurement system small compared with the manufacturing process variability? Is the variability of a measurement system small compared with the process specification limits? How much variability in a measurement system is caused by differences between operators? Is a measurement system capable of discriminating between parts? For example: How much of the variability in the measured diameter of a bearing is caused by the caliper? How much of the variability in the measured diameter of a bearing is caused by the operator? Can the measurement system discriminate between bearings of different size? Gage Studies for Continuous Data 5

4 Measurement system error Measurement system errors can be classified into two categories: Accuracy the difference between the part s measured and actual value Precision the variation when the same part is measured repeatedly with the same device Errors of one or both of these categories may occur within any measurement system. For example, a device may measure parts precisely (little variation in the measurements) but not accurately. Or a device may be accurate (the average of the measurements is very close to the master value), but not precise (the measurements have large variance). Or a device may be neither accurate nor precise. Accuracy The accuracy of a measurement system has three components: Bias a measure of the inaccuracy in the measurement system; the difference between the observed average measurement and a master value Linearity a measure of how the size of the part affects the bias of the measurement system; the difference in the observed bias values through the expected range of measurements Stability a measure of how well the system performs over time; the total variation obtained with a particular device, on the same part, when measuring a single characteristic over time Precision Precision, or measurement variation, has two components: accurate and precise inaccurate but precise accurate but imprecise inaccurate and imprecise Repeatability variation due to the measuring device, or the variation observed when the same operator measures the same part repeatedly with the same device Reproducibility variation due to the measuring system, or the variation observed when different operators measure the same part using the same device Gage Studies for Continuous Data 6

5 Assessing the measurement system Use a Gage R&R study (crossed) to assess: How well the measuring system can distinguish between parts Whether the operators measure consistently Tolerance The specification limits for the nozzle diameters are 9012 ± 4 microns. In other words, the nozzle diameter is allowed to vary by as much as 4 microns in either direction. The tolerance is the difference between the specification limits: = 8 microns. Gage R&R Study (Crossed) 1. Open Nozzle.MPJ. 2. Choose Stat > Quality Tools > Gage Study > Gage R&R Study (Crossed). 3. Complete the dialog box as shown below. By entering a value in Process tolerance, you can estimate what proportion of the tolerance is taken up by the variation in the measurement system. 4. Click Options. 5. Under Process tolerance, choose Upper spec - Lower spec and type Check Draw graphs on separate graphs, one graph per page. 7. Click OK in each dialog box. Gage Studies for Continuous Data 7

6 Analysis of variance tables Minitab uses the analysis of variance (ANOVA) procedure to calculate variance components, and then uses those components to estimate the percent variation due to the measuring system. The percent variation appears in the gage R&R table. The two-way ANOVA table includes terms for the part (Nozzle), operator (Nozzle), and operator-by-part interaction (Nozzle*Operator). If the p-value for the operator-by-part interaction is 0.05, Minitab generates a second ANOVA table that omits the interaction term from the model. To alter the default Type I Gage R&R Study - ANOVA Method Two-Way ANOVA Table With Interaction Source DF SS MS F P Nozzle Operator Nozzle * Operator Repeatability Total α to remove interaction term = 0.05 Two-Way ANOVA Table Without Interaction Source DF SS MS F P Nozzle Operator error rate of 0.05, click Options in the main dialog box. In Repeatability Alpha to remove interaction term, type a new value (for Total example, 0.3). Here, the p-value for Nozzle*Operator is Therefore, Minitab removes the interaction term from the model and generates a second ANOVA table. Gage Studies for Continuous Data 8

7 Variance components Minitab also calculates a column of variance components (VarComp) and uses the values to calculate %Contribution with the ANOVA method. The variance components table breaks down the sources of total variability: Total Gage RR consists of: Repeatability the variability from repeated measurements by the same operator. Reproducibility the variability when the same part is measured by different operators. (This can be further divided into operator and operator-by-part components.) Part-To-Part the variability in measurements across different parts. Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R Repeatability Reproducibility Operator Part-To-Part Total Variation Why use variance components? Use variance components to assess the amount of variation that each source of measurement error and the part-to-part differences contribute to the total variation. Ideally, differences between parts should account for most of the variability; variability from repeatability and reproducibility should be very small. Gage Studies for Continuous Data 9

8 Percent contribution %Contribution is based on the estimates of the variance components. Each value in VarComp is divided by the Total Variation, and then multiplied by 100. For example, to calculate the %Contribution for Part-to-Part, divide the VarComp for Part-to-Part by the Total Variation and multiply by 100: ( / ) * Therefore, 99.2% of the total variation in the measurements is due to the differences between parts. This high %Contribution is considered very good. When %Contribution for Part-to-Part is high, the system can distinguish between parts. Using variance versus standard deviation Because %Contribution is based on the total variance, the column of values adds up to 100%. Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R Repeatability Reproducibility Operator Part-To-Part Total Variation Process tolerance = 8 Study Var %Study Var %Tolerance Source StdDev (SD) (6 * SD) (%SV) (SV/Toler) Total Gage R&R Repeatability Reproducibility Operator Part-To-Part Total Variation Number of Distinct Categories = 15 Minitab also displays columns with percentages based on the standard deviation (or square root of variance) of each term. These columns, labeled %StudyVar and %Tolerance, typically do not add up to 100%. Because the standard deviation uses the same units as the part measurements and the tolerance, it allows for meaningful comparisons. Note Minitab displays the column %Process if you enter a historical standard deviation in Options. Gage Studies for Continuous Data 10

9 Percent study variation Use %StudyVar to compare the measurement system variation to the total variation. Minitab calculates %StudyVar by dividing each value in StudyVar by Total Variation and then multiplying by 100. %StudyVar for gage R&R is ( / ) * %. Gage R&R Study Var %Study Var %Tolerance Source StdDev (SD) (6 * SD) (%SV) (SV/Toler) Total Gage R&R Repeatability Reproducibility Operator Part-To-Part Total Variation Number of Distinct Categories = 15 Minitab calculates StudyVar as 6 times the standard deviation for each source. 6s process variation Typically, process variation is defined as 6s, where s is the standard deviation, as an estimate of σ. When data are normally distributed, approximately 99.73% of the data fall within 6 standard deviations (± 3 standard deviations from the mean), and approximately 99% of the data fall within 5.15 standard deviations (± standard deviations from the mean). Note The Automotive Industry Action Group (AIAG) recommends the use of 6s in gage R&R studies. Gage Studies for Continuous Data 11

10 Percent tolerance Comparing the measurement system variation with the tolerance is often informative. If you enter the tolerance, Minitab calculates %Tolerance, which compares measurement system variation to specifications. %Tolerance is the percentage of the tolerance taken up by the measurement system variability. Minitab divides the measurement system variation (6*SD for Total Gage R&R) by the tolerance. Minitab multiplies the resulting proportion by 100 and reports it as %Tolerance. Gage R&R Study Var %Study Var %Tolerance Source StdDev (SD) (6 * SD) (%SV) (SV/Toler) Total Gage R&R Repeatability Reproducibility Operator Part-To-Part Total Variation Number of Distinct Categories = 15 %Tolerance for gage R&R is: ( /8) * % Which metric to use Use %Tolerance or %StudyVar to evaluate the measuring system, depending on the measuring system. If the measurement system is used for process improvement (reducing part-to-part variation), %StudyVar is a better estimate of measurement precision. If the measurement system evaluates parts relative to specifications, %Tolerance is a more appropriate metric. Gage Studies for Continuous Data 12

11 Total Gage R&R The %Study Var results indicate that the measurement system accounts for less than 10% of the overall variation in this study. The %Tolerance results indicate that the measurement system variation is less than 10% of the tolerance width. Total Gage R&R: %Study Var 8.97 %Tolerance 8.10 Remember that Minitab uses different divisors to calculate %Tolerance and %Study Var. Because the range for tolerance (8) is greater than the total study variation ( ) in this example, the %Tolerance is lower. Gage R&R Study Var %Study Var %Tolerance Source StdDev (SD) (6 * SD) (%SV) (SV/Toler) Total Gage R&R Repeatability Reproducibility Operator Part-To-Part Total Variation Number of Distinct Categories = 15 Gage Studies for Continuous Data 13

12 Number of distinct categories The Number of Distinct Categories value estimates how many separate groups of parts the system can distinguish. Minitab calculates the number of distinct categories that can be reliably observed by: S part S measuring system 2 Minitab truncates this value to the integer except when the value calculated is less than 1. In that case, Minitab sets the number of distinct categories equal to 1. Number of categories Means Here, the number of distinct categories is 15, which indicates the system can distinguish between parts extremely well. Note The AIAG recommends that the number of distinct categories be 5 or more. See [1] in the reference list. Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R Repeatability Reproducibility Operator Part-To-Part Total Variation Process tolerance = 8 Study Var %Study Var %Tolerance Source StdDev (SD) (6 * SD) (%SV) (SV/Toler) Total Gage R&R < 2 The system cannot discriminate between Repeatability parts. Reproducibility Operator Part-To-Part = 2 Parts can be divided into high and low Total Variation groups, as in attributes data. 5 The system is acceptable (according to the AIAG) and can distinguish between parts. Number of Distinct Categories = 15 Gage Studies for Continuous Data 14

13 Components of variation The Components of Variation chart graphically represents the gage R&R table in the Session window output. Note In the Options subdialog box, you can choose to display these graphs on separate pages. Each cluster of bars represents a source of variation. By default, each cluster has two bars that correspond to %Contribution and %StudyVar. If you add a tolerance or historical standard deviation, a bar for %Tolerance or %Process appears. In a good measurement system, the largest component of variation is part-to-part variation. If, instead, large variation is attributed to the measurement system, the measurement system may need correcting. For the nozzle data, the difference in parts accounts for most of the variation. Note For the %Study, %Process, and %Tolerance measures, the Repeat and Reprod bars may not add up to the Gage R&R bar because these percentages are based on standard deviations, not on variances. Gage Studies for Continuous Data 15

14 R chart The R chart is a control chart of ranges that graphically displays operator consistency. An R chart consists of: Plotted points, which represent, for each operator, the difference between the largest and smallest measurements of each part. If the measurements are the same, the range = 0. Minitab plots the points by operator so that you can compare the consistency of each operator. Center line, which is the grand average of the ranges (the average of all the subgroup ranges). Control limits (UCL and LCL) for the subgroup ranges. Minitab uses the within-subgroup variation to calculate these limits. If any points on the R-chart fall above the upper control limit (UCL), the operator is not consistently measuring the parts. The UCL takes into account the number of times each operator measures a part. If operators measure consistently, the ranges are small relative to the data and the points fall within the control limits. Note Minitab displays an R chart when the number of replicates is less than 9; otherwise, Minitab displays an S chart. Gage Studies for Continuous Data 16

15 Xbar chart The Xbar chart compares the part-to-part variation to the repeatability component. The Xbar chart consists of: Plotted points, which represent, for each operator, the average measurement of each part. Center line, which is the overall average for all part measurements by all operators. Control limits (UCL and LCL), which are based on the number of measurements in each average and the repeatability estimate. Because the parts chosen for a Gage R&R study should represent the entire range of possible parts, this graph ideally shows lack-of-control. It is desirable to observe more variation between part averages than what is expected from repeatability variation alone. For these data, many points are above or below the control limits. These results indicate that part-to-part variation is much greater than measurement device variation. Gage Studies for Continuous Data 17

16 Operator by part interaction The Nozzle*Nozzle Interaction plot displays the average measurements by each operator for each part. Each line connects the averages for a single operator. Ideally, the lines are virtually identical and the part averages vary enough so that differences between parts are clear. This pattern Lines are virtually identical. One line is consistently higher or lower than the others. Lines are not parallel, or they cross. Indicates Operators are measuring the parts similarly. One operator is measuring parts consistently higher or lower than the other operators. An operator s ability to measure a part depends on which part is being measured (an interaction exists between Operator and Part). Here, the lines follow one another closely, and the differences between parts are clear. The operators seem to be measuring parts similarly. Note From the ANOVA table on page8, the p-value for the interaction is 0.707, which indicates that the interaction is not significant at the α = 0.05 level. Gage Studies for Continuous Data 18

17 Measurements by operator The By Operator plot can help you to determine whether measurements and variability are consistent across operators. Here, the operators appear to be measuring the parts consistently, with approximately the same variation. The By Operator graph shows all of the study measurements, arranged by operator. When there are nine or fewer measurements for each operator, dots represent the measurements. When there are more than nine measurements for each operator, Minitab displays a boxplot. For both types of graphs, black circles represent the means, and a line connects them. If the line is Parallel to the x-axis Not parallel to the x-axis Then The operators are measuring the parts similarly, on average. The operators are measuring the parts differently, on average. Also use this graph to assess whether the overall variability in part measurements for each operator is the same: Is the spread in the measurements similar? Do one operator s measures vary more than the others? Gage Studies for Continuous Data 19

18 Measurements by part The By Nozzle plot shows all of the measurements in the study arranged by part. Minitab represents the measurements by empty circles and the means by solid circles. The line connects the average measurements for each part. Ideally: Multiple measurements for each part show little variation (the empty circles for each part are close together). Averages vary enough so that differences between parts are clear. Gage Studies for Continuous Data 20

19 Final considerations Summary and conclusions The nozzle measuring system contributes very little to the overall variation, as confirmed by both the gage R&R table and graphs. Additional considerations Gage R&R (crossed) studies, like other measurement systems analysis (MSA) procedures, are designed experiments. For valid results, randomization and representative sampling are essential. The variation that is due to the measuring system, either as a percent of study variation or as a percent of tolerance, is less than 10%. According to AIAG guidelines, this system is acceptable. Gage Studies for Continuous Data 21

### Gage Studies for Continuous Data

1 Gage Studies for Continuous Data Objectives Determine the adequacy of measurement systems. Calculate statistics to assess the linearity and bias of a measurement system. 1-1 Contents Contents Examples

### Applications of Gauge Reproducibility and Repeatability (GR&R) in Final Finish Tire Testing

Applications of Gauge Reproducibility and Repeatability (GR&R) in Final Finish Tire Testing Shaun M. Immel, Ph.D., P.E. Measurement Process Consistency One particular tool used in the industry for many

### Measurement Systems Analysis MSA for Suppliers

Measurement Systems Analysis MSA for Suppliers Copyright 2003-2007 Raytheon Company. All rights reserved. R6σ is a Raytheon trademark registered in the United States and Europe. Raytheon Six Sigma is a

### Statistical Process Control (SPC) Training Guide

Statistical Process Control (SPC) Training Guide Rev X05, 09/2013 What is data? Data is factual information (as measurements or statistics) used as a basic for reasoning, discussion or calculation. (Merriam-Webster

### EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis

### Lean Six Sigma Training/Certification Book: Volume 1

Lean Six Sigma Training/Certification Book: Volume 1 Six Sigma Quality: Concepts & Cases Volume I (Statistical Tools in Six Sigma DMAIC process with MINITAB Applications Chapter 1 Introduction to Six Sigma,

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### Instruction Manual for SPC for MS Excel V3.0

Frequency Business Process Improvement 281-304-9504 20314 Lakeland Falls www.spcforexcel.com Cypress, TX 77433 Instruction Manual for SPC for MS Excel V3.0 35 30 25 LSL=60 Nominal=70 Capability Analysis

### Analysis of Variance. MINITAB User s Guide 2 3-1

3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

### Confidence Intervals for Cp

Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process

### HOW TO USE MINITAB: INTRODUCTION AND BASICS. Noelle M. Richard 08/27/14

HOW TO USE MINITAB: INTRODUCTION AND BASICS 1 Noelle M. Richard 08/27/14 CONTENTS * Click on the links to jump to that page in the presentation. * 1. Minitab Environment 2. Uploading Data to Minitab/Saving

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### NCSS Statistical Software

Chapter 155 Introduction graphically display tables of means (or medians) and variability. Following are examples of the types of charts produced by this procedure. The error bars may represent the standard

### Scatter Plots with Error Bars

Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each

Table of Contents Introduction to Minitab...2 Example 1 One-Way ANOVA...3 Determining Sample Size in One-way ANOVA...8 Example 2 Two-factor Factorial Design...9 Example 3: Randomized Complete Block Design...14

### Main Effects and Interactions

Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly

### One-Sample t-test. Example 1: Mortgage Process Time. Problem. Data set. Data collection. Tools

One-Sample t-test Example 1: Mortgage Process Time Problem A faster loan processing time produces higher productivity and greater customer satisfaction. A financial services institution wants to establish

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Minitab Guide. This packet contains: A Friendly Guide to Minitab. Minitab Step-By-Step

Minitab Guide This packet contains: A Friendly Guide to Minitab An introduction to Minitab; including basic Minitab functions, how to create sets of data, and how to create and edit graphs of different

### Appendix 2.1 Tabular and Graphical Methods Using Excel

Appendix 2.1 Tabular and Graphical Methods Using Excel 1 Appendix 2.1 Tabular and Graphical Methods Using Excel The instructions in this section begin by describing the entry of data into an Excel spreadsheet.

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:

Doing Multiple Regression with SPSS Multiple Regression for Data Already in Data Editor Next we want to specify a multiple regression analysis for these data. The menu bar for SPSS offers several options:

### Consider a study in which. How many subjects? The importance of sample size calculations. An insignificant effect: two possibilities.

Consider a study in which How many subjects? The importance of sample size calculations Office of Research Protections Brown Bag Series KB Boomer, Ph.D. Director, boomer@stat.psu.edu A researcher conducts

### 12: Analysis of Variance. Introduction

1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

### 1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### Extended control charts

Extended control charts The control chart types listed below are recommended as alternative and additional tools to the Shewhart control charts. When compared with classical charts, they have some advantages

### Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

### Confidence Intervals for Cpk

Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

### SPSS for Exploratory Data Analysis Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav)

Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav) Organize and Display One Quantitative Variable (Descriptive Statistics, Boxplot & Histogram) 1. Move the mouse pointer

### Measurement System Analysis for Quality Improvement. U sing Gage R&R Study at Company XYZ. Bodin Singpai. A Research Paper

Measurement System Analysis for Quality Improvement U sing Gage R&R Study at Company XYZ By Bodin Singpai A Research Paper Submitted in Partial Fulfillment of the Requirements for the Master of Science

### Using SPSS 20, Handout 3: Producing graphs:

Research Skills 1: Using SPSS 20: Handout 3, Producing graphs: Page 1: Using SPSS 20, Handout 3: Producing graphs: In this handout I'm going to show you how to use SPSS to produce various types of graph.

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### SECTION 2-1: OVERVIEW SECTION 2-2: FREQUENCY DISTRIBUTIONS

SECTION 2-1: OVERVIEW Chapter 2 Describing, Exploring and Comparing Data 19 In this chapter, we will use the capabilities of Excel to help us look more carefully at sets of data. We can do this by re-organizing

### HOW TO USE MINITAB: QUALITY CONTROL

HOW TO USE MINITAB: QUALITY CONTROL 1 Noelle M. Richard 08/27/14 INTRODUCTION * Click on the links to jump to that page in the presentation. * Two Major Components: 1. Control Charts Used to monitor a

### Introduction to Minitab

Minitab Laboratory Introduction to Minitab OVERVIEW In this lab, you will become familiar with the general features of Minitab statistical analysis software, as well as some specialized features for conducting

### Variables Control Charts

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables

### Guide for SPSS for Windows

Guide for SPSS for Windows Index Table Open an existing data file Open a new data sheet Enter or change data value Name a variable Label variables and data values Enter a categorical data Delete a record

### Shewhart control charts

Shewhart control charts Menu: QC.Expert Control charts Control charts are constructed to decide whether a process is under statistical control and to monitor any departures from this state. This means

### SPC Response Variable

SPC Response Variable This procedure creates control charts for data in the form of continuous variables. Such charts are widely used to monitor manufacturing processes, where the data often represent

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Two-Way ANOVA with Post Tests 1

Version 4.0 Step-by-Step Examples Two-Way ANOVA with Post Tests 1 Two-way analysis of variance may be used to examine the effects of two variables (factors), both individually and together, on an experimental

### Process Capability Analysis Using MINITAB (I)

Process Capability Analysis Using MINITAB (I) By Keith M. Bower, M.S. Abstract The use of capability indices such as C p, C pk, and Sigma values is widespread in industry. It is important to emphasize

### Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

### Full Factorial Design of Experiments

Full Factorial Design of Experiments 0 Module Objectives Module Objectives By the end of this module, the participant will: Generate a full factorial design Look for factor interactions Develop coded orthogonal

### Confidence Intervals for One Standard Deviation Using Standard Deviation

Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

### Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

### Using Minitab for Regression Analysis: An extended example

Using Minitab for Regression Analysis: An extended example The following example uses data from another text on fertilizer application and crop yield, and is intended to show how Minitab can be used to

### Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

### Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS. Dan Flynn

Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS Dan Flynn Just as t-tests are useful for asking whether the means of two groups are different, analysis of variance

### Drawing a histogram using Excel

Drawing a histogram using Excel STEP 1: Examine the data to decide how many class intervals you need and what the class boundaries should be. (In an assignment you may be told what class boundaries to

### THE OPEN SOURCE SOFTWARE R IN THE STATISTICAL QUALITY CONTROL

1. Miriam ANDREJIOVÁ, 2. Zuzana KIMÁKOVÁ THE OPEN SOURCE SOFTWARE R IN THE STATISTICAL QUALITY CONTROL 1,2 TECHNICAL UNIVERSITY IN KOŠICE, FACULTY OF MECHANICAL ENGINEERING, KOŠICE, DEPARTMENT OF APPLIED

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

### Chapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures- Graphs are used to describe the shape of a data set.

Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures- Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can

### NCSS Statistical Software. X-bar and s Charts

Chapter 243 Introduction This procedure generates X-bar and s (standard deviation) control charts for variables. The format of the control charts is fully customizable. The data for the subgroups can be

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### SPSS Manual for Introductory Applied Statistics: A Variable Approach

SPSS Manual for Introductory Applied Statistics: A Variable Approach John Gabrosek Department of Statistics Grand Valley State University Allendale, MI USA August 2013 2 Copyright 2013 John Gabrosek. All

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### Lecture - 32 Regression Modelling Using SPSS

Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 32 Regression Modelling Using SPSS (Refer

### WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat

Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise

### THE PROCESS CAPABILITY ANALYSIS - A TOOL FOR PROCESS PERFORMANCE MEASURES AND METRICS - A CASE STUDY

International Journal for Quality Research 8(3) 399-416 ISSN 1800-6450 Yerriswamy Wooluru 1 Swamy D.R. P. Nagesh THE PROCESS CAPABILITY ANALYSIS - A TOOL FOR PROCESS PERFORMANCE MEASURES AND METRICS -

### Figure 1: Saving Project

VISAN Introduction............................... 1 Data Visualization........................... 4 Classification.............................. 7 LDF and QDF.......................... 7 Neural Networks.........................

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### SAS / INSIGHT. ShortCourse Handout

SAS / INSIGHT ShortCourse Handout February 2005 Copyright 2005 Heide Mansouri, Technology Support, Texas Tech University. ALL RIGHTS RESERVED. Members of Texas Tech University or Texas Tech Health Sciences

### Sampling, frequency distribution, graphs, measures of central tendency, measures of dispersion

Statistics Basics Sampling, frequency distribution, graphs, measures of central tendency, measures of dispersion Part 1: Sampling, Frequency Distributions, and Graphs The method of collecting, organizing,

### Chapter 2: Frequency Distributions and Graphs

Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct

### Gestation Period as a function of Lifespan

This document will show a number of tricks that can be done in Minitab to make attractive graphs. We work first with the file X:\SOR\24\M\ANIMALS.MTP. This first picture was obtained through Graph Plot.

### Using Excel for descriptive statistics

FACT SHEET Using Excel for descriptive statistics Introduction Biologists no longer routinely plot graphs by hand or rely on calculators to carry out difficult and tedious statistical calculations. These

### SPSS/Excel Workshop 3 Summer Semester, 2010

SPSS/Excel Workshop 3 Summer Semester, 2010 In Assignment 3 of STATS 10x you may want to use Excel to perform some calculations in Questions 1 and 2 such as: finding P-values finding t-multipliers and/or

### Understanding Process Capability Indices

Understanding Process Capability Indices Stefan Steiner, Bovas Abraham and Jock MacKay Institute for Improvement of Quality and Productivity Department of Statistics and Actuarial Science University of

### When to use Excel. When NOT to use Excel 9/24/2014

Analyzing Quantitative Assessment Data with Excel October 2, 2014 Jeremy Penn, Ph.D. Director When to use Excel You want to quickly summarize or analyze your assessment data You want to create basic visual

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### Using Excel in Research. Hui Bian Office for Faculty Excellence

Using Excel in Research Hui Bian Office for Faculty Excellence Data entry in Excel Directly type information into the cells Enter data using Form Command: File > Options 2 Data entry in Excel Tool bar:

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### Use Excel to Analyse Data. Use Excel to Analyse Data

Introduction This workbook accompanies the computer skills training workshop. The trainer will demonstrate each skill and refer you to the relevant page at the appropriate time. This workbook can also

### MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

### Statistics and research

Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,

### Using MS Excel to Analyze Data: A Tutorial

Using MS Excel to Analyze Data: A Tutorial Various data analysis tools are available and some of them are free. Because using data to improve assessment and instruction primarily involves descriptive and

### 8. Comparing Means Using One Way ANOVA

8. Comparing Means Using One Way ANOVA Objectives Calculate a one-way analysis of variance Run various multiple comparisons Calculate measures of effect size A One Way ANOVA is an analysis of variance

### Using SPSS, Chapter 2: Descriptive Statistics

1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,

### Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### IBM SPSS Direct Marketing 23

IBM SPSS Direct Marketing 23 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 23, release

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### Northumberland Knowledge

Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

### Setting Specifications

Setting Specifications Statistical considerations Enda Moran Senior Director, Development, Pfizer Melvyn Perry Manager, Statistics, Pfizer Basic Statisticsti ti Population distribution 1.5 (usually unknown).

### PASW (SPSS)/Excel Workshop 3 Semester Two, 2010

PASW (SPSS)/Excel Workshop 3 Semester Two, 2010 In Assignment 3 of STATS 10x you may want to use Excel to perform some calculations in Questions 1 and 2 such as: finding P-values finding t-multipliers

### 14 How to present your data analysis in graphs

14 How to present your data analysis in graphs In the final section of this course, you will learn how to present your data to a standard suitable for publication in a scientific journal (or your thesis

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### IBM SPSS Direct Marketing 22

IBM SPSS Direct Marketing 22 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 22, release

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### An Honest Gauge R&R Study

006 ASQ/ASA Fall Technical Conference Manuscript No. 189 An Honest Gauge R&R Study Donald J. Wheeler January 009 Revision In a 1994 paper Stanley Deming reported that when he did his literature search

### Control Charts for Variables. Control Chart for X and R

Control Charts for Variables X-R, X-S charts, non-random patterns, process capability estimation. 1 Control Chart for X and R Often, there are two things that might go wrong in a process; its mean or its

Basic Data Analysis Using JMP in Windows Table of Contents: I. Getting Started with JMP II. Entering Data in JMP III. Saving JMP Data file IV. Opening an Existing Data File V. Transforming and Manipulating