CFD and wave and current induced loads on offshore wind turbines

Size: px
Start display at page:

Download "CFD and wave and current induced loads on offshore wind turbines"

Transcription

1 CFD and wave and current induced loads on offshore wind turbines O. M. Faltinsen and M. Greco, CeSOS, NTNU SPH predictions by CNR-Insean

2 Relevant offshore wind turbines Relevant hydrodynamic problems are similar as for other offshore structures

3 Problems of Practical Interest Slowly-varying (Slow-drift) motions: Moored offshore platforms Resonance caused by second-order wave-body interaction effects Wave-drift and viscous damping

4 Transient ringing response of monotowers and TLPs Springing of TLP Resonance caused by second-order wave-body interaction effects in operating conditions Viscous damping Caused by 3rd and 4th-order wave-body interaction effects in survival conditions in deep water Ringing in shallow water due to plunging breaking waves Damping is secondary

5 Wetdeck slamming Wave run up and slamming Global and local effects

6 Accidental load: Breaking wave impact on platform column Experiments The resulting shear forces can cause structural failure of a concrete structure Steep and breaking deep-water waves. Scale 1:40 & 1:125 Correspond to extreme events in severe storms (H s =18m, T p =17s)

7 Breaking wave forces in shallow water Truss support structure for wind turbines on the ThorntonBank, Belgian Coast. Design by Reinertsen A/S. Truss structure in shallow water A. Chella

8 Mathieu-type instability Damping is important Time-dependent change of waterplane area shape and position Haslum Model test with scaled 202.5m draft Spar in 8.5m wave amplitude and 22.5s wave period Maximum response: Heave amplitude=20m Pitch amplitude=20 o Time-dependent difference between centers of gravity and buoyancy

9 Vortex Induced Motions (VIM) and Vibrations (VIV)

10 Marine installation operations using a floating vessel/jack-up Resonance and viscous damping Lin Li, T. Moan

11 Access to offshore wind turbines Minimize relative motion between ship and wind turbine support structure by automatic control Wave run up at the structure matters Use of high-speed Surface Effect Ship

12 Tools Experiments Analytical Solutions CFD Methods Approximate Computational Tools

13 Tools Complex models Complex geometries Visualization Global & local estimates Peric, CFD Workshop, Trondheim (2007) CFD Methods (Navier-Stokes solvers) - Reliability -Costs

14 Survey by International Towing Tank Conference (ITTC) (2011) What are the difficulties and limitations of CFD to achieve wider use and acceptance to marine hydrodynamic problems? The accuracy of CFD is a main problem (Industries and universities) Grid generation is a major problem (Model basins) CFD Methods (Navier-Stokes solvers)

15 Main Features of a CFD Solver 1. Modelling 2. Discretization 3. Reliability analysis

16 1) Modelling Define the problem

17 Define the Problem Air Body Water Space: P Time : t Computational Domain,

18 1) Modelling Define the problem Define the fluid/flow properties

19 Define Fluid/Flow Properties Examples: Compressible or incompressible fluid? Air? Water

20 Compressibility is secondary for water, but may be important for air

21 Define Fluid/Flow Properties Examples: Viscous or inviscid fluid? Water?

22 Define Fluid/Flow Properties Examples: Laminar or turbulent flow? t 0 t 1 t 2 t 3? t 0 t 1 t 2 t 3 Path of a fluid particle in laminar flow Mean path of a fluid particle in turbulent flow

23 Turbulence Turbulence involves low space-time scales. Proper modelling is still an open question. t 0 t 1 t 2 t 3 Mean path of a fluid particle

24 Viscous effects must be considered when flow separation occurs Occurs for structures with small cross-sectional area Water

25 Turbulent flow is secondary with flow separation from sharp corners Water

26 1) Modelling Define the problem Define the fluid/flow properties Identify the variables of the problem

27 Identify the variables of the Problem - Assume no air pockets - Air irrelevant for water evolution - Incompressible fluid Pressures Integrated hydrodynamic loads Motions Body Water u, p Surrounding fluid Fluid point

28 1) Modelling Define the problem Define the fluid/flow properties Identify the variables of the problem Find the equations

29 Governing Equations They are given by fluid conservation properties: 1) Conservation of fluid mass 2) Conservation of fluid momentum Navier-Stokes equations

30 Governing Equations Conservation of fluid mass: (Incompressible Fluid) Volume = constant Zero net flux B

31 Initial Conditions - Unsteady problem Body (u, p) at t = 0 Water

32 Boundary Conditions Body Wetted hull Free surface Water Control surface

33 1) Modelling Remark Modelling implies assumptions and they may be wrong.

34 2) Discretization h : discretization size 1 h Body i Water N

35 CFD Scenarios Basic Assumptions Potential Flow Methods BEM, HPC Field Equations Navier-Stokes Methods Field Methods Interfaces Grid Methods (FVM/FDM/FEM) Forms of the Governing Eqs Boundary-Fitted Grids Not Boundary- Fitted Grids Lagrangian Gridless Methods Moving particles (SPH, MPS) Fixed Nodes (RKPM) Immersed in the Comput. Domain body modeled numerically Grid methods: inside body problem, body capturing.. Gridless methods: body force/particles, ghost particles.. Interface capturing (VOF, LS, MAC, CIP) Body Gas-liquid Interface Domain Boundary body naturally tracked Interface tracking Eulerian Solution view point Eulerian Lagrangian

36 Potential Flow Methods Incompressible inviscid water with irrotational motion Equations with unknowns on the boundary Equations with unknowns in the domain Computational Domain Computational Domain Boundary Element Methods Field Methods

37 Potential Flow Methods Harmonic Polynomial Cell (HPC) method wave maker water surface Features: 2D sketch of the wave tank Water divided by cells Within each cell, the physical variables are expressed by harmonic polynomials; Benefits: Efficient (sparse matrix) Accurate (higher order) Easy to implement 3D wave-body interaction Yanlin Shao

38 Solution Point of View Lagrangian : The solution is found through moving grid/particles. u

39 Solution Point of View Eulerian : The solution is found at fixed locations.

40 Solution Point of View Eulerian : The solution is found at fixed locations. When Eulerian strategy is used for the field equations an additional technique is required to predict free-surface evolution

41 Strategies for Free-Surface Evolution Lagrangian strategy t 1 t 0 Eulerian strategy f j f i f j f i t 0 t 1

42 Free-surface Evolution VoF Method Hp: The quantity f is the fraction of water volume < 1 < 1 Free surface 1 1

43 Free-surface capturing methods (Level Set, VOF, Colour functions) Initial artificial change between water and air must remain small

44

45 CFD Scenarios Potential Flow Methods Hybrid Methods BEM, HPC Field Equations Navier-Stokes Methods Field Methods Interfaces Grid Methods (FVM/FDM/FEM) Fixed Grids Boundary-Fitted Grids Eulerian Lagrangian Gridless Methods Meshless FEM Particle Methods (SPH, MPS) Time evolution Higher-order methods Immersed in the Comput. Domain body modeled numerically Grid methods: inside body problem, body capturing.. Gridless methods: body force/particles, ghost particles.. Eulerian: interface capturing (VOF, LS, MAC, CIP) Body Air-Water Interface Explicit Semi-Implicit Implicit Domain Boundary body naturally tracked Lagrangian : interface tracking

46 Hybrid method Vortex shedding causes damping of resonant motions Coupled potential flow (linear) and local viscous solutions with flow separation with significant reduction of computational speed

47 Hybrid method Linear or weakly nonlinear potential-flow solver Efficiency Accuracy Navier-Stokes solver Breaking Fragmentation Air entrainment Viscosity

48 CFD and CeSOS BEM (Boundary Element Method) HPC (Harmonic Polynomial Cell) SPH (Smoothed Particle Hydrodynamics) FDM (Finite Difference Method)+Level Set CIP(Constrained Interpolation Profile): FDM with CIP used during advection step. Combined with colour functions OpenFoam (FVM+VOF) Maxwell-Boltzmann method and use of GPU Hybrid methods for locally separated flow (HPC,FVM) Hybrid methods for green water on deck

49 Reliability Analysis 1) Verification: Solving the equations right? The check of 1) means comparing with other benchmark numerical tests and analytical solutions using the same model. 2) Validation: Solving the right equations? The check of 2) means comparing with model tests. Experiments have also errors Error analysis is needed in both experiments and computations

50 Is this correct?

51 Frame Jan 2013 contour lines Numerical wave tank wave maker water surface Wave beach Numerical damping can cause too quick decay of waves on a coarse grid Numerical dispersion can cause too large error in the dispersion relation between wave length and wave speed

52 Wave focusing due to uneven seafloor Frame May d contour Water surface Y Z X Sea floor HPC results agree well with experiments

53 Verification and validation of ringing loads Comparisons with numerical (Ferrant) and experimental (Huseby&Grue) results Linear Force Analytical Experiment Present Ferrant Wave slope ka Sum Frequency Force Analytical Experiment Present Ferrant Wave slope ka Triple Frequency Force Analytical Experiment Present Ferrant Wave slope ka Quadruple Frequency Force Experiment Ferrant Present Wave 0.25 ka slope Time-domain nonlinear wave forces on a cylinder with exact free-surface conditions by the HPC method Yanlin Shao

54 Ringing of monotower in survival condition Steep local waves propagating on the two sides of the cylinder The waves start on the upstream hull side when there is a wave trough

55 Ringing of monotower in survival condition The two steep propagating waves will later collide Big splash

56 Water entry of circular cylinders Relevant for impact loads on vertical cylinders due to steep waves Wienke&Oumeraci

57 Non-viscous flow separation on a curved surface by BEM t = 0.315s t = 0.390s t = 0.500s t = 0.410s

58 Convergence studies for water entry of circular cylinder with commercial CFD code based on FVM and VOF The effect of the time step size dt on the slamming force coefficient C F / Experiments: C = 5.15 / ( Vt / R) V t / R S S 3 RV 2 C S Neither the force nor the force impulse converge CIP code developments at CeSOS: X. Zhu : Converged force impulse T. Vestbøstad: Satisfactory force Vt R

59 Verification and validation of numerical predictions of local slamming Temarel (2009) Viscous effects can be neglected and potential flow assumed Simple case Difficult benchmark tests: Small local deadrise angles Ventilation Experimental errors (bias and precision errors) Bias examples: 3D flow, oscillatory rig motions, elastic rope forces

60 p p 0.5 V 0 2 Difficult benchmark test Water entry of wedge with deadrise angle 7.5 degrees and constant velocity V Slamming predictions by commercial code (FVM+VOF) Commercial code Human errors? Similarity solution BEM Composite Wagner solution Polynomial fit of average commercial code results z Vt

61 Summary There exists a broad variety of CFD methods Computational time is of concern for wave and current induced loads Physical simplifications by potential flow and hybrid methods reduce computational time Reliability of CFD results All physical problems such as turbulence is not fully understood Convergence Verification and validation

62 Some Useful CFD References Brebbia C. A. many books on Boundary Elements, WIT Press. Ferziger J.H., Peric M. Computational methods for fluid dynamics, Springer. Faltinsen, O. M., Timokha, A. (2009) Sloshing, Chapter 10, Cambridge University Press. Hirt C.W., Nichols B.D. (1988)"VolumeofFluid(VOF)MethodfortheDynamicsof Free Boundaries," J. of Comput. Phys., 39, 201, Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge. Monaghan J.J. (1994) "Simulating free surface flows with SPH", J. Comp. Physics, 110, Sussman M., Smereka P., Osher S. (1994) A level set method for computing solutions to imcompressible two-phase flow, J. Comput. Phys, 119, Unverdi S.O., Tryggvason G. (1992) "A Front Tracking Method for Viscous Incompressible Flows, J. of Comput.Phys., 100, Yabe T., Ogata Y., Takizawa K., Kawai T., Segawa A., Sakurai K. (2002) The next generation CIP as a conservative semi-lagrangian solver for solid, liquid, and gas, J. Comput. Appl. Math., 149,

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

More information

A Cost- Effective Computational Tool for Offshore Floater Design

A Cost- Effective Computational Tool for Offshore Floater Design Introduction A Cost- Effective Computational Tool for Offshore Floater Design Jang Whan Kim, Hyunchul Jang & Jim O Sullivan Technip Offshore floating platforms are complex engineering systems with numerous

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

Current Induced Loads and Motions of Offshore Structures

Current Induced Loads and Motions of Offshore Structures CURRENT AFFAIRS JIP, Project Plan V2.0 MARIN project 21004 Current Induced Loads and Motions of Offshore Structures Research Partners: Objective: 'To develop tools and guidelines to assist engineers in

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms

Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms Alexander J. Dunbar 1, Brent A. Craven 1, Eric G. Paterson 2, and James G. Brasseur 1 1 Penn State University;

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

Simulation of Offshore Structures in Virtual Ocean Basin (VOB)

Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Dr. Wei Bai 29/06/2015 Department of Civil & Environmental Engineering National University of Singapore Outline Methodology Generation of

More information

Numerical Wave Generation In OpenFOAM R

Numerical Wave Generation In OpenFOAM R Numerical Wave Generation In OpenFOAM R Master of Science Thesis MOSTAFA AMINI AFSHAR Department of Shipping and Marine Technology CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2010 Report No. X-10/252

More information

How To Run A Cdef Simulation

How To Run A Cdef Simulation Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

OVERSET GRID CFD APPLICATIONS FOR CHALLENGING HYDRODYNAMIC PROBLEMS

OVERSET GRID CFD APPLICATIONS FOR CHALLENGING HYDRODYNAMIC PROBLEMS OVERSET GRID CFD APPLICATIONS FOR CHALLENGING HYDRODYNAMIC PROBLEMS OFFSHORE Hamn-Ching Chen 1, Sing-Kwan Lee 2 and Ah Kuan Seah 3 1 Zachry Department of Civil Engineering, Texas A&M University, College

More information

HydrOcean, your numerical hydrodynamic partner

HydrOcean, your numerical hydrodynamic partner HydrOcean, your numerical hydrodynamic partner Contact: Luke Berry, Account Manager Luke.berry@hydrocean.fr Tel: +33 (0)2 40 20 60 94 Who We Are Overview Founded in 2007 by E. Jacquin Spinoff from Ecole

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Model of a flow in intersecting microchannels. Denis Semyonov

Model of a flow in intersecting microchannels. Denis Semyonov Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required

More information

CFD Based Air Flow and Contamination Modeling of Subway Stations

CFD Based Air Flow and Contamination Modeling of Subway Stations CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George

More information

Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms

Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms Dr. Ted Frankiewicz Dr. Chang-Ming Lee NATCO Group Houston, TX USA IBC 9 th

More information

USING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE PLATFORMS: THE EFFECT OF MOORING SYSTEM

USING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE PLATFORMS: THE EFFECT OF MOORING SYSTEM Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009 USING SMOOTHED PARTICLE HYDRODYNAMICS TO STUDY WAVE IMPACT ON FLOATING OFFSHORE

More information

FLOODING AND DRYING IN DISCONTINUOUS GALERKIN DISCRETIZATIONS OF SHALLOW WATER EQUATIONS

FLOODING AND DRYING IN DISCONTINUOUS GALERKIN DISCRETIZATIONS OF SHALLOW WATER EQUATIONS European Conference on Computational Fluid Dynamics ECCOMAS CFD 26 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 26 FLOODING AND DRING IN DISCONTINUOUS GALERKIN DISCRETIZATIONS

More information

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357

More information

A. Ricci, E. Giuri. Materials and Microsystems Laboratory

A. Ricci, E. Giuri. Materials and Microsystems Laboratory Presented at the COMSOL Conference 2009 Milan FSI Analysis of Microcantilevers Vibrating in Fluid Environment Materials and Microsystems Laboratory Politecnico di Torino Outline Brief Presentation of Materials

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines

Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.-Ing.

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations

Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations SAFIR2010 Seminar, 10.-11.3.2011, Espoo Juho Peltola, Timo Pättikangas (VTT) Tomas Brockmann, Timo Siikonen

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Overset Grids Technology in STAR-CCM+: Methodology and Applications

Overset Grids Technology in STAR-CCM+: Methodology and Applications Overset Grids Technology in STAR-CCM+: Methodology and Applications Eberhard Schreck, Milovan Perić and Deryl Snyder eberhard.schreck@cd-adapco.com milovan.peric@cd-adapco.com deryl.snyder@cd-adapco.com

More information

A study of wave forces on offshore platform by direct CFD and Morison equation

A study of wave forces on offshore platform by direct CFD and Morison equation A study of wave forces on offshore platform by direct CFD and Morison equation D. Zhang 1 E. G. Paterson 2 Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University 1 liybzd@vt.edu

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

How To Model A Horseshoe Vortex

How To Model A Horseshoe Vortex Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering

More information

A moving piston boundary condition including gap flow in OpenFOAM

A moving piston boundary condition including gap flow in OpenFOAM A piston boundary condition including gap flow in OpenFOAM CLEMENS FRIES Johannes Kepler University IMH Altenbergerstrasse 69, 44 Linz AUSTRIA clemens.fries@jku.at BERNHARD MANHARTSGRUBER Johannes Kepler

More information

CFD Simulation of Flow- Induced Motions of a Multi- Column Floating Platform

CFD Simulation of Flow- Induced Motions of a Multi- Column Floating Platform CFD Simulation of Flow- Induced Motions of a Multi- Column Floating Platform Recent improvements in capabilities of both hardware and software allow solving the coupled rigid body motions for the floating

More information

CFD modelling of floating body response to regular waves

CFD modelling of floating body response to regular waves CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science

More information

Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam

Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam Journal of Clean Energy Technologies, Vol. 3, No. 4, July 05 Numerical Modelling of Regular Waves Propagation and Breaking Using WavesFoam B. Chenari, S. S. Saadatian, and Almerindo D. Ferreira numerical

More information

NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES

NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence

More information

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich Department of Mechanical Engineering, New Mexico Institute of Mining

More information

Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.

Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B. 2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS

More information

CFD Case Studies in Marine and Offshore Engineering

CFD Case Studies in Marine and Offshore Engineering CFD Case Studies in Marine and Offshore Engineering Milovan Perić CD-adapco, Nürnberg Office www.cd-adapco.com Milovan.Peric@de.cd-adapco.com Introduction CD-adapco software: a brief overview Case studies

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

CFD Simulation of Subcooled Flow Boiling using OpenFOAM

CFD Simulation of Subcooled Flow Boiling using OpenFOAM Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD

More information

ABS TECHNICAL PAPERS 2008 A STERN SLAMMING ANALYSIS USING THREE-DIMENSIONAL CFD SIMULATION. Suqin Wang Email: SWang@eagle.org

ABS TECHNICAL PAPERS 2008 A STERN SLAMMING ANALYSIS USING THREE-DIMENSIONAL CFD SIMULATION. Suqin Wang Email: SWang@eagle.org ABS TECHNICAL PAPERS 8 Proceedings of OMAE 8 7 th International Conference on Offshore Mechanics and Arctic Engineering 15- June, 8, Estoril, Portugal OMAE8-5785 A STERN SLAMMING ANALYSIS USING THREE-DIMENSIONAL

More information

HPC Deployment of OpenFOAM in an Industrial Setting

HPC Deployment of OpenFOAM in an Industrial Setting HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

E. Marino 1, C. Lugni 2, G. Stabile 1, C. Borri 1

E. Marino 1, C. Lugni 2, G. Stabile 1, C. Borri 1 Proceedings of the 9th International Conference on Structural Dynamics, EURODYN Porto, Portugal, June - July A. Cunha, E. Caetano, P. Ribeiro, G. Müller (eds.) ISSN: -9; ISBN: 97-97-75-5- Coupled dynamic

More information

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

An Introduction to Hydrocode Modeling. Gareth S. Collins

An Introduction to Hydrocode Modeling. Gareth S. Collins An Introduction to Hydrocode Modeling Gareth S. Collins August 2, 2002 1 Introduction The hydrocode is a computational tool for modeling the behavior of continuous media. In its purest sense, a hydrocode

More information

University Turbine Systems Research 2012 Fellowship Program Final Report. Prepared for: General Electric Company

University Turbine Systems Research 2012 Fellowship Program Final Report. Prepared for: General Electric Company University Turbine Systems Research 2012 Fellowship Program Final Report Prepared for: General Electric Company Gas Turbine Aerodynamics Marion Building 300 Garlington Rd Greenville, SC 29615, USA Prepared

More information

Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

Laminar Flow in a Baffled Stirred Mixer

Laminar Flow in a Baffled Stirred Mixer Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating

More information

CFD IN CONCEPTUAL SHIP DESIGN

CFD IN CONCEPTUAL SHIP DESIGN 2011 MASTER S THESIS CFD IN CONCEPTUAL SHIP DESIGN MSc in Marine Technology Stud. Techn. Petter Olav Vangbo i ii Master s Thesis in Marine Systems Design Stud. Techn. Petter Vangbo CFD in conceptual ship

More information

CFD Analysis of Sloshing Within Tank

CFD Analysis of Sloshing Within Tank Roshan Ambade 1, Rajesh Kale 2 P.G. Student, Department of Mechanical Engineering, RGIT, Mumbai, India 1 Associate Professor, Department of Mechanical Engineering, RGIT, Mumbai, India 2 Abstract Tanker

More information

WavePiston Project. Structural Concept Development Hydrodynamic Aspects. Preliminary Analytical Estimates. February 2010

WavePiston Project. Structural Concept Development Hydrodynamic Aspects. Preliminary Analytical Estimates. February 2010 WavePiston Project Structural Concept Development Hydrodynamic Aspects Preliminary Analytical Estimates February 2010 WavePiston Project Structural Concept Development Hydrodynamic Aspects Preliminary

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains

Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,

More information

Part II: Finite Difference/Volume Discretisation for CFD

Part II: Finite Difference/Volume Discretisation for CFD Part II: Finite Difference/Volume Discretisation for CFD Finite Volume Metod of te Advection-Diffusion Equation A Finite Difference/Volume Metod for te Incompressible Navier-Stokes Equations Marker-and-Cell

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

Computational Modeling of Wind Turbines in OpenFOAM

Computational Modeling of Wind Turbines in OpenFOAM Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@uni-oldenburg.de ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

OpenFOAM Opensource and CFD

OpenFOAM Opensource and CFD OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD

More information

Vista: A Multi-field Object Oriented CFD-package

Vista: A Multi-field Object Oriented CFD-package Vista: A Multi-field Object Oriented CFD-package T. Kvamsdal 1, R. Holdahl 1 and P. Böhm 2 1 SINTEF ICT, Applied Mathematics, Norway 2 inutech GmbH, Germany Outline inutech & SINTEF VISTA a CFD Solver

More information

Extension of the OpenFOAM CFD tool set for modelling multiphase flow

Extension of the OpenFOAM CFD tool set for modelling multiphase flow Extension of the OpenFOAM CFD tool set for modelling multiphase flow Ridhwaan Suliman Johan Heyns Oliver Oxtoby Advanced Computational Methods Research Group, CSIR South Africa CHPC National Meeting, Durban,

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Introduction to Computational Fluid Dynamics Instructor: Dmitri Kuzmin Institute of Applied Mathematics University of Dortmund kuzmin@math.uni-dortmund.de http://www.featflow.de Fluid (gas and liquid)

More information

Introduction to CFD Basics

Introduction to CFD Basics Introduction to CFD Basics Rajesh Bhaskaran Lance Collins This is a quick-and-dirty introduction to the basic concepts underlying CFD. The concepts are illustrated by applying them to simple 1D model problems.

More information

Hydrodynamics of stellar explosions

Hydrodynamics of stellar explosions Some basic hydrodynamics The art of CFD Hydrodynamic challenges in stellar explosions Hydrodynamics of stellar explosions General: Literature L.D.Landau & E.M.Lifshitz, Fluid Mechanics, Pergamon (1959)

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

Steady Flow: Laminar and Turbulent in an S-Bend

Steady Flow: Laminar and Turbulent in an S-Bend STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

More information

Customer Training Material. Lecture 5. Solver Settings ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 5. Solver Settings ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 5 Solver Settings Introduction to ANSYS FLUENT L5-1 Solver Settings - Introduction So far we have looked at how to setup a basic flow simulation in FLUENT. However you should not assume that just

More information

Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method

Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method Graduation Committee: Prof. Dr. A.V. Metrikine Dr. Ir. M.A.N. Hriks Dr. Ir. E.M. Lourens

More information

Set up and solve a transient problem using the pressure-based solver and VOF model.

Set up and solve a transient problem using the pressure-based solver and VOF model. Tutorial 18. Using the VOF Model This tutorial was run using ANSYS FLUENT 12.1. The results have been updated to reflect the change in the default setting of node-based smoothing for the surface tension

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information

CFD Applications using CFD++ Paul Batten & Vedat Akdag

CFD Applications using CFD++ Paul Batten & Vedat Akdag CFD Applications using CFD++ Paul Batten & Vedat Akdag Metacomp Products available under Altair Partner Program CFD++ Introduction Accurate multi dimensional polynomial framework Robust on wide variety

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Waves. Wave Parameters. Krauss Chapter Nine

Waves. Wave Parameters. Krauss Chapter Nine Waves Krauss Chapter Nine Wave Parameters Wavelength = λ = Length between wave crests (or troughs) Wave Number = κ = 2π/λ (units of 1/length) Wave Period = T = Time it takes a wave crest to travel one

More information

Extreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests

Extreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests Extreme Wave Effects on Deep Water TLPs Lessons Learned from the Snorre A Model Tests T.B.Johannessen (Aker Kværner Engineering & Technology) 1, S.Haver (Statoil), T.Bunnik & B.Buchner (MARIN) Abstract

More information

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves

Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems

More information

Proceedings of OMAE'01 20 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2001, Rio de Janeiro, Brazil

Proceedings of OMAE'01 20 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2001, Rio de Janeiro, Brazil Proceedings of OMAE' 2 th International Conference on Offshore Mechanics and Arctic Engineering June 3-8, 2, Rio de Janeiro, Brazil OMAE2/SR-259 PROBABILISTIC MODELLING AND ANALYSIS OF RISER COLLISION

More information

COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER

COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia - December COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER Y. Saito *, T. Soma,

More information

SIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS

SIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS SIMULATING WAVE ACTION IN THE WELL DECK OF LANDING PLATFORM DOCK SHIPS USING COMPUTATIONAL FLUID DYNAMICS Don Bass, Memorial University of Newfoundland, Canada David Molyneux, National Research Council,

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface

Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface Thomas P. Lloyd, Stephen R. Turnock and Victor F. Humphrey Fluid-Structure Interactions Research Group; Institute

More information

www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software

www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software Content Executive Summary... 3 Characteristics of Electromagnetic Sensor Systems... 3 Basic Selection

More information