Simulation of Offshore Structures in Virtual Ocean Basin (VOB)


 Clement Park
 3 years ago
 Views:
Transcription
1 Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Dr. Wei Bai 29/06/2015 Department of Civil & Environmental Engineering National University of Singapore
2 Outline Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with sidebyside barges Payload in vicinity of barge 2
3 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with sidebyside barges Payload in vicinity of barge 3
4 Numerical Model Model sketch Wavemaker Z SF O' Z' O X' X Damping Swm SB1 SB2 Sw SD Sketch of Numerical Wave Tank 4
5 Mathematical Formulation Fully nonlinear potential flow (FNPF) Laplace eqn. BCs Original model on free surface: (Lagrangian) 2 0 DX Dt D 1 2 gz Dt 2 Separation X X X I I S S 2 S Decomposition model 0 DX S I Dt DS 1 1 gzs Dt I on body surface: n V n S n V n I n Incident flow I,, evaluated explicitly I X I 5
6 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with sidebyside barges Payload in vicinity of barge 6
7 Wave Generation System Comparison of transfer function with Bi esel s equation 7
8 Focused waves in 2D NWT (designed spectra) An example of 2D focal event under designed spectrum (Case B55) Validation on normalized power spectra of Cases B (deep water, broad band), compare with Baldock and Swan,
9 Multidirectional waves in 3D NWB Wavemaker configuration in 3D numerical wave basin 9
10 Multidirectional waves in 3D NWB Evolution of irregular waves 10
11 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with sidebyside barges Payload in vicinity of barge 11
12 Validation Comparison with experiments 1 for 0 heading y Cylinder 1 Cylinder Experiment Present x Cylinder 3 Cylinder Experiment Present Linear x(m) Maximum elevation mean k x(m) Mean elevation Radius a=0.203m space l=4a depth d=5a Amplitude A=0.049m Frequency ω=5.024rad/s 1. Ohl et al. (2001) 12
13 Case study Four cylinders in square 45 heading Radius a=0.2 space l=4a depth d=5a Amplitude A=0.02 frequency ka=
14 Neartrapping Mode shape bird view Elevation η/a Linear solution predicts the resonant frequency ka = 1.66 Near standing wave within the array Radius a=0.2 space l=4a depth d=5a ka=1.57 frequency ka=
15 Neartrapping High wave elevation at neartrapped mode Cylinder 2 y Wave amplitude along xaxis BC ka 1.66 ka0.754 ka0.468 Cylinder 1 Cylinder 3 A B C D Cylinder 4 x Neartrapping frequency x 15
16 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with sidebyside barges Payload in vicinity of barge 16
17 Sidebyside barges Numerical model Same barges in Molin et al. (2009) L = 2.47m B = 0.6 m Gap width = 0.12m Draft = 0.18m 17
18 Sidebyside barges Comparisons 7 Free surface RAOs Present (low steepness) Linear Experiments Gap surface amplitudes at midship Comparisons with experiments by Molin et al (2009) and linear program Frequency rad/s 18
19 Sidebyside barges Resonant modes Mode 1: ω = 5.75 rad/s Mode 3: ω = 6.85 rad/s (a) (b) /A x Wave envelope along gap 19
20 Sidebyside barges Random wave input Unidirectional Input Able to achieve multidirectional Gap surface RAOs at midship Present Molin experiments Frequency rad/s 20
21 Freely floating barges An example Length 2m Width 1m Distance 1m Draft 0.3m Center of gravity: half draft 21
22 Freely floating barges Time histories of motions for free barges Surge Roll On the barge in head wave at ω =6.0 rad/s Sway Heave Pitch Yaw No restoring force/moment in Surge, Sway and Yaw Apparently there is drift 22
23 Freely floating barges Comparison of first order motion with HydroStar First order motion on the barge in head wave 23
24 Barges with interconnections 0.5 Sidebyside interconnected barges 2.0 Barge Barge 2 Rigid Middle hinge End hinges 24
25 Barges with interconnections Hydrodynamic force and motion equations If bodies are interconnected, motion equations become M C D K A Q T T D2 M2 C2 K 2 A2 Q2 K1 K 2 0 Fcst 0 where K1, K2 are constraints matrix due to interconnection Fcst is interconnection force 25
26 Barges with interconnections Rigid connection Surge Roll On Barge 1 in head wave at ω =6.0 rad/s Sway Heave Pitch Yaw Surge, Heave, Pitch not affected. Sway, Roll, Yaw near zero due to rigid connection. 26
27 Barges with interconnections Middle hinge connection Only Yaw drift much reduced, other DOF not much changed End hinges connection Yaw drift slightly increased 27
28 Methodology Generation of nonlinear waves Wave diffraction by an array of cylinders Wave interaction with sidebyside barges Payload in vicinity of barge 28
29 Payload close to a barge Computational mesh for different scenarios Wave propagating form left to right (b) (a) (c) (a) Submerged cylinder with barge in head sea (b) Upstream submerged cylinder with barge in beam sea (c) Downstream submerged cylinder with barge in beam sea 29
30 Payload close to a barge 3D trajectory of cylinder motion Trajectory x XZ projection Trajectory x XZ projection Vertical displacement Vertical displacement t/t Horizontal displacement t/t 40 Horizontal displacement Single submerged cylinder in domain Cylinder with barge in head sea No downward motion: cable length = 0.8d, a = 0.02, ω = 2.0, cylinder 0.2 d below the free surface (d = tank depth) 30
31 Low frequency pendulum motion cbl (sin 5 ) / a Cyl only Head sea t/t mean cbl (sin 5 ) / a 4 Beam sea Up Beam sea Dn t/t ω 2ω cable length of 0.8d, a = 0.15, ω =2.0 ωlow Appears as a harmonics of 1/10 ω 31
32 Payload with downward velocity 15 mod = mod = 0.01 mod = Cyl only Head sea M y / r 3 a t /T 4 2 mod = mod = 0.01 mod = 0.02 draft T / r 2 a t /T x /a Real time cylinder positioning under water for cylinder only and head sea scenarios: cbl = 0.8d, ω = 2.0, a = 0.015, mod =
33 Nonlinear dynamics of payload Frequency doubling phenomenon exists between ω of 1.5 to 2.0. Possible chaotic behavior for ω near 2.0 and above Payload pendulum motion for different motion frequencies at a = 0.01 and L c = 0.5d [Beam Sea Up]: row 1: time history of motion; row 2: phase trajectories; and row 3: Poincarémap Complex overlapping in the phase plane with increasing ω, indicating increase of nonlinearity 33
34 Thank you!
Frequencydomain and stochastic model for an articulated wave power device
Frequencydomain stochastic model for an articulated wave power device J. Cândido P.A.P. Justino Department of Renewable Energies, Instituto Nacional de Engenharia, Tecnologia e Inovação Estrada do Paço
More informationMODULE VII LARGE BODY WAVE DIFFRACTION
MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wavestructure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.
More informationWavePiston Project. Structural Concept Development Hydrodynamic Aspects. Preliminary Analytical Estimates. February 2010
WavePiston Project Structural Concept Development Hydrodynamic Aspects Preliminary Analytical Estimates February 2010 WavePiston Project Structural Concept Development Hydrodynamic Aspects Preliminary
More informationSimplified formulas of heave added mass coefficients at high frequency for various twodimensional bodies in a finite water depth
csnak, 2015 Int. J. Nav. Archit. Ocean Eng. (2015) 7:115~127 http://dx.doi.org/10.1515/ijnaoe20150009 pissn: 20926782, eissn: 20926790 Simplified formulas of heave added mass coefficients at high frequency
More informationA Cost Effective Computational Tool for Offshore Floater Design
Introduction A Cost Effective Computational Tool for Offshore Floater Design Jang Whan Kim, Hyunchul Jang & Jim O Sullivan Technip Offshore floating platforms are complex engineering systems with numerous
More informationC06 CALM Buoy. Orcina. 1. CALM Buoy. Introduction. 1.1. Building the model
C06 CALM Buoy Introduction In these examples, a CALM buoy is moored by six equally spaced mooring lines. A shuttle tanker is moored to the buoy by a hawser, with fluid transfer through a floating hose.
More information24 th ITTC Benchmark Study on Numerical Prediction of Damage Ship Stability in Waves Preliminary Analysis of Results
th ITTC Benchmark Study on Numerical Prediction of Damage Ship Stability in Waves Preliminary Analysis of Results Apostolos Papanikolaou & Dimitris Spanos National Technical University of Athens Ship
More informationStress and deformation of offshore piles under structural and wave loading
Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail
More information3. Experimental Results
Experimental study of the wind effect on the focusing of transient wave groups J.P. Giovanangeli 1), C. Kharif 1) and E. Pelinovsky 1,) 1) Institut de Recherche sur les Phénomènes Hors Equilibre, Laboratoire
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationFloating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment
Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment By Paul Sclavounos, Christopher Tracy and Sungho Lee Department of Mechanical Engineering Massachusetts
More informationStudy of the Stability of Turret moored Floating Body
1 Study of the Stability of Turret moored Floating Body Seok Kyu, Cho, Hong Gun, Sung, Sa Young Hong, Yun Ho, Kim, MOERI/KIOST Hang Shoon, Choi, Seoul National Univ. ABSTRACT Turret moored floating platforms,
More informationDesign methodology and numerical analysis of a cable ferry
Design methodology and numerical analysis of a cable ferry SNAME Annual Meeting; Nov 68, 2013, Bellevue, WA Paper #T35 Author name(s): Dean M. Steinke (M)1, Ryan S. Nicoll1 (V), Tony Thompson2 (M), Bruce
More informationMECH 450F/580 COURSE OUTLINE INTRODUCTION TO OCEAN ENGINEERING
Department of Mechanical Engineering MECH 450F/580 COURSE OUTLINE INTRODUCTION TO OCEAN ENGINEERING Spring 2014 Course Web Site See the MECH 450F Moodle site on the UVic Moodle system. Course Numbers:
More informationExperimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions
Experimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions T. Abadie, Y. Wei, V. Lebrun, F. Dias (UCD) Collaborating work with: A. Henry, J. Nicholson,
More informationLab M1: The Simple Pendulum
Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of
More informationUpdated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum
Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are
More informationScienceDirect. Pressure Based Eulerian Approach for Investigation of Sloshing in Rectangular Water Tank
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 144 (2016 ) 1187 1194 12th International Conference on Vibration Problems, ICOVP 2015 Pressure Based Eulerian Approach for Investigation
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationCADMO 92 Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries
CADMO 92 Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries Diodore : a numerical tool for frequency and time domain analysis of the behaviour of moored or towed floating
More informationAP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.
1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the
More informationThompson/Ocean 420/Winter 2005 Tide Dynamics 1
Thompson/Ocean 420/Winter 2005 Tide Dynamics 1 Tide Dynamics Dynamic Theory of Tides. In the equilibrium theory of tides, we assumed that the shape of the sea surface was always in equilibrium with the
More informationLecture L2  Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L  Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
More informationModeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
More informationAS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
More informationHSC Mathematics  Extension 1. Workshop E4
HSC Mathematics  Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong
More informationLecture 8 : Dynamic Stability
Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic
More informationCoupled Analysis of Deepwater Oil Offloading Buoy and Experimental Verification
Coupled Analysis of Deepwater Oil Offloading Buoy and al Verification Sangsoo Ryu, Arun S. Duggal, Caspar N. Heyl, Yonghui Liu FMC SOFEC Floating Systems, Inc. Houston, TX 77, USA ABSTRACT Deepwater offloading
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationPrecise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility
Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut Email : renuka_mee@nitc.ac.in,
More informationDynamic Analysis of the Dortmund University Campus Sky Train
Dynamic Analysis of the Dortmund University Campus Sky Train Reinhold Meisinger Mechanical Engineering Department Nuremberg University of Applied Sciences Kesslerplatz 12, 90121 Nuremberg, Germany Abstract
More informationlaboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users
laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users Developed by: Jacob Apkarian, Ph.D., Quanser Hervé Lacheray, M.A.SC., Quanser Michel Lévis, M.A.SC., Quanser Quanser educational
More informationLesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15
Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic
More informationUSING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE PLATFORMS: THE EFFECT OF MOORING SYSTEM
Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 911 December 2009 USING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE
More informationCoupled CFD and Vortex Methods for Modelling Hydro and Aerodynamics of Tidal Current Turbines and On and Offshore Wind Turbines
Coupled CFD and Vortex Methods for Modelling Hydro and Aerodynamics of Tidal Current Turbines and On and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.Ing.
More informationSIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS
SIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS Don Bass, Memorial University of Newfoundland, Canada David Molyneux, National Research Council,
More informationProceedings of OMAE'01 20 th International Conference on Offshore Mechanics and Arctic Engineering June 38, 2001, Rio de Janeiro, Brazil
Proceedings of OMAE' 2 th International Conference on Offshore Mechanics and Arctic Engineering June 38, 2, Rio de Janeiro, Brazil OMAE2/SR259 PROBABILISTIC MODELLING AND ANALYSIS OF RISER COLLISION
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationTRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS
TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department
More informationDispersion diagrams of a waterloaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell
Dispersion diagrams of a waterloaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin
More information6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 105 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
More informationGrazing incidence wavefront sensing and verification of Xray optics performance
Grazing incidence wavefront sensing and verification of Xray optics performance Timo T. Saha, Scott Rohrbach, and William W. Zhang, NASA Goddard Space Flight Center, Greenbelt, Md 20771 Evaluation of
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More informationDetermination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
More informationCFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
More informationPlate waves in phononic crystals slabs
Acoustics 8 Paris Plate waves in phononic crystals slabs J.J. Chen and B. Bonello CNRS and Paris VI University, INSP  14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We
More informationIHCANTABRIA and Marine Renewables
IHCANTABRIA and Marine Renewables Assessment and forecast of energy resources in the marine environment (waves, wind, currents, tides) Design, development and testing of marine renewable energy technologies
More informationCFD Modelling and Realtime testing of the Wave Surface Glider (WSG) Robot
21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015 www.mssanz.org.au/modsim2015 CFD Modelling and Realtime testing of the Wave Surface Glider (WSG) Robot
More informationFluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment
Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process
More informationNumerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam
Journal of Clean Energy Technologies, Vol. 3, No. 4, July 05 Numerical Modelling of Regular Waves Propagation and Breaking Using WavesFoam B. Chenari, S. S. Saadatian, and Almerindo D. Ferreira numerical
More informationSeakeeping Analysis of two Mediumspeed Twinhull Models
Journal of Ship Production and Design, Vol. 31, No. 3, August 2015, pp. 192 200 http://dx.doi.org/10.5957/jspd.31.3.140020 Seakeeping Analysis of two Mediumspeed Twinhull Models George Zaraphonitis,
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationLab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1meter stick, 2meter stick, heavy duty bench clamp, 90cm rod, 40cm rod, 2 double clamps, brass spring, 100g mass, 500g mass with 5cm cardboard square
More informationExtreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests
Extreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests T.B.Johannessen (Aker Kværner Engineering & Technology) 1, S.Haver (Statoil), T.Bunnik & B.Buchner (MARIN) Abstract
More informationTime Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication
Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 2168440 This paper
More informationSIMULATION OF A TIGHTMOORED AMPLITUDE LIMITED HEAVINGBUOY WAVEENERGY CONVERTER WITH PHASE CONTROL
SIMULATION OF A TIGHTMOORED AMPLITUDE LIMITED HEAVINGBUOY WAVEENERGY CONVERTER WITH PHASE CONTROL by Håvard Eidsmoen Division of Physics, Norwegian University of Science and Technology, N704 Trondheim,
More informationOscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
More informationApplication of a TightlyCoupled CFD/6DOF Solver For Simulating Offshore Wind Turbine Platforms
Application of a TightlyCoupled CFD/6DOF Solver For Simulating Offshore Wind Turbine Platforms Alexander J. Dunbar 1, Brent A. Craven 1, Eric G. Paterson 2, and James G. Brasseur 1 1 Penn State University;
More informationAim : To study how the time period of a simple pendulum changes when its amplitude is changed.
Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationEXAMPLES (OPENCHANNEL FLOW) AUTUMN 2015
EXAMPLES (OPENCHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number
More informationApplications of SecondOrder Differential Equations
Applications of SecondOrder Differential Equations Secondorder linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
More informationDefinition of the Floating System for Phase IV of OC3
Definition of the Floating System for Phase IV of OC3 Technical Report NREL/TP50047535 May 2010 J. Jonkman Definition of the Floating System for Phase IV of OC3 Technical Report NREL/TP50047535 May
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More information4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115134 SL/HL Supplemental: Cutnell and Johnson, pp 473477, 507513 Tsokos, pp 216242 REMEMBER TO. Work through all
More informationChapter 4: Buoyancy & Stability
Chapter 4: Buoyancy & Stability Learning outcomes By the end of this lesson students should be able to: Understand the concept of buoyancy hence determine the buoyant force exerted by a fluid to a body
More informationNUMERICAL SIMULATION OF REGULAR WAVES RUNUP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUNUP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
More informationInternational Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013
ISSN: 23198753 International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013 of vibration are 0.14 rad/s and 0.42 rad/s respectively. The dynamic response
More informationChapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297FA09Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
More informationSIMULATION OF A SLACKMOORED HEAVINGBUOY WAVEENERGY CONVERTER WITH PHASE CONTROL
SIMULATION OF A SLACKMOORED HEAVINGBUOY WAVEENERGY CONVERTER WITH PHASE CONTROL by Håvard Eidsmoen Division of Physics Norwegian University of Science and Technology N7034 Trondheim Norway May 1996
More informationLecture L19  Vibration, Normal Modes, Natural Frequencies, Instability
S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19  Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free
More informationSIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES
SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in
More information1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationProjectile motion simulator. http://www.walterfendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walterfendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
More informationSTUDY OF DAMRESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL
STUDY OF DAMRESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia
More informationPhysics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
More informationBead moving along a thin, rigid, wire.
Bead moving along a thin, rigid, wire. odolfo. osales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139 October 17, 2004 Abstract An equation describing
More informationDetermination of source parameters from seismic spectra
Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D14473 Potsdam, Germany); Email: pb65@gmx.net
More informationThomas A. A. Adcock 1 and Paul H. Taylor 1
Nonlinear evolution of large waves in deep water the influence of directional spreading and spectral bandwidth Thomas A. A. Adcock and Paul H. Taylor Department of Engineering Science, University of Oxford,
More informationWaves and Sound. An Introduction to Waves and Wave Properties Wednesday, November 19, 2008
Waves and Sound An Introduction to Waves and Wave Properties Wednesday, November 19, 2008 Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement
More informationDesign Methodology and Numerical Analysis of a Cable Ferry
Dean M. 1 (M), Ryan S. Nicoll 1 (V), Tony Thompson 2 (M), Bruce Paterson 3 (M) 1. Dynamic Systems Analysis Ltd., 10119 Dallas Road, Victoria, BC, Canada 2. EYE Marine, Suite 1, 327 Prince Albert Road,
More informationPhysical Modeling and CFD Simulation of Wave Slamming on Offshore Wind
Physical Modeling and CFD Simulation of Wave Slamming on Offshore Wind Turbine Structures Arndt Hildebrandt d FranziusInstitute for Hydraulic, Waterways, and Coastal Engineering Slide 0 Overview: Potential
More informationDevelopment and optimization of a hybrid passive/active liner for flow duct applications
Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic
More informationSeismic Response Analysis of the Underwater Highrise Independent Intake Tower. Zhang Liaojun Wu Zuoguo Ye Shangfang Zhang Huixing
Seismic Response Analysis of the Underwater Highrise Independent Intake Tower Zhang Liaojun Wu Zuoguo Ye Shangfang Zhang Huixing College of Water Conservancy and Hydropower Engineering, Hohai University,Nanjing,China,
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able
More informationDynamic Stability of Flared and Tumblehome Hull Forms in Waves
Dynamic Stability of Flared and Tumblehome Hull Forms in Waves Christopher Bassler, Seakeeping Division, Naval Surface Warfare Center, Carderock Division Andrew Peters, QinetiQ Bradley Campbell, Seakeeping
More informationDESIGN OF HYDRODYNAMIC TEST FACILITY AND SCALING PROCEDURE FOR OCEAN CURRENT RENEWABLE ENERGY DEVICES. William Valentine
DESIGN OF HYDRODYNAMIC TEST FACILITY AND SCALING PROCEDURE FOR OCEAN CURRENT RENEWABLE ENERGY DEVICES by William Valentine A Thesis Submitted to the Faculty of The College of Engineering and Computer Science
More informationv = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationA ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.
MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The
More information3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.
BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's
More informationUCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name:
UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name: 1. These waves travel through the body of the Earth and are called S waves. a. Transverse b. Longitudinal c. Amplitude d. Trough 2. These waves
More informationDynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
More informationPhysics 117.3 Tutorial #1 January 14 to 25, 2013
Physics 117.3 Tutorial #1 January 14 to 25, 2013 Rm 130 Physics 8.79. The location of a person s centre of gravity can be determined using the arrangement shown in the figure. A light plank rests on two
More informationSEISMIC CODE EVALUATION. MEXICO Evaluation conducted by Jorge Gutiérrez
SEISMIC CODE EVALUATION MEXICO Evaluation conducted by Jorge Gutiérrez NAME OF DOCUMENT: Normas Técnicas Complementarias para Diseño por Sismo ( Complementary Technical Norms for Earthquake Resistant Design
More information