Simulation of Offshore Structures in Virtual Ocean Basin (VOB)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Simulation of Offshore Structures in Virtual Ocean Basin (VOB)"

Transcription

1 Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Dr. Wei Bai 29/06/2015 Department of Civil & Environmental Engineering National University of Singapore

2 Outline Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with side-by-side barges Payload in vicinity of barge 2

3 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with side-by-side barges Payload in vicinity of barge 3

4 Numerical Model Model sketch Wavemaker Z SF O' Z' O X' X Damping Swm SB1 SB2 Sw SD Sketch of Numerical Wave Tank 4

5 Mathematical Formulation Fully nonlinear potential flow (FNPF) Laplace eqn. BCs Original model on free surface: (Lagrangian) 2 0 DX Dt D 1 2 gz Dt 2 Separation X X X I I S S 2 S Decomposition model 0 DX S I Dt DS 1 1 gzs Dt I on body surface: n V n S n V n I n Incident flow I,, evaluated explicitly I X I 5

6 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with side-by-side barges Payload in vicinity of barge 6

7 Wave Generation System Comparison of transfer function with Bi esel s equation 7

8 Focused waves in 2D NWT (designed spectra) An example of 2D focal event under designed spectrum (Case B55) Validation on normalized power spectra of Cases B (deep water, broad band), compare with Baldock and Swan,

9 Multi-directional waves in 3D NWB Wavemaker configuration in 3D numerical wave basin 9

10 Multi-directional waves in 3D NWB Evolution of irregular waves 10

11 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with side-by-side barges Payload in vicinity of barge 11

12 Validation Comparison with experiments 1 for 0 heading y Cylinder 1 Cylinder Experiment Present x Cylinder 3 Cylinder Experiment Present Linear x(m) Maximum elevation mean k x(m) Mean elevation Radius a=0.203m space l=4a depth d=5a Amplitude A=0.049m Frequency ω=5.024rad/s 1. Ohl et al. (2001) 12

13 Case study Four cylinders in square 45 heading Radius a=0.2 space l=4a depth d=5a Amplitude A=0.02 frequency ka=

14 Near-trapping Mode shape bird view Elevation η/a Linear solution predicts the resonant frequency ka = 1.66 Near standing wave within the array Radius a=0.2 space l=4a depth d=5a ka=1.57 frequency ka=

15 Near-trapping High wave elevation at near-trapped mode Cylinder 2 y Wave amplitude along x-axis BC ka 1.66 ka0.754 ka0.468 Cylinder 1 Cylinder 3 A B C D Cylinder 4 x Near-trapping frequency x 15

16 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with side-by-side barges Payload in vicinity of barge 16

17 Side-by-side barges Numerical model Same barges in Molin et al. (2009) L = 2.47m B = 0.6 m Gap width = 0.12m Draft = 0.18m 17

18 Side-by-side barges Comparisons 7 Free surface RAOs Present (low steepness) Linear Experiments Gap surface amplitudes at midship Comparisons with experiments by Molin et al (2009) and linear program Frequency rad/s 18

19 Side-by-side barges Resonant modes Mode 1: ω = 5.75 rad/s Mode 3: ω = 6.85 rad/s (a) (b) /A x Wave envelope along gap 19

20 Side-by-side barges Random wave input Unidirectional Input Able to achieve multi-directional Gap surface RAOs at midship Present Molin experiments Frequency rad/s 20

21 Freely floating barges An example Length 2m Width 1m Distance 1m Draft 0.3m Center of gravity: half draft 21

22 Freely floating barges Time histories of motions for free barges Surge Roll On the barge in head wave at ω =6.0 rad/s Sway Heave Pitch Yaw No restoring force/moment in Surge, Sway and Yaw Apparently there is drift 22

23 Freely floating barges Comparison of first order motion with HydroStar First order motion on the barge in head wave 23

24 Barges with interconnections 0.5 Side-by-side interconnected barges 2.0 Barge Barge 2 Rigid Middle hinge End hinges 24

25 Barges with interconnections Hydrodynamic force and motion equations If bodies are interconnected, motion equations become M C D K A Q T T D2 M2 C2 K 2 A2 Q2 K1 K 2 0 Fcst 0 where K1, K2 are constraints matrix due to interconnection Fcst is interconnection force 25

26 Barges with interconnections Rigid connection Surge Roll On Barge 1 in head wave at ω =6.0 rad/s Sway Heave Pitch Yaw Surge, Heave, Pitch not affected. Sway, Roll, Yaw near zero due to rigid connection. 26

27 Barges with interconnections Middle hinge connection Only Yaw drift much reduced, other DOF not much changed End hinges connection Yaw drift slightly increased 27

28 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with side-by-side barges Payload in vicinity of barge 28

29 Payload close to a barge Computational mesh for different scenarios Wave propagating form left to right (b) (a) (c) (a) Submerged cylinder with barge in head sea (b) Upstream submerged cylinder with barge in beam sea (c) Downstream submerged cylinder with barge in beam sea 29

30 Payload close to a barge 3D trajectory of cylinder motion Trajectory x XZ projection Trajectory x XZ projection Vertical displacement Vertical displacement t/t Horizontal displacement t/t 40 Horizontal displacement Single submerged cylinder in domain Cylinder with barge in head sea No downward motion: cable length = 0.8d, a = 0.02, ω = 2.0, cylinder 0.2 d below the free surface (d = tank depth) 30

31 Low frequency pendulum motion cbl (sin 5 ) / a Cyl only Head sea t/t mean cbl (sin 5 ) / a -4 Beam sea Up Beam sea Dn t/t ω 2ω cable length of 0.8d, a = 0.15, ω =2.0 ωlow Appears as a harmonics of 1/10 ω 31

32 Payload with downward velocity 15 mod = mod = 0.01 mod = Cyl only Head sea M y / r 3 a t /T 4 2 mod = mod = 0.01 mod = 0.02 draft T / r 2 a t /T x /a Real time cylinder positioning under water for cylinder only and head sea scenarios: cbl = 0.8d, ω = 2.0, a = 0.015, mod =

33 Nonlinear dynamics of payload Frequency doubling phenomenon exists between ω of 1.5 to 2.0. Possible chaotic behavior for ω near 2.0 and above Payload pendulum motion for different motion frequencies at a = 0.01 and L c = 0.5d [Beam Sea Up]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincarémap Complex overlapping in the phase plane with increasing ω, indicating increase of nonlinearity 33

34 Thank you!

Frequency-domain and stochastic model for an articulated wave power device

Frequency-domain and stochastic model for an articulated wave power device Frequency-domain stochastic model for an articulated wave power device J. Cândido P.A.P. Justino Department of Renewable Energies, Instituto Nacional de Engenharia, Tecnologia e Inovação Estrada do Paço

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

WavePiston Project. Structural Concept Development Hydrodynamic Aspects. Preliminary Analytical Estimates. February 2010

WavePiston Project. Structural Concept Development Hydrodynamic Aspects. Preliminary Analytical Estimates. February 2010 WavePiston Project Structural Concept Development Hydrodynamic Aspects Preliminary Analytical Estimates February 2010 WavePiston Project Structural Concept Development Hydrodynamic Aspects Preliminary

More information

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth csnak, 2015 Int. J. Nav. Archit. Ocean Eng. (2015) 7:115~127 http://dx.doi.org/10.1515/ijnaoe-2015-0009 pissn: 2092-6782, eissn: 2092-6790 Simplified formulas of heave added mass coefficients at high frequency

More information

A Cost- Effective Computational Tool for Offshore Floater Design

A Cost- Effective Computational Tool for Offshore Floater Design Introduction A Cost- Effective Computational Tool for Offshore Floater Design Jang Whan Kim, Hyunchul Jang & Jim O Sullivan Technip Offshore floating platforms are complex engineering systems with numerous

More information

C06 CALM Buoy. Orcina. 1. CALM Buoy. Introduction. 1.1. Building the model

C06 CALM Buoy. Orcina. 1. CALM Buoy. Introduction. 1.1. Building the model C06 CALM Buoy Introduction In these examples, a CALM buoy is moored by six equally spaced mooring lines. A shuttle tanker is moored to the buoy by a hawser, with fluid transfer through a floating hose.

More information

24 th ITTC Benchmark Study on Numerical Prediction of Damage Ship Stability in Waves Preliminary Analysis of Results

24 th ITTC Benchmark Study on Numerical Prediction of Damage Ship Stability in Waves Preliminary Analysis of Results th ITTC Benchmark Study on Numerical Prediction of Damage Ship Stability in Waves Preliminary Analysis of Results Apostolos Papanikolaou & Dimitris Spanos National Technical University of Athens- Ship

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

3. Experimental Results

3. Experimental Results Experimental study of the wind effect on the focusing of transient wave groups J.P. Giovanangeli 1), C. Kharif 1) and E. Pelinovsky 1,) 1) Institut de Recherche sur les Phénomènes Hors Equilibre, Laboratoire

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment

Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment By Paul Sclavounos, Christopher Tracy and Sungho Lee Department of Mechanical Engineering Massachusetts

More information

Study of the Stability of Turret moored Floating Body

Study of the Stability of Turret moored Floating Body 1 Study of the Stability of Turret moored Floating Body Seok Kyu, Cho, Hong Gun, Sung, Sa Young Hong, Yun Ho, Kim, MOERI/KIOST Hang Shoon, Choi, Seoul National Univ. ABSTRACT Turret moored floating platforms,

More information

Design methodology and numerical analysis of a cable ferry

Design methodology and numerical analysis of a cable ferry Design methodology and numerical analysis of a cable ferry SNAME Annual Meeting; Nov 6-8, 2013, Bellevue, WA Paper #T35 Author name(s): Dean M. Steinke (M)1, Ryan S. Nicoll1 (V), Tony Thompson2 (M), Bruce

More information

MECH 450F/580 COURSE OUTLINE INTRODUCTION TO OCEAN ENGINEERING

MECH 450F/580 COURSE OUTLINE INTRODUCTION TO OCEAN ENGINEERING Department of Mechanical Engineering MECH 450F/580 COURSE OUTLINE INTRODUCTION TO OCEAN ENGINEERING Spring 2014 Course Web Site See the MECH 450F Moodle site on the UVic Moodle system. Course Numbers:

More information

Experimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions

Experimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions Experimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions T. Abadie, Y. Wei, V. Lebrun, F. Dias (UCD) Collaborating work with: A. Henry, J. Nicholson,

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

ScienceDirect. Pressure Based Eulerian Approach for Investigation of Sloshing in Rectangular Water Tank

ScienceDirect. Pressure Based Eulerian Approach for Investigation of Sloshing in Rectangular Water Tank Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 144 (2016 ) 1187 1194 12th International Conference on Vibration Problems, ICOVP 2015 Pressure Based Eulerian Approach for Investigation

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

CADMO 92 Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries

CADMO 92 Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries CADMO 92 Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries Diodore : a numerical tool for frequency and time domain analysis of the behaviour of moored or towed floating

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Thompson/Ocean 420/Winter 2005 Tide Dynamics 1

Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Tide Dynamics Dynamic Theory of Tides. In the equilibrium theory of tides, we assumed that the shape of the sea surface was always in equilibrium with the

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

Modeling Mechanical Systems

Modeling Mechanical Systems chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

HSC Mathematics - Extension 1. Workshop E4

HSC Mathematics - Extension 1. Workshop E4 HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

More information

Lecture 8 : Dynamic Stability

Lecture 8 : Dynamic Stability Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic

More information

Coupled Analysis of Deepwater Oil Offloading Buoy and Experimental Verification

Coupled Analysis of Deepwater Oil Offloading Buoy and Experimental Verification Coupled Analysis of Deepwater Oil Offloading Buoy and al Verification Sangsoo Ryu, Arun S. Duggal, Caspar N. Heyl, Yonghui Liu FMC SOFEC Floating Systems, Inc. Houston, TX 77, USA ABSTRACT Deepwater offloading

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut E-mail : renuka_mee@nitc.ac.in,

More information

Dynamic Analysis of the Dortmund University Campus Sky Train

Dynamic Analysis of the Dortmund University Campus Sky Train Dynamic Analysis of the Dortmund University Campus Sky Train Reinhold Meisinger Mechanical Engineering Department Nuremberg University of Applied Sciences Kesslerplatz 12, 90121 Nuremberg, Germany Abstract

More information

laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users

laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users Developed by: Jacob Apkarian, Ph.D., Quanser Hervé Lacheray, M.A.SC., Quanser Michel Lévis, M.A.SC., Quanser Quanser educational

More information

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15 Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

More information

USING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE PLATFORMS: THE EFFECT OF MOORING SYSTEM

USING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE PLATFORMS: THE EFFECT OF MOORING SYSTEM Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009 USING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE

More information

Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines

Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.-Ing.

More information

SIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS

SIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS SIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS Don Bass, Memorial University of Newfoundland, Canada David Molyneux, National Research Council,

More information

Proceedings of OMAE'01 20 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2001, Rio de Janeiro, Brazil

Proceedings of OMAE'01 20 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2001, Rio de Janeiro, Brazil Proceedings of OMAE' 2 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2, Rio de Janeiro, Brazil OMAE2/SR-259 PROBABILISTIC MODELLING AND ANALYSIS OF RISER COLLISION

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

Grazing incidence wavefront sensing and verification of X-ray optics performance

Grazing incidence wavefront sensing and verification of X-ray optics performance Grazing incidence wavefront sensing and verification of X-ray optics performance Timo T. Saha, Scott Rohrbach, and William W. Zhang, NASA Goddard Space Flight Center, Greenbelt, Md 20771 Evaluation of

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

CFD modelling of floating body response to regular waves

CFD modelling of floating body response to regular waves CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

IHCANTABRIA and Marine Renewables

IHCANTABRIA and Marine Renewables IHCANTABRIA and Marine Renewables Assessment and forecast of energy resources in the marine environment (waves, wind, currents, tides) Design, development and testing of marine renewable energy technologies

More information

CFD Modelling and Real-time testing of the Wave Surface Glider (WSG) Robot

CFD Modelling and Real-time testing of the Wave Surface Glider (WSG) Robot 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 CFD Modelling and Real-time testing of the Wave Surface Glider (WSG) Robot

More information

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam

Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam Journal of Clean Energy Technologies, Vol. 3, No. 4, July 05 Numerical Modelling of Regular Waves Propagation and Breaking Using WavesFoam B. Chenari, S. S. Saadatian, and Almerindo D. Ferreira numerical

More information

Seakeeping Analysis of two Medium-speed Twin-hull Models

Seakeeping Analysis of two Medium-speed Twin-hull Models Journal of Ship Production and Design, Vol. 31, No. 3, August 2015, pp. 192 200 http://dx.doi.org/10.5957/jspd.31.3.140020 Seakeeping Analysis of two Medium-speed Twin-hull Models George Zaraphonitis,

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

Extreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests

Extreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests Extreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests T.B.Johannessen (Aker Kværner Engineering & Technology) 1, S.Haver (Statoil), T.Bunnik & B.Buchner (MARIN) Abstract

More information

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

More information

SIMULATION OF A TIGHT-MOORED AMPLITUDE- LIMITED HEAVING-BUOY WAVE-ENERGY CONVERTER WITH PHASE CONTROL

SIMULATION OF A TIGHT-MOORED AMPLITUDE- LIMITED HEAVING-BUOY WAVE-ENERGY CONVERTER WITH PHASE CONTROL SIMULATION OF A TIGHT-MOORED AMPLITUDE- LIMITED HEAVING-BUOY WAVE-ENERGY CONVERTER WITH PHASE CONTROL by Håvard Eidsmoen Division of Physics, Norwegian University of Science and Technology, N-704 Trondheim,

More information

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms

Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms Alexander J. Dunbar 1, Brent A. Craven 1, Eric G. Paterson 2, and James G. Brasseur 1 1 Penn State University;

More information

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Definition of the Floating System for Phase IV of OC3

Definition of the Floating System for Phase IV of OC3 Definition of the Floating System for Phase IV of OC3 Technical Report NREL/TP-500-47535 May 2010 J. Jonkman Definition of the Floating System for Phase IV of OC3 Technical Report NREL/TP-500-47535 May

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

More information

Chapter 4: Buoyancy & Stability

Chapter 4: Buoyancy & Stability Chapter 4: Buoyancy & Stability Learning outcomes By the end of this lesson students should be able to: Understand the concept of buoyancy hence determine the buoyant force exerted by a fluid to a body

More information

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

More information

International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013

International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013 ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013 of vibration are 0.14 rad/s and 0.42 rad/s respectively. The dynamic response

More information

Chapter 5: Distributed Forces; Centroids and Centers of Gravity

Chapter 5: Distributed Forces; Centroids and Centers of Gravity CE297-FA09-Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or

More information

SIMULATION OF A SLACK-MOORED HEAVING-BUOY WAVE-ENERGY CONVERTER WITH PHASE CONTROL

SIMULATION OF A SLACK-MOORED HEAVING-BUOY WAVE-ENERGY CONVERTER WITH PHASE CONTROL SIMULATION OF A SLACK-MOORED HEAVING-BUOY WAVE-ENERGY CONVERTER WITH PHASE CONTROL by Håvard Eidsmoen Division of Physics Norwegian University of Science and Technology N-7034 Trondheim Norway May 1996

More information

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free

More information

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

Response to Harmonic Excitation Part 2: Damped Systems

Response to Harmonic Excitation Part 2: Damped Systems Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Bead moving along a thin, rigid, wire.

Bead moving along a thin, rigid, wire. Bead moving along a thin, rigid, wire. odolfo. osales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139 October 17, 2004 Abstract An equation describing

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

Thomas A. A. Adcock 1 and Paul H. Taylor 1

Thomas A. A. Adcock 1 and Paul H. Taylor 1 Non-linear evolution of large waves in deep water the influence of directional spreading and spectral bandwidth Thomas A. A. Adcock and Paul H. Taylor Department of Engineering Science, University of Oxford,

More information

Waves and Sound. An Introduction to Waves and Wave Properties Wednesday, November 19, 2008

Waves and Sound. An Introduction to Waves and Wave Properties Wednesday, November 19, 2008 Waves and Sound An Introduction to Waves and Wave Properties Wednesday, November 19, 2008 Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement

More information

Design Methodology and Numerical Analysis of a Cable Ferry

Design Methodology and Numerical Analysis of a Cable Ferry Dean M. 1 (M), Ryan S. Nicoll 1 (V), Tony Thompson 2 (M), Bruce Paterson 3 (M) 1. Dynamic Systems Analysis Ltd., 101-19 Dallas Road, Victoria, BC, Canada 2. EYE Marine, Suite 1, 327 Prince Albert Road,

More information

Physical Modeling and CFD Simulation of Wave Slamming on Offshore Wind

Physical Modeling and CFD Simulation of Wave Slamming on Offshore Wind Physical Modeling and CFD Simulation of Wave Slamming on Offshore Wind Turbine Structures Arndt Hildebrandt d Franzius-Institute for Hydraulic, Waterways, and Coastal Engineering Slide 0 Overview: Potential

More information

Development and optimization of a hybrid passive/active liner for flow duct applications

Development and optimization of a hybrid passive/active liner for flow duct applications Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic

More information

Seismic Response Analysis of the Underwater High-rise Independent Intake Tower. Zhang Liaojun Wu Zuoguo Ye Shangfang Zhang Huixing

Seismic Response Analysis of the Underwater High-rise Independent Intake Tower. Zhang Liaojun Wu Zuoguo Ye Shangfang Zhang Huixing Seismic Response Analysis of the Underwater High-rise Independent Intake Tower Zhang Liaojun Wu Zuoguo Ye Shangfang Zhang Huixing College of Water Conservancy and Hydropower Engineering, Hohai University,Nanjing,China,

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

Dynamic Stability of Flared and Tumblehome Hull Forms in Waves

Dynamic Stability of Flared and Tumblehome Hull Forms in Waves Dynamic Stability of Flared and Tumblehome Hull Forms in Waves Christopher Bassler, Seakeeping Division, Naval Surface Warfare Center, Carderock Division Andrew Peters, QinetiQ Bradley Campbell, Seakeeping

More information

DESIGN OF HYDRODYNAMIC TEST FACILITY AND SCALING PROCEDURE FOR OCEAN CURRENT RENEWABLE ENERGY DEVICES. William Valentine

DESIGN OF HYDRODYNAMIC TEST FACILITY AND SCALING PROCEDURE FOR OCEAN CURRENT RENEWABLE ENERGY DEVICES. William Valentine DESIGN OF HYDRODYNAMIC TEST FACILITY AND SCALING PROCEDURE FOR OCEAN CURRENT RENEWABLE ENERGY DEVICES by William Valentine A Thesis Submitted to the Faculty of The College of Engineering and Computer Science

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.

A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum. MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The

More information

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea. BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

More information

UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name:

UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: 1. These waves travel through the body of the Earth and are called S waves. a. Transverse b. Longitudinal c. Amplitude d. Trough 2. These waves

More information

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005 Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

More information

Physics 117.3 Tutorial #1 January 14 to 25, 2013

Physics 117.3 Tutorial #1 January 14 to 25, 2013 Physics 117.3 Tutorial #1 January 14 to 25, 2013 Rm 130 Physics 8.79. The location of a person s centre of gravity can be determined using the arrangement shown in the figure. A light plank rests on two

More information

SEISMIC CODE EVALUATION. MEXICO Evaluation conducted by Jorge Gutiérrez

SEISMIC CODE EVALUATION. MEXICO Evaluation conducted by Jorge Gutiérrez SEISMIC CODE EVALUATION MEXICO Evaluation conducted by Jorge Gutiérrez NAME OF DOCUMENT: Normas Técnicas Complementarias para Diseño por Sismo ( Complementary Technical Norms for Earthquake Resistant Design

More information