A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS

Size: px
Start display at page:

Download "A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS"

Transcription

1 ICONIC 2007 St. Louis, MO, USA June 27-29, 2007 A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS Ali Alaeldine 12, Alexandre Boyer 3, Richard Perdriau 1, Sonia Ben Dhia 3, Mohamed Ramdani 1, and Etienne Sicard 3 1 ESEO Angers - 4, rue Merlet-de-la-Boulaye - BP Angers Cedex 01 - France 2 IETR - INSA de Rennes - 20, avenue des Buttes de Coësmes Rennes Cedex - France 3 LESIA - INSA de Toulouse - 135, avenue de Rangueil Toulouse Cedex 04 - France Abstract This paper introduces a complete electrical simulation model of a near-field injection setup, used to measure the immunity of integrated circuits to radiated near-field aggression. This model includes the measurement setup itself, as well as the integrated circuit under test, its environment (printed circuit board, power supply), and finally power losses. Therefore, the amount of power injected through a near field probe, triggering a malfunction of an integrated circuit according to a given criterion, can be identified and predicted at any frequency up to 1 GHz. The validation of this model is ensured through a comparison between measurement and simulation results. Keywords: EMC, integrated circuit, near-field aggression, immunity measurement, immunity simulation. 1 INTRODUCTION Within the recent years, many digital and analog integrated circuits (ICs) have become more and more susceptible, due to an increased number of interfaces, higher data rates, decreased node capacitance, and a steady reduction in power supply voltage and, consequently, noise margin. In order to characterize the electromagnetic behavior of these ICs, several measurement methods have been developed by the International Electrotechnical Commission (IEC), including near-field [1]. However, this standard is limited to emission, although near-field can be used for immunity as well, by injecting power into the pins of an IC through a near-field probe and observing its behavior according to a given criterion [2]. This method is proposed as an extension to the existing BCI test methodology [3] for frequencies above 400 MHz. Moreover, the characterization of this behavior by simulation, during the design phase of the IC, is time- and money-saving. Therefore, this paper introduces a susceptibility-oriented electrical model of a near-field injection set-up, making it possible to predict the immunity of an IC on a given printed circuit board (PCB). Corresponding author -

2 2 NEAR-FIELD MEASUREMENT SET-UP The measurement set-up chosen for the characterization of the susceptibility of an IC to near-field interference closely mimics the Direct Power Injection (DPI) set-up [4]. It is depicted in Fig. 1. Fig. 1. Near-field injection set-up For this experiment, a digital IC (CESAME), designed by ST-Microelectronics in 0.18 µm technology, is mounted on a 10x10 cm 4-layer PCB [5], and powered by a 9 V battery through a 1.8 V regulator. This circuit consists of 6 cores, differing only by their power supply strategy, and was initially developed for the validation of low-emission design rules. Each core includes 240 identical synchronous base cells, the output of one of them being made available on a pin. The IC is fed with 20 MHz clock and 10 MHz data signals, in order to ensure normal operation. Then, a near-field aggression is injected through a magnetic probe located at 1 mm above the V dd pin of the NORM core. This probe is fed by a RF generator and a 10 W power amplifier through a directional coupler, allowing the measurement of incident and reflected powers through a dual-channel power meter. Therefore, an inductive coupling is established between the magnetic probe and the V dd pin. 3 COMPLETE ELECTRICAL MODEL OF THE NEAR-FIELD SET-UP Since the evaluation of the immunity of an integrated circuit under test requires an exact knowledge of the power actually injected into the circuit, it is compulsory to model the whole near-field set-up very accurately. Therefore, each part of the set-up must be modeled as equivalent passive elements; these individual models must then be combined in order to obtain the whole equivalent model.

3 3.1 Modeling of the injection system The magnetic probe used in the near-field injection system is essentially a coaxial cable with a copper core. Some measurements performed with a vector network analyzer (VNA) demonstrate that its model is inductive, with a low series resistance. Therefore, the probe is modeled as a series RL circuit, while the cable and the directional coupler are replaced by a transmission line adapted to 50 Ω, with ns delay time. Then, the inductive coupling between the loop of the magnetic probe and the pin under influence is represented by a mutual inductance (in the theoretical model) or a coupling factor K M (in the Spice electrical model of the whole system under test). This mutual inductance M 12 is given by Eq.1: M 12 = φ 2 = µ S H i d S (1) I 1 I2 =0 I 1 The value of this coupling is computed with the IC-EMC software developed at LESIA-Toulouse [6]. 3.2 Modeling of power losses During a near-field experiment, only a small amount of the injected power enters the IC, the remainder being either dissipated in other discrete components or radiated in free space. From 10 MHz to 1 GHz, these power losses are due to many different phenomena : losses in the directional coupler and the cables, radiated losses around the magnetic probe, skin effect of the probe. Therefore, an equivalent R loop resistance is added in the model, and takes into account these different power losses (Fig. 2, left). R loop is deduced from measurement data obtained using the VNA. A comparison between measurement and simulation, including the internal impedance of the magnetic probe is shown in Fig.2 (right). The measurement also demonstrates that the highest power losses come from the cables. The whole electrical model simulated with Spice includes this resistance. R loop is frequency-dependent [4] and represents the real part of the impedance. 3.3 Modeling of the PCB under test In this study, the PCB under test includes its own power supply, composed of a 9 V battery and several regulators powering the digital core and IOs of the IC. The 1.8 V regulator, the battery and the PCB tracks (including vias) are modeled by series RLC networks from measurements of their equivalent impedances with the VNA. 3.4 Modeling of the CESAME integrated circuit In order to enhance the accuracy of the simulation, the CESAME integrated circuit has to be modeled thoroughly, from package to die.

4 Equivalent loss resistance versus frequency Impedance of the magnetic probe versus frequency Fig. 2. Characterization of the magnetic probe The electrical model of CESAME s TQFP144 package was obtained from a 3D electromagnetic simulation with HFSS R (Ansoft R ) [7] and verified with ASERIS-EMC2000 R (EADS-CCR R ) [8] at LESIA. It includes the leadframe, the bonding and the pads. Then, the electrical model of the die, including power rails, is added. In order to speed up time-domain simulation, only the transistor netlist of one base cell (reference cell) is included in the whole netlist and simulated with Eldo R (Mentor Graphics R ) [9]. The remaining cells are replaced by an equivalent parallel RC model representing the impedance of all CMOS transistors, and the reference cell is fed with clock and data signals. 3.5 Electrical model of the whole set-up By assembling all the models previously computed, a complete electrical SPICE model of the nearfield setup can be established, and is depicted in Fig.3. The upper left part models the injection path, including the generator, the coupler, the cables and the magnetic loop (R loop represents equivalent losses); the power supply model is located in the lower left corner of the figure, and is connected with the package model, the latter being inductively coupled with the loop (K3); finally (lower right corner), the model of the IC includes its passive power supply network (pads and rails) as well as the active core itself (rightmost part). Since power generators can not be modeled with SPICE, the generator used for measurements is replaced by a sine-wave voltage generator for simulation purposes; the amplitude of the resulting signal increases from 0 to V (40 dbm on a 50-Ω load). The incident power is thus given in Eq.2 : P inc = (V in+i in Z c ) 2 2 (2) 50

5 Fig. 3. Complete electrical model of the near-field injection setup, coupled to the device under test mounted on its test board 4 RESULTS A first immunity simulation was performed from 10 MHz to 1 GHz, including the frequencydependent loss model (R loop ). This time-domain simulation is performed for each frequency step (10 MHz); a failure in the IC is characterized by the undulation of the output signal reaching 20 % of the logic "1" voltage level, or by the jitter of this output signal reaching 10 % of the period. Fig.4 depicts the comparison between experimental measurements and simulation results. It can be noted that the IC is immune to a 10-watt incident power below 200 MHz. Above this frequency, the circuit is becoming more and more susceptible. An encouraging correlation between measurement and simulation results can be observed. The difference is greater then 3 dbm only at 300 and 500 MHz. The discrepancies (including a 10-MHz frequency shift below 500 MHz) may be due to small differences in the impedance of the whole model in simulation and measurement, the disadaptation of the magnetic probe, and the parasitic coupling of the magnetic probe with adjacent pins, which has to be characterized with better accuracy. 5 CONCLUSION In this paper, a complete electrical model of a near-field injection set-up was presented. Each part of the system was characterized and modeled, including frequency-dependent power losses. Immunity simulations were performed using the complete electrical model, and compared with experimental results. They demonstrate that there is an encouraging correlation between measurements and simulations. In a near future, other immunity tests such as very fast transmission-line

6 Fig. 4. Immunity simulation of the near-field model (dashed line) and measurement results (solid line) pulsing (VF-TLP) will be performed on the same PCB and IC, and their results will be compared with those obtained in this paper. References 1. IEC EMC Task Force. IEC : Integrated circuits, measurement of electromagnetic emissions, 150 khz to 1 ghz - part 3: Measurement of radiated emissions - surface scan method. Draft technical report, IEC. 2. J.J. Laurin, S.G. Zaky, and K.G. Balmain. EMI-induced failures in crystal oscillators. IEEE Transactions on Electromagnetic Compatibility, 33(4): , November IEC EMC Task Force. IEC : Immunity test to narrowband disturbances by bulk current injection (BCI), 10khz- 400mhz. Draft technical report, IEC, M. Ramdani, A. Alaeldine, and R. Perdriau. Power modeling for susceptibility prediction in integrated circuits. In Workshop, EMC Europe 2006, Barcelona, September B. Vrignon, S. Ben Dhia, E. Lamoureux, and E. Sicard. Characterization and modeling of parasitic emission in deep submicron CMOS. IEEE Transactions on Electromagnetic Compatibility, 47(2): , May LESIA-INSA Toulouse. IC-EMC. 7. Ansoft Corporation. HFSS. 8. EADS-CCR. ASERIS-EMC Mentor Graphics Corporation. ELDO.

EMC / EMI issues for DSM: new challenges

EMC / EMI issues for DSM: new challenges EMC / EMI issues for DSM: new challenges A. Boyer, S. Ben Dhia, A. C. Ndoye INSA Toulouse Université de Toulouse / LATTIS, France www.ic-emc.org Long Term Reliability in DSM, 3rd October, 2008 www.ic-emc.org

More information

IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits

IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits SUMMARY CONTENTS 1. CONTEXT 2. TECHNOLOGY TRENDS 3. MOTIVATION 4. WHAT IS IC-EMC 5. SUPPORTED STANDARD 6. EXAMPLES CONTEXT - WHY

More information

IC-EMC v2 Application Note. A model of the Bulk Current Injection Probe

IC-EMC v2 Application Note. A model of the Bulk Current Injection Probe IC-EMC v2 Application Note A model of the Bulk Current Injection Probe This work has been conducted by S. Akue Boulingui and A. Cisse Ndoye within the French project EPEA-Aerospace Valley funded by the

More information

PCB Radiation Mechanisms: Using Component-Level Measurements to

PCB Radiation Mechanisms: Using Component-Level Measurements to Radiation Directly from PCB Structures PCB Radiation Mechanisms: Using Component-Level Measurements to Determine System-Level Radiated Emissions Signal or component voltage appears between two good antenna

More information

Grounding Demystified

Grounding Demystified Grounding Demystified 3-1 Importance Of Grounding Techniques 45 40 35 30 25 20 15 10 5 0 Grounding 42% Case 22% Cable 18% Percent Used Filter 12% PCB 6% Grounding 42% Case Shield 22% Cable Shielding 18%

More information

Reproducing system-level bulk current injection test in direct power injection setup for multiple-port DUTs

Reproducing system-level bulk current injection test in direct power injection setup for multiple-port DUTs Adv. Radio Sci., 11, 177 182, 1 www.adv-radio-sci.net/11/177/1/ doi:.19/ars-11-177-1 Author(s) 1. CC Attribution. License. Advances in Radio Science Reproducing system-level bulk current injection test

More information

CONDUCTED EMISSION MEASUREMENT OF A CELL PHONE PROCESSOR MODULE

CONDUCTED EMISSION MEASUREMENT OF A CELL PHONE PROCESSOR MODULE Progress In Electromagnetics esearch C, Vol. 42, 191 203, 2013 CONDUCTED EMISSION MEASUEMENT OF A CELL PHONE POCESSO MODULE Fayu Wan *, Junxiang Ge, and Mengxiang Qu Nanjing University of Information Science

More information

Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material

Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material Yu Xuequan, Yan Hang, Zhang Gezi, Wang Haisan Huawei Technologies Co., Ltd Lujiazui Subpark, Pudong Software

More information

Radiated emission measurement of a cell phone processor module using TEM cell

Radiated emission measurement of a cell phone processor module using TEM cell , pp.48-53 http://dx.doi.org/10.14257/astl.2013.28.09 Radiated emission measurement of a cell phone processor module using TEM cell Fayu Wan 1,2*, Qi Liu 3, Jian Shen 3, Jin Wang 3 and Nigel Linge 4 1

More information

IMMUNITY TESTING TO IEC SPECIFICATIONS by Thomas C. Moyer, Amplifier Research

IMMUNITY TESTING TO IEC SPECIFICATIONS by Thomas C. Moyer, Amplifier Research IMMUNITY TESTING TO IEC SPECIFICATIONS by Thomas C. Moyer, Amplifier Research SUMMARY The European Union of 15 member countries has a population of 370 million people and it represented 16% of the US exports

More information

Radiated Emission and Susceptibility

Radiated Emission and Susceptibility Radiated Emission and Susceptibility Tzong-Lin Wu, Ph.D. EMC Lab Department of Electrical Engineering National Taiwan University Differential-Mode v.s. Common-mode Currents 1 Differential-Mode v.s. Common-mode

More information

Electromagnetic Susceptibility Assessment of Controller Area Networks

Electromagnetic Susceptibility Assessment of Controller Area Networks Proc. of the 1 International Symposium on Electromagnetic Compatibility (EMC Europe 1), Gothenburg, Sweden, September 1-, 1 Electromagnetic Susceptibility Assessment of Controller Area Networks Michele

More information

EMC Basics. Speaker : Alain Lafuente. Alain.lafuente@we-online.com

EMC Basics. Speaker : Alain Lafuente. Alain.lafuente@we-online.com EMC Basics Speaker : lain Lafuente lain.lafuente@we-online.com WHT IS EMC? 2 CE Marking With the formation of the single European market, standardization was required to remove technical barriers to trade.

More information

Clamp Filters that Suppress Emission Noise Provide Immunity Against Surge Noise

Clamp Filters that Suppress Emission Noise Provide Immunity Against Surge Noise TDK EMC Technology Product Section Clamp Filters that Suppress Emission Noise Provide Immunity Against Surge Noise TDK Shonai Corporation Satoru Saito Reduce Emission Noise from Cables Even if an electronic

More information

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design

More information

IMMUNITY TESTING FOR THE CE MARK By Rodger Gensel, Product Line Applications Specialist

IMMUNITY TESTING FOR THE CE MARK By Rodger Gensel, Product Line Applications Specialist IMMUNITY TESTING FOR THE CE MARK By Rodger Gensel, Product Line Applications Specialist SUMMARY The European Union (EU) currently has 25 member countries with 2 additional countries to be added in 2007.

More information

ILB, ILBB Ferrite Beads

ILB, ILBB Ferrite Beads ILB, ILBB Ferrite Beads Electro-Magnetic Interference and Electro-Magnetic Compatibility (EMI/EMC) avid B. Fancher Inductive Products ivision INTROUCTION Manufacturers of electrical and electronic equipment

More information

An Ethernet Cable Discharge Event (CDE) Test and Measurement System

An Ethernet Cable Discharge Event (CDE) Test and Measurement System An Ethernet Cable Discharge Event (CDE) Test and Measurement System Wei Huang, Jerry Tichenor ESDEMC Technology LLC Rolla, MO, USA whuang@esdemc.com Abstract A Cable Discharge Event (CDE) is an electrostatic

More information

Probes and Setup for Measuring Power-Plane Impedances with Vector Network Analyzer

Probes and Setup for Measuring Power-Plane Impedances with Vector Network Analyzer Probes and Setup for Measuring Power-Plane Impedances with Vector Network Analyzer Plane impedance measurement with VNA 1 Outline Introduction, Y, and S parameters Self and transfer impedances VNA One-port

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING

TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV February 28, 2005 Research Objective Objective: Electronic design automation

More information

PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide

PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Application Note PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Introduction This document explains how to design a PCB with Prolific PL-277x SuperSpeed USB 3.0 SATA Bridge

More information

EM Noise Mitigation in Circuit Boards and Cavities

EM Noise Mitigation in Circuit Boards and Cavities EM Noise Mitigation in Circuit Boards and Cavities Faculty (UMD): Omar M. Ramahi, Neil Goldsman and John Rodgers Visiting Professors (Finland): Fad Seydou Graduate Students (UMD): Xin Wu, Lin Li, Baharak

More information

EB215E Printed Circuit Board Layout for Improved Electromagnetic Compatibility

EB215E Printed Circuit Board Layout for Improved Electromagnetic Compatibility Printed Circuit Board Layout for Improved Author: Eilhard Haseloff Date: 10.07.96 Rev: * The electromagnetic compatibility (EMC) of electronic circuits and systems has recently become of increasing significance.

More information

Ceramic transient voltage suppressors, CTVS

Ceramic transient voltage suppressors, CTVS Ceramic transient voltage suppressors, CTVS Protection standards for electromagnetic compatibility (EMC) Date: July 2014 EPCOS AG 2014. Reproduction, publication and dissemination of this publication,

More information

Update on EFT/Burst Testing - The revision of IEC

Update on EFT/Burst Testing - The revision of IEC Update on EFT/Burst Testing - The revision of IEC 61000-4-4 By Harald Kunkel, EM TEST SUMMARY EFT/burst testing has been a part of EMC testing for about 20 years. The first standard that was released for

More information

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers Data Sheet Specifications Specifications are only valid for the stated operating frequency, and apply over 0 C to +55 C unless otherwise

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

Multi-Channel Passive Isolator MCR-...CLP-I/I-00

Multi-Channel Passive Isolator MCR-...CLP-I/I-00 Multi-Channel Passive solator MCR-...CLP-/-00 Electrical isolation without additional power supply Current signals 0(4)...20 ma 1-, 2- and 4-channel versions 1. Description MCR-1,2,4CLP-/-00 passive isolators

More information

Rated Power(W) 8W 2. EG-LED0840-01 8W 3. EG-LED1027-01 10W

Rated Power(W) 8W 2. EG-LED0840-01 8W 3. EG-LED1027-01 10W 14713221 001 Seite 2 von 37 Page 2 of 37 Model List: No Model Rated Voltage(V) 1. EG-LED0827-01 Rated Power(W) 8W 2. EG-LED0840-01 8W 3. EG-LED1027-01 10W 4. EG-LED1040-01 AC 100-240V, 10W 5. EG-LED1027-02

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

EMC Expert System for Architecture Design

EMC Expert System for Architecture Design EMC Expert System for Architecture Design EMC Expert System for Architecture Design Marcel van Doorn marcel.van.doorn@philips.com Philips Electromagnetics Competence Center High Tech Campus 26, 5656 AE

More information

AND8229/D. An Introduction to Transient Voltage Suppression Devices APPLICATION NOTE

AND8229/D. An Introduction to Transient Voltage Suppression Devices APPLICATION NOTE An Introduction to Transient Voltage Suppression Devices Prepared by: Jim Lepkowski ON Semiconductor APPLICATION NOTE INTRODUCTION Transient Voltage Suppression (TVS) protection devices such as shielded

More information

ETSI TR 102 242 V3.0.0 (2003-06)

ETSI TR 102 242 V3.0.0 (2003-06) TR 102 242 V3.0.0 (2003-06) Technical Report Smart Cards; Terminal - card interface; Considerations on robustness improvements 2 TR 102 242 V3.0.0 (2003-06) Reference DTR/SCP-010287 Keywords EMC, smart

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout

Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout FPA Printed Circuit Board Layout Guidelines By Paul Yeaman Principal Product Line Engineer V I Chip Strategic Accounts Introduction Contents Page Introduction 1 The Importance of 1 Board Layout Low DC

More information

SUSCEPTIBILITY MODELING ANALYSIS of PARASITICS IN UNSHIELDED PRODUCTS with LONG WIRES ATTACHED

SUSCEPTIBILITY MODELING ANALYSIS of PARASITICS IN UNSHIELDED PRODUCTS with LONG WIRES ATTACHED SUSCEPTIBILITY MODELING ANALYSIS of PARASITICS IN UNSHIELDED PRODUCTS with LONG WIRES ATTACHED Bruce Archambeault SETH Corporation Johnstown, PA H. Stephen Berger Siemens ROLM Communications Inc. Austin,

More information

Photolink- Fiber Optic Receiver PLR135/T1

Photolink- Fiber Optic Receiver PLR135/T1 Features High PD sensitivity optimized for red light Data : NRZ signal Low power consumption for extended battery life Built-in threshold control for improved noise Margin The product itself will remain

More information

Application Note 58 Crystal Considerations with Dallas Real Time Clocks

Application Note 58 Crystal Considerations with Dallas Real Time Clocks www.dalsemi.com Application Note 58 Crystal Considerations with Dallas Real Time Clocks Dallas Semiconductor offers a variety of real time clocks (RTCs). The majority of these are available either as integrated

More information

IBIS for SSO Analysis

IBIS for SSO Analysis IBIS for SSO Analysis Asian IBIS Summit, November 15, 2010 (Presented previously at Asian IBIS Summits, Nov. 9 & 12, 2010) Haisan Wang Joshua Luo Jack Lin Zhangmin Zhong Contents Traditional I/O SSO Analysis

More information

Advancements in Lightning Test Services

Advancements in Lightning Test Services Advancements in Lightning Test Services Presentation Overview Basic Lightning Concepts Indirect Effects Testing Waveforms General Test Methods Elite Testing Capability What s in place What s new Lightning

More information

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com hott@ieee.org Page 2 THE BASIC

More information

Evaluating Cell Phone and Personal Communications Equipment and their EMC Effects on Automotive Audio and In-Cabin Modules

Evaluating Cell Phone and Personal Communications Equipment and their EMC Effects on Automotive Audio and In-Cabin Modules Evaluating Cell Phone and Personal Communications Equipment and their EMC Effects on Automotive Audio and In-Cabin Modules Craig W. Fanning Elite Electronic Engineering, Inc. 1516 Centre Circle Downers

More information

WHY and HOW to GROUND ELECTRICAL SYSTEMS

WHY and HOW to GROUND ELECTRICAL SYSTEMS WHY and HOW to GROUND ELECTRICAL SYSTEMS Dr. Tom Van Doren Van Doren Company Rolla, MO, USA 1-573-578-4193 vandoren@mst.edu emc-education.com emclab.mst.edu Grounding is a very controversial and misunderstood

More information

Printed-Circuit-Board Layout for Improved Electromagnetic Compatibility

Printed-Circuit-Board Layout for Improved Electromagnetic Compatibility Printed-Circuit-Board Layout for Improved Electromagnetic Compatibility SDYA011 October 1996 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

APPLICATION NOTE - 016

APPLICATION NOTE - 016 APPLICATION NOTE - 016 Testing RFI Line Filters Frequency Response Analysis Testing RFI line filters Radio frequency interference (RFI) is unwanted electromagnetic noise within a radio communications frequency

More information

Automotive MEMS Pressure Sensor Reliability Testing. Date: October 20th, 2011 Tom T. Nguyen

Automotive MEMS Pressure Sensor Reliability Testing. Date: October 20th, 2011 Tom T. Nguyen Automotive MEMS Pressure Sensor Reliability Testing Date: October 20th, 2011 Tom T. Nguyen Automotive Conditions In Automotive industry, quality and reliability of the pressure sensors are keys and required.

More information

Pre-Compliance Test Method for Radiated Emissions of Automotive Components Using Scattering Parameter Transfer Functions

Pre-Compliance Test Method for Radiated Emissions of Automotive Components Using Scattering Parameter Transfer Functions PreCompliance Test Method for Radiated Emissions of Automotive Components Using Scattering Parameter Transfer Functions D. Schneider 1*, S. Tenbohlen 1, W. Köhler 1 1 Institute of Power Transmission and

More information

Why test results can t compare

Why test results can t compare Automotive RF immunity test set-up analysis Why test results can t compare Mart Coenen, EMCMCC, Eindhoven, the Netherlands Hugo Pues, Melexis Technologies NV, Tessenderlo, Belgium Thierry Bousquet, Continental,

More information

Automotive EMI System

Automotive EMI System Automotive EMI System Page 1 Model Types Body Variants Car Geometry Board Net, Wire Path, ECU Configuration, Antenna Configurations... Parameters Affecting EMC Car Supply Net Voltage Regulator Signals

More information

Connectivity in a Wireless World. Cables Connectors 2014. A Special Supplement to

Connectivity in a Wireless World. Cables Connectors 2014. A Special Supplement to Connectivity in a Wireless World Cables Connectors 204 A Special Supplement to Signal Launch Methods for RF/Microwave PCBs John Coonrod Rogers Corp., Chandler, AZ COAX CABLE MICROSTRIP TRANSMISSION LINE

More information

Current Probes. User Manual

Current Probes. User Manual Current Probes User Manual ETS-Lindgren L.P. reserves the right to make changes to any product described herein in order to improve function, design, or for any other reason. Nothing contained herein shall

More information

Abstract. Cycle Domain Simulator for Phase-Locked Loops

Abstract. Cycle Domain Simulator for Phase-Locked Loops Abstract Cycle Domain Simulator for Phase-Locked Loops Norman James December 1999 As computers become faster and more complex, clock synthesis becomes critical. Due to the relatively slower bus clocks

More information

ANN Based Modeling of High Speed IC Interconnects. Q.J. Zhang, Carleton University

ANN Based Modeling of High Speed IC Interconnects. Q.J. Zhang, Carleton University ANN Based Modeling of High Speed IC Interconnects Needs for Repeated Simulation Signal integrity optimization Iterative design and re-optimization Monte-Carlo analysis Yield optimization Iterative design

More information

Crosstalk effects of shielded twisted pairs

Crosstalk effects of shielded twisted pairs This article deals with the modeling and simulation of shielded twisted pairs with CST CABLE STUDIO. The quality of braided shields is investigated with respect to perfect solid shields. Crosstalk effects

More information

EMI in Electric Vehicles

EMI in Electric Vehicles EMI in Electric Vehicles S. Guttowski, S. Weber, E. Hoene, W. John, H. Reichl Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25, 13355 Berlin, Germany Phone: ++49(0)3046403144,

More information

An extended EMC study of an electrical powertrain for transportation systems

An extended EMC study of an electrical powertrain for transportation systems European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 12) Santiago de Compostela

More information

Signal Integrity: Tips and Tricks

Signal Integrity: Tips and Tricks White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Cable Analysis and Fault Detection using the Bode 100

Cable Analysis and Fault Detection using the Bode 100 Cable Analysis and Fault Detection using the Bode 100 By Stephan Synkule 2014 by OMICRON Lab V1.3 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

Thermal analysis and measurements of spiral inductors using built-in and IR sensors

Thermal analysis and measurements of spiral inductors using built-in and IR sensors Thermal analysis and measurements of spiral inductors using built-in and IR sensors by M. Kałuża*, M. Felczak, and B. Więcek * Institute of Electronics, Lodz University of Technology, Poland, marcin.kaluza@p.lodz.pl

More information

Signal Integrity: Problems and Solutions

Signal Integrity: Problems and Solutions Slide -1 Signal Integrity: Problems and Solutions Dr. Eric Bogatin President Bogatin Enterprises www.bogatinenterprises.com (copies of the presentation are available for download on the web site) Presented

More information

Board Design Guidelines for LVDS Systems

Board Design Guidelines for LVDS Systems Board Design Guidelines for LVDS Systems WP-DESLVDS-2.1 White Paper This white paper explains the basic PCB layout guidelines for designing low-voltage differential signaling (LVDS) boards using Altera

More information

11. High-Speed Differential Interfaces in Cyclone II Devices

11. High-Speed Differential Interfaces in Cyclone II Devices 11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the

More information

AN2866 Application note

AN2866 Application note Application note How to design a 13.56 MHz customized tag antenna Introduction RFID (radio-frequency identification) tags extract all of their power from the reader s field. The tags and reader s antennas

More information

EMC Supplemental Information and Alternative Component Requirements

EMC Supplemental Information and Alternative Component Requirements DaimlerChrysler DC-11225 Joint Engineering Standard Date Published: 2006-11 Chrysler Category: L-2 Total No. of Pages (Including Annex): 39 Mercedes-Benz Category: 22 Chrysler Author: Terry M. North ADRESS

More information

Introduction to ESD. Comchip Technology PTM: Intro to ESD

Introduction to ESD. Comchip Technology PTM: Intro to ESD Introduction to ESD 1 What is ESD? Electrostatic Discharge is a high voltage event from the release of electrical energy caused by static electricity or electrostatic induction. ESD can cause permanent

More information

EMC Immunity Test Electrostatic discharge. By Dr. Brian Chan Consultant EMC Centre Hong Kong Productivity Council

EMC Immunity Test Electrostatic discharge. By Dr. Brian Chan Consultant EMC Centre Hong Kong Productivity Council EMC Immunity Test Electrostatic discharge By Dr. Brian Chan Consultant EMC Centre Hong Kong Productivity Council 1 Agenda Background of ESD ESD Immunity Test - EN61000-4-2 Standard Scope Test level Test

More information

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

More information

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)

Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production

More information

MEASUREMENT SET-UP FOR TRAPS

MEASUREMENT SET-UP FOR TRAPS Completed on 26th of June, 2012 MEASUREMENT SET-UP FOR TRAPS AUTHOR: IW2FND Attolini Lucio Via XXV Aprile, 52/B 26037 San Giovanni in Croce (CR) - Italy iw2fnd@gmail.com Trappole_01_EN 1 1 DESCRIPTION...3

More information

Data Communications Competence Center

Data Communications Competence Center Importance of Cable Balance For Improving Noise Susceptibility Data Communications Competence Center DCCC03101702 July 11, 2007 Summary In a study of category 5e and category 6 UTP cables, a strong correlation

More information

Analog Electronics II Laboratory Exercise 2 Cascade amplifier with BJT

Analog Electronics II Laboratory Exercise 2 Cascade amplifier with BJT Analog Electronics II Laboratory Exercise 2 Cascade amplifier with BJT Aim of the exercise The aim of this laboratory exercise is to become familiar with the operation of the cascade connection of the

More information

a 1 a 2 2 Port b 2 b 1 Multi-Port Handset Switch S-Parameters Application Note AN20 Seven-Port S-Parameter Definition Introduction Summary:

a 1 a 2 2 Port b 2 b 1 Multi-Port Handset Switch S-Parameters Application Note AN20 Seven-Port S-Parameter Definition Introduction Summary: AN2 Multi-Port Handset Switch S-Parameters Introduction High-power UltraCMOS switches are the nextgeneration solution for wireless handset power amplifiers and antenna switch modules. Most multi-throw

More information

Stratix II Device System Power Considerations

Stratix II Device System Power Considerations Stratix II Device System Power Considerations June 2004, ver. 1.0 Application Note 355 Introduction Power Components Altera developed Stratix II devices using a 90-nm process technology optimized for performance

More information

A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz

A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz Prof. Dr. Thomas C. Baier, DG8SAQ University of Applied Sciences, Prittwitzstrasse 10, 89075 Ulm, Germany; baier@hs-ulm.de A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

G019.A (4/99) UNDERSTANDING COMMON MODE NOISE

G019.A (4/99) UNDERSTANDING COMMON MODE NOISE UNDERSTANDING COMMON MODE NOISE PAGE 2 OF 7 TABLE OF CONTENTS 1 INTRODUCTION 2 DIFFERENTIAL MODE AND COMMON MODE SIGNALS 2.1 Differential Mode signals 2.2 Common Mode signals 3 DIFFERENTIAL AND COMMON

More information

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Mark I. Montrose Montrose Compliance Services 2353 Mission Glen Dr. Santa Clara, CA 95051-1214 Abstract: For years,

More information

Application Note 58 Crystal Considerations for Dallas Real-Time Clocks

Application Note 58 Crystal Considerations for Dallas Real-Time Clocks www.maxim-ic.com Application Note 58 Crystal Considerations for Dallas Real-Time Clocks OVERVIEW This application note describes crystal selection and layout techniques for connecting a 32,768Hz crystal

More information

Case Study Competition 2013. Be an engineer of the future! Innovating cars using the latest instrumentation!

Case Study Competition 2013. Be an engineer of the future! Innovating cars using the latest instrumentation! Case Study Competition 2013 Be an engineer of the future! Innovating cars using the latest instrumentation! The scenario You are engineers working on a project team that is tasked with the development

More information

EMC Countermeasures for In-Vehicle Communication Networks

EMC Countermeasures for In-Vehicle Communication Networks TDK EMC Technology Practice Section EMC Countermeasures for In-Vehicle Communication Networks TDK Corporation Magnetics Business Group Toshio Tomonari 1 Introduction In recent years, Electronic Control

More information

Power Delivery Network (PDN) Analysis

Power Delivery Network (PDN) Analysis Power Delivery Network (PDN) Analysis Edoardo Genovese Importance of PDN Design Ensure clean power Power Deliver Network (PDN) Signal Integrity EMC Limit Power Delivery Network (PDN) VRM Bulk caps MB caps

More information

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec.

EMC STANDARDS STANDARDS AND STANDARD MAKING BODIES. International. International Electrotechnical Commission (IEC) http://www.iec. EMC STANDARDS The EMC standards that a particular electronic product must meet depend on the product application (commercial or military) and the country in which the product is to be used. These EMC regulatory

More information

Minimizing crosstalk in a high-speed cable-connector assembly.

Minimizing crosstalk in a high-speed cable-connector assembly. Minimizing crosstalk in a high-speed cable-connector assembly. Evans, B.J. Calvo Giraldo, E. Motos Lopez, T. CERN, 1211 Geneva 23, Switzerland John.Evans@cern.ch Eva.Calvo.Giraldo@cern.ch Tomas.Motos-Lopez@cern.ch

More information

GaAs Switch ICs for Cellular Phone Antenna Impedance Matching

GaAs Switch ICs for Cellular Phone Antenna Impedance Matching GaAs Switch ICs for Cellular Phone Antenna Impedance Matching IWATA Naotaka, FUJITA Masanori Abstract Recently cellular phones have been advancing toward multi-band and multi-mode phones and many of them

More information

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7 13.7 A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology Jri Lee, Behzad Razavi University of California, Los Angeles, CA

More information

Paricon Technologies

Paricon Technologies Paricon Technologies Flex connector Measurement Results prepared by Gert Hohenwarter 1/24/07 1 Table of Contents TABLE OF CONTENTS... 2 OBJECTIVE... 3 METHODOLOGY... 3 Test procedures... 4 Setup... 4 MEASUREMENTS...

More information

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems

Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,

More information

1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L HITLESS PROTECTION SWITCHING

1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L HITLESS PROTECTION SWITCHING 1+1 PROTECTION WITHOUT RELAYS USING IDT82V2044/48/48L & IDT82V2054/58/58L APPLICATION NOTE AN-357 1.0 INTRODUCTION In today's highly competitive market, high quality of service, QOS, and reliability is

More information

PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS

PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS OOOO1 PCB Design Conference - East Keynote Address September 12, 2000 EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com

More information

Mitigating Power Bus Noise with Embedded Capacitance in PCB Designs

Mitigating Power Bus Noise with Embedded Capacitance in PCB Designs Mitigating Power Bus Noise with Embedded Capacitance in PCB Designs Minjia Xu, Todd H. Hubing, Juan Chen*, James L. Drewniak, Thomas P. Van Doren, and Richard E. DuBroff Electromagnetic Compatibility Laboratory

More information

Introduction to Printed Circuit Board Design For EMC Compliance

Introduction to Printed Circuit Board Design For EMC Compliance Introduction to Printed Circuit Board Design For EMC Compliance Mark Montrose Principle Consultant Montrose Compliance Services, Inc. + 1 (408) 247-5715 mark@montrosecompliance.com www.montrosecompliance.com

More information

Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking

Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking Electromagnetic interference (EMI), once the exclusive concern of equipment designers working with high-speed signals, is no longer

More information

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1

Clocking. Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 Clocks 1 ing Figure by MIT OCW. 6.884 - Spring 2005 2/18/05 L06 s 1 Why s and Storage Elements? Inputs Combinational Logic Outputs Want to reuse combinational logic from cycle to cycle 6.884 - Spring 2005 2/18/05

More information

Key Performance Parameters of ESD Protection Devices for High Speed I/O, RF and Monolithic Microwave Integrated Circuits

Key Performance Parameters of ESD Protection Devices for High Speed I/O, RF and Monolithic Microwave Integrated Circuits 1 Key Performance Parameters of ESD Protection Devices for High Speed I/O, RF and Monolithic Microwave Integrated Circuits Thomas Schwingshackl, Andre Schmenn, Damian Sojka, Andreas Böhme, Josef Dietl,

More information

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,

More information

AN96-07. Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x

AN96-07. Surging Ideas TVS Diode Application Note PROTECTION PRODUCTS. TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x TRANSIENT IMMUNITY STANDARDS: IEC 61000-4-x On January 1, 1996, exports into Europe began facing some tough transient immunity standards. The International Electrotechnical Commission (IEC), a worldwide

More information

14.5GHZ 2.2KW CW GENERATOR. GKP 22KP 14.5GHz WR62 3x400V

14.5GHZ 2.2KW CW GENERATOR. GKP 22KP 14.5GHz WR62 3x400V 14.5GHZ 2.2KW CW GENERATOR GKP 22KP 14.5GHz WR62 3x400V UTILIZATION OF GKP 22KP GENERATOR With its characteristics of power stability whatever the load, very fast response time at a pulse, low ripple,

More information