A STUDY OF THE ORBITAL DYNAMICS OF THE ASTEROID 2001 SN263.


 Martin Joseph
 2 years ago
 Views:
Transcription
1 O.C.Winter,2, R.A.N.Araujo, A.F.B.A.Prado, A.Sukhanov INPE National Institute for Space Research, São José dos Campos,Brazil. 2 Sao Paulo State University, Guaratinguetá, Brazil. Abstract: The asteroid 200SN263 was revealed in February 2008 as the first known nearearth triple asteroidal system []. Using preliminary information about the orbit and the physical composition of such asteroid [2], we have performed numerical integrations in order to study the orbital dynamics of the system, and the effects of the gravitational perturbations of the planets Mars, Earth and Jupiter on such system. We discuss the evolution of each body when only the three asteroids are considered (mutual perturbation), and the effects due to Jupiter and Mars, and also due closeapproaches between the triple asteroid and the Earth. Then, we consider a system composed by seven bodies: Sun, triple asteroid system, Mars, Earth and Jupiter, in order to analyze the perturbation on the triple system of asteroids. Keywords: asteroids, triple system, 200 SN263.. INTRODUCTION In the present work we deal with the Near Earth triple asteroid system named 200SN263. Composed by 3 asteroids, here called A (central body), A 2 and A 3 (satellites). See Table for orbital and physical details of the bodies. The orbit of this system cross the orbit of Mars and approach the orbit of the Earth. It belongs to the class Amor. The goal of the work is to study the orbital dynamics of the triple system 200 SN263 and the effects of the gravitational perturbations of the planets Mars, Earth and Jupiter on such system. The methodology adopted here is the numerical integration of the Nbody problems. We used the Gauss Radau integrator [3] with time of integration of 00,000 years. Table  Physical and Orbital datas. Asteroid Orbits a e I Period Radius Mass 2 A Sun.99 UA º ~ 2.8 years.4 km A 2 A 7 km * * ~ 47 hours 0.5 km A 3 A 4 km * * ~ 46 hours 0.2 km M 3 =.5x0 kg 2 2 M 7.9x0 M 3 3 M 5.7x0 M * Not determined yet. Nolan, M.C. [4] 2 Calculated for density equal to.0 g/cm 3. Estimated to be between.3±0.6 g/cm 3 [2] 2. RESULTS The results are divided according to the dynamical system considered in the simulation and they are presented in terms of the time evolution of the orbital elements. Results from the integrations considering only the three asteroids are presented in Figures to 6. We analyze the variation of the orbital elements of the satellites A 2 and A 3 with respect to A, due to their mutual perturbation. Serra Negra, SP  ISSN
2 O.C.Winter, R.A.N.Araujo, A.F.B.A.Prado, A.Sukhanov Fig. : A 2 Variation of about 0.9 km in the semimajor axis due to its gravitational interaction with the other bodies. Fig. 2: A 3  Variation of about 0.02 km in the semimajor axis due to its gravitational interaction with the other bodies. Fig. 3: A 2  Variation of about 0.06 in the eccentricity due to its gravitational interaction with the other bodies. Fig. 4: A 3  Variation of about 0.02 in the eccentricity due to its gravitational interaction with the other bodies. In short period its possible to see a periodic variation. Fig. 5a: The argument of pericentre of A 2 is circulating, but in short period we see it librating. Fig. 5b: In long period the argument of pericentre of A 3 is circulating. In short period we see it also librating. Fig. 6: Inclination of A 2 and A 3. The mutual perturbation between the bodies causes no significant variation on their inclinations. 2 Serra Negra, SP  ISSN
3 Following we present the results from the individual perturbations due to Sun,Earth, Mars and Jupiter. The semimajor axis and the eccentricity of A, and of the satellites do not present significant variation when the Sun, or the planets Earth, Mars are separately included in the system. The inclinations of A 2 and A 3 present a variation with amplitude of about 4 degrees when the Sun is considered. The planets Earth and Mars do not change these orbital elements. The planet Jupiter causes variation in the semimajor axis, eccentricity and inclination of A (Fig.7), but it does not affect the orbits of A 2 and A 3. Fig 7 Variation in the semimajor axis, eccentricity and inclination of A due to the influence of Jupiter. Fig 8: Variation in the semimajor axis (AU) of A when the Sun and the planets Mars, Earth and Jupiter are considered. The two major jumps in semimajor axis correspond to encounters with the Earth, as shown on graphs on the right. They show the distance A Earth. The green circle points out the closest encounters. 3 Serra Negra, SP  ISSN
4 O.C.Winter, R.A.N.Araujo, A.F.B.A.Prado, A.Sukhanov Fig. 9: Variation in the eccentricity, inclination, argument of pericentre and longitude of ascending node of the A due perturbation of Earth, Mars and Jupiter. The semimajor axis of A 2 suffers a small variation at t~3490yrs and t~3690yrs. The semimajor axis of A 2 suffers a more significant variation when t>70000yrs (see Fig.0(a)). In a appropriate scale of time, we see that there were two significant variations, at t~74380yrs and t~74900yrs (Fig.0b). Taking a look at Figure 8 we see that they correspond to moments for which close encounters with the Earth happen. The same behavior is observed on the variation of the semimajor of the A3, due to the encounters with the Earth. Fig. 0: Variation in the semimajor axis of A 2 due to the close encounter with the Earth 4 Serra Negra, SP  ISSN
5 3. CONCLUSION We conclude that for a period of 00,000 years: a) When the planets are considered separately : i) The planet Mars and Earth have no significant influence. ii) The planet Jupiter changes the orbit of A, but do not influence the orbits of the satellites A 2 and A 3. b) When we consider a system composed by the three asteroids, the Sun, and the planets Earth, Mars and Jupiter together: The planet Earth influences the system in close encounters, especially in two moments, which change the orbital elements of the satellites as shown in Table 2. REFERENCES [] Nolan, M.C. et al., Arecibo radar imaging of 200 SN263: a nearearth triple asteroid system. Asteroids, Comets, Meteors, nº 8258, [2] Becker, T. Howell, E.S., Nolan, M.C., Magri, C. Physical Modeling of Triple NearEarth Asteroid 5359 (200 SN263). American Astronomical Society, DPS meeting #40, #28.06; Bulletin of the American Astronomical Society, Vol. 40, p.437 [3] Everhart, E. An efficient integrator that uses Gauss Radau spacings. In Dynamics of comets: Their origin and evolution, Eds. A. Carusi Carusi and G. B. Valsecchi, D. Reidel Publishing Company (Holanda), p , 985. [4] Nolan, Presentation in the Astronomical Institute of the Academy of Science of the Czech Republic. [5] http: //ssd.jpl.nasa.gov/?orbits 5 Serra Negra, SP  ISSN
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
More informationNewton s Law of Gravity
Newton s Law of Gravity Example 4: What is this persons weight on Earth? Earth s mass = 5.98 10 24 kg Mar s mass = 6.4191 10 23 kg Mar s radius = 3400 km Earth s radius = 6378 km Newton s Form of Kepler
More informationPlanetary Defense! Space System Design, MAE 342, Princeton University! Robert Stengel
Planetary Defense! Space System Design, MAE 342, Princeton University! Robert Stengel!! Asteroids and Comets!! Spacecraft!! Detection, Impact Prediction, and Warning!! Options for Minimizing the Hazard!!
More informationSolar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System
Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!
More informationPlanetary Orbit Simulator Student Guide
Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.
More informationSolar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earthcentered
More information1 The Nine Planets. What are the parts of our solar system? When were the planets discovered? How do astronomers measure large distances?
CHAPTER 4 1 The Nine Planets SECTION A Family of Planets BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the parts of our solar system? When were the
More informationUse the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
More informationA.4 The Solar System Scale Model
CHAPTER A. LABORATORY EXPERIMENTS 25 Name: Section: Date: A.4 The Solar System Scale Model I. Introduction Our solar system is inhabited by a variety of objects, ranging from a small rocky asteroid only
More informationVocabulary  Understanding Revolution in. our Solar System
Vocabulary  Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar
More informationThe orbit of Halley s Comet
The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What
More informationNames of Group Members:
Names of Group Members: Using telescopes and spacecraft, astronomers can collect information from objects too big or too far away to test and study in a lab. This is fortunate, because it turns out that
More informationLESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy
LESSON 3 THE SOLAR SYSTEM Chapter 8, Astronomy OBJECTIVES Identify planets by observing their movement against background stars. Explain that the solar system consists of many bodies held together by gravity.
More informationastronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.
1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,
More informationExtrasolar massive planets with small semimajor axes?
Monografías de la Real Academia de Ciencias de Zaragoza. 25: 115 120, (2004). Extrasolar massive planets with small semimajor axes? S. Fernández, D. Giuliodori and M. A. Nicotra Observatorio Astronómico.
More informationDynamics of Celestial Bodies, 103107 PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY
Dynamics of Celestial Bodies, 103107 Contributed paper PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY J. DUFEY 1, N. RAMBAUX 1,2, B. NOYELLES 1,2 and A. LEMAITRE 1 1 University of Namur, Rempart de
More informationInterannual Variability of the Solar Constant
ISSN 38946, Solar System Research, 212, Vol. 46, No. 2, pp. 17 176. Pleiades Publishing, Inc., 212. Original Russian Text V.M. Fedorov, 212, published in Astronomicheskii Vestnik, 212, Vol. 46, No. 2,
More informationName: João Fernando Alves da Silva Class: 74 Number: 10
Name: João Fernando Alves da Silva Class: 74 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands
More informationOrbital Dynamics: Formulary
Orbital Dynamics: Formulary 1 Introduction Prof. Dr. D. Stoffer Department of Mathematics, ETH Zurich Newton s law of motion: The net force on an object is equal to the mass of the object multiplied by
More informationVagabonds of the Solar System. Chapter 17
Vagabonds of the Solar System Chapter 17 ASTR 111 003 Fall 2006 Lecture 13 Nov. 27, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 16) Planets and Moons (chap. 717) Ch7: Comparative
More informationAIDA: Asteroid Impact & Deflection Assessment A Joint ESANASA Mission. Joint ESA NASA AIDA Team
AIDA: Asteroid Impact & Deflection Assessment A Joint ESANASA Mission Joint ESA NASA AIDA Team Chelyabinsk Meteor on 15 February 2013 AIDA Asteroid Deflection Test AIDA international cooperation First
More informationChapter 25.1: Models of our Solar System
Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets
More informationChapter 6: Our Solar System and Its Origin
Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit
More information1 Newton s Laws of Motion
Exam 1 Ast 4  Chapter 2  Newton s Laws Exam 1 is scheduled for the week of Feb 19th Bring Pencil Scantron 882E (available in the Bookstore) A scientific calculator (you will not be allowed to use you
More informationPenn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
More informationResonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB)
Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System Man Hoi Lee (UCSB) Introduction: Extrasolar Planetary Systems Extrasolar planet searches have yielded ~ 150 planetary
More informationThe dynamical structure of the Solar System
The dynamical structure of the Solar System Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 8. Solar System: Organisation Lecture overview:
More informationNewton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
More information2. Orbits. FERZagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
More informationAstronomy 114 Summary of Important Concepts #1 1
Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semimajor axis of the ellipse) is simply related to sidereal period of the
More informationOrbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
More informationName: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
More informationTHE SOLAR SYSTEM NAME. I. Physical characteristics of the solar system
NAME I. Physical characteristics of the solar system THE SOLAR SYSTEM The solar system consists of the sun and 9 planets. Table 2 lists a number of the properties and characteristics of the sun and the
More informationThe Formation of Planetary Systems. Astronomy 11 Lecture 201
The Formation of Planetary Systems Astronomy 11 Lecture 201 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary
More informationHomework #3 Solutions
Chap. 7, #40 Homework #3 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Which of the following is a strong greenhouse gas? A) Nitrogen. B) Water Vapor. C) Oxygen) The correct
More information7.2 Calculate force of gravity at a given distance given the force of gravity at another distance (making use of the inverse square relationship).
Chapter 7 Circular Motion and Gravitation 7.1 Calculate force of gravity using Newton s Law of Universal Gravitation. 5. What is the gravitational force between the Earth and the Sun? (Mass of Earth: 5.98
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationAngular Velocity vs. Linear Velocity
MATH 7 Angular Velocity vs. Linear Velocity Dr. Neal, WKU Given an object with a fixed speed that is moving in a circle with a fixed ius, we can define the angular velocity of the object. That is, we can
More informationCHAPTER 11. The total energy of the body in its orbit is a constant and is given by the sum of the kinetic and potential energies
CHAPTER 11 SATELLITE ORBITS 11.1 Orbital Mechanics Newton's laws of motion provide the basis for the orbital mechanics. Newton's three laws are briefly (a) the law of inertia which states that a body at
More informationFlight and Orbital Mechanics
Flight and Orbital Mechanics Lecture slides Challenge the future 1 Material for exam: this presentation (i.e., no material from text book). Sunsynchronous orbit: used for a variety of earthobserving
More informationGravity. in the Solar System. Beyond the Book. FOCUS Book
FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers
More informationPluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 145)
14b. Pluto, Kuiper Belt & Oort Cloud Pluto Pluto s moons The Kuiper Belt Resonant Kuiper Belt objects Classical Kuiper Belt objects Pluto Data: Numbers Diameter: 2,290.km 0.18. Earth Mass: 1.0. 10 22 kg
More informationOrbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Coordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
More informationPutting The Distance Between The Earth And Moon In Perspective
Putting The Distance Between The Earth And Moon In Perspective In a spaceship, how long does it take to get to the moon? It depends on how fast the spaceship can travel. When the Apollo.astronauts went
More informationUCMGravity. 2. The diagram shows two bowling balls, A and B, each having a mass of 7 kilograms, placed 2 meters apart.
1. A space probe is launched into space from Earth s surface. Which graph represents the relationship between the magnitude of the gravitational force exerted on Earth by the space probe and the distance
More informationUSING MS EXCEL FOR DATA ANALYSIS AND SIMULATION
USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers
More informationKepler, Newton and Gravitation
Kepler, Newton and Gravitation Kepler, Newton and Gravity 1 Using the unit of distance 1 AU = EarthSun distance PLANETS COPERNICUS MODERN Mercury 0.38 0.387 Venus 0.72 0.723 Earth 1.00 1.00 Mars 1.52
More information7 Scale Model of the Solar System
Name: Date: 7 Scale Model of the Solar System 7.1 Introduction The Solar System is large, at least when compared to distances we are familiar with on a daytoday basis. Consider that for those of you
More informationThis paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
More informationOrbital Dynamics with Maple (sll  v1.0, February 2012)
Orbital Dynamics with Maple (sll  v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published
More informationExamination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM
Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiplechoice
More informationGroup Leader: Group Members:
THE SOLAR SYSTEM PROJECT: TOPIC: THE SUN Required Project Content for an Oral/Poster Presentation on THE SUN  What it s made of  Age and how it formed (provide pictures or diagrams)  What is an AU?
More informationChapter 13. Gravitation
Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67
More informationThe Gravitational Field
The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec
More informationFrom Aristotle to Newton
From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers
More informationToday. Galileo. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws
Today Galileo Planetary Motion Tycho Brahe s Observations Kepler s Laws 1 Galileo c. 15641642 First telescopic astronomical observations 2 First use of telescope for astronomy in 1609 400 years ago! 3
More informationResearch Article The Orbital Dynamics of Synchronous Satellites: Irregular Motions in the 2 : 1 Resonance
Mathematical Problems in Engineering Volume 2012, Article ID 405870, 22 pages doi:10.1155/2012/405870 Research Article The Orbital Dynamics of Synchronous Satellites: Irregular Motions in the 2 : 1 Resonance
More informationGRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:
GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant
More informationSolar system science in the EELT era
1/17 B. Carry, ERICE, 2015/10/13 Solar system science in the EELT era B. Carry 1,2 1 IMCCE, Observatoire de Paris 2 Lagrange, Observatoire de la Côte d Azur 2/17 B. Carry, ERICE, 2015/10/13 1. Contamination
More informationLecture 10 Formation of the Solar System January 6c, 2014
1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the
More informationEarth in the Solar System
Copyright 2011 Study Island  All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with
More informationQuasiSynchronous Orbits
QuasiSynchronous Orbits and Preliminary Mission Analysis for Phobos Observation and Access Orbits Paulo J. S. Gil Instituto Superior Técnico Simpósio Espaço 50 anos do 1º Voo Espacial Tripulado 12 de
More informationSolar Nebula Theory. Basic properties of the Solar System that need to be explained:
Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the
More informationEDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1
Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time
More informationResearch Article Resonant Orbital Dynamics in LEO Region: Space Debris in Focus
Mathematical Problems in Engineering, Article ID 9298, 2 pages http://dx.doi.org/.55/24/9298 Research Article Resonant Orbital Dynamics in LEO Region: Space Debris in Focus J. C. Sampaio, E. Wnuk, 2 R.
More informationThe longterm stability of planetary systems
The longterm stability of planetary systems Longterm stability of planetary systems The problem: A point mass is surrounded by N > 1 much smaller masses on nearly circular, nearly coplanar orbits. Is
More informationChapter 13  Gravity. David J. Starling Penn State Hazleton Fall Chapter 13  Gravity. Objectives (Ch 13) Newton s Law of Gravitation
The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton
More informationLecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.
Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets
More informationSolar system planetary motion to third order of the masses
Astron. Astrophys. 341, 318 327 (1999) ASTRONOMY AND ASTROPHYSICS Solar system planetary motion to third order of the masses X. Moisson Bureau des Longitudes, URA 707 du CNRS, 77, avenue DenfertRochereau,
More informationThe Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.
Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:
More informationThe Primordial Excitation and Clearing of the Asteroid Belt
Icarus 153, 338 347 (2001) doi:10.1006/icar.2001.6702, available online at http://www.idealibrary.com on The Primordial Excitation and Clearing of the Asteroid Belt JeanMarc Petit and Alessandro Morbidelli
More informationPossible LongLived Asteroid Belts in the Inner Solar System
Possible LongLived Asteroid Belts in the Inner Solar System N. Wyn Evans and Serge Tabachnik Theoretical Physics, Department of Physics, 1 Keble Rd, Oxford, OX1 3NP, UK The recent years have witnessed
More informationVersion A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.
Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by
More informationGravitation. Physics 1425 Lecture 11. Michael Fowler, UVa
Gravitation Physics 1425 Lecture 11 Michael Fowler, UVa The Inverse Square Law Newton s idea: the centripetal force keeping the Moon circling the Earth is the same gravitational force that pulls us to
More informationORBITAL DISPERSION SIMULATION OF NEAREARTH OBJECT DEFLECTION/FRAGMENTATION BY NUCLEAR EXPLOSIONS
IAC09C1.10.2 ORBITAL DISPERSION SIMULATION OF NEAREARTH OBJECT DEFLECTION/FRAGMENTATION BY NUCLEAR EXPLOSIONS B. Kaplinger Iowa State University, United States bdkaplin@iastate.edu B. Wie Iowa State
More informationChapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts
Chapter 9 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts Asteroid Facts Asteroids are rocky leftovers of planet formation. The largest is Ceres, diameter ~1,000 km. There are 150,000
More informationAstronomy 1140 Quiz 1 Review
Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality
More informationKepler s Laws and our Solar System
Kepler s Laws and our Solar System The Astronomical Unit, AU Kepler s Empirical Laws of Planetary mo=on The mass of the Sun, M O. A very brief tour of the solar system Major planets Dwarf planets (defini=on)
More informationThe Origin of the Solar System and Other Planetary Systems
The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation
More informationBackground Information Students will learn about the Solar System while practicing communication skills.
Teacher Information Background Information Students will learn about the Solar System while practicing communication skills. Materials clipboard for each student pencils copies of map and Available Destinations
More informationThe Lunar L 1 Gateway: Portal to the Planets
The Lunar L 1 Gateway: Portal to the Planets Halo Orbit at Lunar L 1 LL 1 Lunar Orbit Surrey Astrodynamics Workshop Lunar Gateway Module Shane Ross Control & Dynamical Systems California Institute of Technology
More informationStudy Guide: Solar System
Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.
More informationUNIT V. Earth and Space. Earth and the Solar System
UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system
More informationSATELLITE ORBIT DETERMINATION AND ANALYSIS (S.O.D.A) A VISUAL TOOL OF SATELLITE ORBIT FOR SPACE ENGINEERING EDUCATION & RESEARCH
SATELLITE ORBIT DETERMINATION AND ANALYSIS (S.O.D.A) A VISUAL TOOL OF SATELLITE ORBIT FOR SPACE ENGINEERING EDUCATION & RESEARCH 1 Muhammad Shamsul Kamal Adnan, 2 Md. Azlin Md. Said, 3 M. Helmi Othman,
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationGravity at. work. Investigating Gravity s job in the solar system
Gravity at work Investigating Gravity s job in the solar system Developed by: Betsy Mills, UCLA NSF GK12 Fellow Title of Lesson: Gravity at Work! Grade Level: 8 th Subject(s): Gravity Summary: In this
More informationSittiporn Channumsin Coauthors
28 Oct 2014 Space Glasgow Research Conference Sittiporn Channumsin Sittiporn Channumsin Coauthors S. Channumsin Outline Background Objective The model Simulation Results Conclusion and Future work 2 Space
More information9210228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering
9210228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering You should have the following for this examination one answer book nonprogrammable calculator pen, pencil, drawing
More informationLab 7: Gravity and Jupiter's Moons
Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in
More informationLecture 19: Planet Formation I. Clues from the Solar System
Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies
More informationwhere G is the universal gravitational constant (approximately 6.67 10 11 Nm 2 /kg 2 ) and M is the sun s mass (approximately 2 10 24 kg).
Kepler s Third Law ID: 8515 By Michele Impedovo Time required 2 hours Activity Overview Johannes Kepler (15711630) is remembered for laying firm mathematical foundations for modern astronomy through his
More informationStudent Exploration: Gravitational Force
5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact
More informationASTR 115: Introduction to Astronomy. Stephen Kane
ASTR 115: Introduction to Astronomy Stephen Kane ASTR 115: The Second MidTerm Exam What will be covered?  Everything from chapters 610 of the textbook. What will be the format of the exam?  It will
More informationThe Origin of the Solar System
The Origin of the Solar System Questions: How did the various constituents of Solar System form? What were the physical processes involved? When did they form? Did they all form moreor less simultaneously?
More informationPlanets and Dwarf Planets by Shauna Hutton
Name: Wow! Technology has improved so well in the last several years that we keep finding more and more objects in our solar system! Because of this, scientists have had to come up with new categories
More informationMeet Our Solar System
activity 11 Meet Our Solar System BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 4 Quarter 2 Activity 11 SC.E.1.2.3 The student knows that the Sun is a star and that its energy can be captured
More informationGRADE 8 SCIENCE INSTRUCTIONAL TASKS. Gravity
GRADE 8 SCIENCE INSTRUCTIONAL TASKS Gravity GradeLevel Expectations The exercises in these instructional tasks address content related to the following science gradelevel expectation(s): ESSMC3 Relate
More informationIntroduction to the Solar System
Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction
More information1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times.
Appendix A Orbits As discussed in the Introduction, a good first approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational
More informationChapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as AddisonWesley
Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals
More information