Incorporation of P 2 O 5 into the oxide core database with Al, Si, Ca and Mg



Similar documents
Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace

Thermodynamic database of the phase diagrams in copper base alloy systems

Thermo-Calc Software. Data Organization and Knowledge Discovery. Paul Mason Thermo-Calc Software, Inc. Thermo-Chemistry to Phase Diagrams and More

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

Phase. Gibbs Phase rule

ASSESSMENT OF VISCOSITY OF SLAGS IN FERROCHROMIUM PROCESS

Chapter 8. Phase Diagrams

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

vap H = RT 1T 2 = kj mol kpa = 341 K

Using the PDF for material identification using elemental data. from XRF and SEM EDS.

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = m. Thus,

Effect of Slag Composition on the Distribution Behavior of Pb between Fe t O-SiO 2 (-CaO, Al 2 O 3 ) Slag and Molten Copper

Phase Diagrams & Thermodynamics

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

Effect of Magnesium and Aluminum Oxides on Fluidity of Final Blast Furnace Slag and Its Application

k 2f, k 2r C 2 H 5 + H C 2 H 6

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

APPENDIX B: EXERCISES

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

Chapter 7 : Simple Mixtures

Chapter 8: Chemical Equations and Reactions

Chem 420/523 Chemical Thermodynamics Homework Assignment # 6

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

THE CONCEPT OF VISCOSITY

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

ATOMS. Multiple Choice Questions

Investigations on Slags under Gasification Process Conditions

Phase diagram calculation in the Te-Bi-Sb ternary system

Chem Highlights of last lecture. This lecture. Australian Mining Sites. A/Prof Sébastien Perrier. Metallurgy: (Extracting metal from ore)

IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER , CAS NUMBER ] IRON ORE PELLETS

Chapter 3: Stoichiometry

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v

Thermodynamics of Crystal Formation

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Phase Equilibria & Phase Diagrams

CHEMICAL FORMULA COEFFICIENTS AND SUBSCRIPTS. Chapter 3: Molecular analysis 3O 2 2O 3

Utilizing the non-bridge oxygen model to predict the glass viscosity

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Chapter Three: STOICHIOMETRY

Concept 1. The meaning and usefulness of the mole. The mole (or mol) represents a certain number of objects.

Ionic Bonding Pauling s Rules and the Bond Valence Method

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2

Review of Chemical Equilibrium Introduction

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria

R. Naghizadeh 1, J. Javadpour 1, M. Naeemi 2, M.T. Hamadani 3 and H. R. Rezaie 1

Answers and Solutions to Text Problems

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils

Chapter 1 The Atomic Nature of Matter

ORGANIC LABORATORY TECHNIQUES NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.

Thermische Speicherung von Solarenergie

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The Periodic Table: Periodic trends

How To Calculate Mass In Chemical Reactions

neutrons are present?

Experiment 5: Phase diagram for a three-component system (Dated: April 12, 2010)

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Redox and Electrochemistry

AP Chemistry Semester One Study Guide

Name: Teacher: Pd. Date:

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry

Binary phase diagrams

Molecules, Compounds, and Chemical Equations (Chapter 3)

Chemistry 65 Chapter 6 THE MOLE CONCEPT

Chapter Outline. Diffusion - how do atoms move through solids?

AS B E S T O S C O N V E R S I O N P R O C E S S ( AC P )

Chapter 8 - Chemical Equations and Reactions

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chemical Equilibrium by Gibbs Energy Minimization on Spreadsheets*

1332 CHAPTER 18 Sample Questions

EXTRACTION OF METALS

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Chemical Reactions Practice Test

Atomic mass is the mass of an atom in atomic mass units (amu)

Unit 6 The Mole Concept

Keystone Exams: Chemistry Assessment Anchors and Eligible Content. Pennsylvania Department of Education

6 Reactions in Aqueous Solutions

Discovering Electrochemical Cells

Chapter 5 Chemical Quantities and Reactions. Collection Terms. 5.1 The Mole. A Mole of a Compound. A Mole of Atoms.

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

Advanced Metallurgical Modelling of Ni-Cu Smelting at Xstrata Nickel Sudbury Smelter

Chemistry Diagnostic Questions

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Production of Pb-Li eutectic: cover gases or molten salts during melting?

Chemistry 151 Final Exam

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Chapter 3 Mass Relationships in Chemical Reactions

SOLIDIFICATION. (a)formation of stable nuclei. Growth of a stable nucleus. (c) Grain structure

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1

The Empirical Formula of a Compound

Exercise Naming Binary Covalent Compounds:

CHAPTER 5: MOLECULES AND COMPOUNDS

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas

Transcription:

GTT Annual Workshop, July 3-5, 2013 Incorporation of O 5 into the oxide core database with Al, Si, Ca and Mg 4. Juli 2013 Elena Yazhenskikh 1, Klaus Hack 2, Tatjana Jantzen 2, Michael Müller 1 1 Forschungszentrum Jülich, IEK-2 (Microstructure and properties of materials), Germany 2 GTT-Technologies, Herzogenrath, Germany

Contents Motivation and aim of the work Models, optimisation, phases under consideration The binary systems with O 5 : O 5 -CaO, O 5 -MgO systems O 5 -Al 2 O 3 system O 5 -SiO 2 system The ternary systems with O 5 O 5 -Al 2 O 3 -CaO O 5 -SiO 2 -Al 2 O 3 O 5 -SiO 2 -MgO O 5 -SiO 2 -CaO Modelling of α-ca 2 SiO 4 Modelling of α -Ca 2 SiO 4 Conclusions and outlook 2

Motivation and aim of work O 5 is an essential component for the co-gasification of phytogenic and zoogenic biomass. The addition of O 5 improves the fluidity of molten slags. The phosphates are of interest in connection with soil-fertilizer relationships. The dephosphorization is important in the iron and steel industry. O 5 State of the art: 2-, 3- and multicomponent systems have been thermodynamically assessed using all available experimental data phase diagrams and other thermodynamic properties can be calculated with the obtained self-consistent datasets MgO Al 2 O 3 SiO 2 CaO Aim of our work: development of a new data base, which is applicable for the slag relevant system containing oxides of Si, Al, Na, K, Ca, Mg, Fe, P, S, Cr etc. and suitable for the calculations and/or predictions of the phase equilibria and other thermodynamic properties by variation of T and composition 20. Dezember 2013 GTT Annual Workshop, Juli 3-5, 2013 3

Database development Experimental data from literature source and from our measurements: phase diagram data, activity data etc. Choice of the suitable model Initial data for pure substances, liquid and solid solution components OptiSage in Adjustable parameters: ΔH 298 f and S 298 for the liquid and solid solution species ΔH 298 f and S 298 for the pure solid compounds Interaction parameters between species optimisation Liquid: non-ideal associate solution using Redlich-Kister-Muggianu equation G x G RT x lnx x x L (x x )... 0 (v) m i i i i i j ij i j i j v 0 Solids: compounds v Comparison of the results with exp. data agreement G = A + B*T + C T*ln(T) + D*T 2 + E*T 3 + F/T Solid solutions: sublattice approach (CEF) n n s 0 ( ) s ( ) s ( ) ln( ) ( ) ( ).. m I0 I 0 s i i 1 I 1 I I2 I2 s 1 i 1 0 1 2 G P Y G a RT y y P Y L P Y L I I I New dataset 4

Modelling of binary O 5 -containing phases The species in the non-ideal associate solution containing O 5 were added in order to describe the liquid phase. Binary solid phases were considered as compounds System Associate species in liquid Me x O y : O 5 CaO- O 5 3:1, 2:1, 1:1 Ca 3 O 8, Ca 2 O 7, Ca O 8 [Serena 2011] MgO - O 5 3:1, 2:1, 1:1 Mg 3 O 8 (SGPS), Mg 2 O 7, Mg O 8 Solid phase CaO. 2 O 5 2CaO. 3 O 5 CaO. O 5 2CaO. O 5 (s1,s2,s3) 3CaO. O 5 (s1,s2,s3) 4CaO. O 5 MgO. O 5 2MgO. O 5 3MgO. O 5 Description of solid phase Al 2 O 3 - O 5 1:1 AlPO 4 (SGPS) 3Al 2 O 3. O 5 AlPO 4 (s3,s2,s1) Al 2 O 3. 3 O 5 SiO 2 - O 5 1:1 SiO. 2 O 5 Si O 7 5SiO 2. 3 O 5 5

Mg 2 O 7 (s) MgO 6 (s) T(C) Ca 4 (PO 4 ) 2 O T(C) CaO- O 5 and MgO- O 5 CaO - O 5 1 bar 2800 2500 [Hill, 1944] [Trömmel, 1961, DTA] [Trömmel, 1961, hot stage microscope] 2200 1900 1600 Slag MeO + Slag J. Berak, Rocz. Chem., 32 [1], (1958), pp.17-22. 1300 MeO + Ca 4 (PO 4 ) 2 O(s) 1000 700 400 O 5 CaP 4 O 11 Ca 2 P 6 O 17 Ca(PO 3 ) 2 Ca 2 O 7 Ca 3 (PO 4 ) 2 100 0 0.2 0.4 0.6 0.8 1 CaO/(CaO+ O 5 ) (g/g) 2700 2400 MgO - O 5 1 atm [J. Berak, 1958] 2100 Slag W. L. Hill, G. T. Faust, and D. S. Reynolds, Am. J. Sci., 242 [9] 457-477 (1944); G. Troemel, Stahl Eisen, 63 [2] 21-30 (1943). 1800 MeO + Slag 1500 1200 900 MeO + Mg 3 O 8 (s) 600 Mg 3 O 8 MgO 6 (s) + O 5 (s2) 300 0 0.2 0.4 0.6 0.8 1 O 5 /(MgO+ O 5 ) (g/g) 6

AlP 3 O 9 (s) T(C) Al 3 PO 7 (s) Al 2 O 3 - O 5 2700 2500 2300 [Stone, Egan, 1956] Al 2 O 3 - O 5 1 bar [Tananaev, Maksimchuk, 1978] 2100 Slag 1900 1700 1500 P.E. Stone, E.P. Egan, J.R. Lehr, J. Am, Ceram. Soc., 39 [3], (1956), pp.89-98. 1300 1100 900 Al 2 O 3 (s) + Al 3 PO 7 (s) AlPO 4 (s3) 700 500 300 100 AlPO 4 (s2) AlPO 4 (s) AlP 3 O 9 (s) + O 5 (s2) 0 0.2 0.4 0.6 0.8 1 O 5 /(Al 2 O 3 + O 5 ) (g/g) I.V. Tananaev, E.V. Maksimchuk,Y. G. Bushuev, S.A. Shestov, Izv. Akad. Nauk SSSR, Neorg. Mater., 14 [4], (1978), pp.719-722. 7

SiO 2 - O 5 : experimental data There is not enough experimental data on phase diagrams and compounds. The few data available is contradictory. Hence, experimental studies are needed. T. Y. Tien and F. A. Hummel, J. Am. Ceram. Soc.,45 [9] 422-424 (1962). G. Baret, R. Madar, and C. Bernard, J. Electrochem. Soc., 138 [9] 2830-2835 (1991). A. E. Mal'shikov and I. A. Bondar, Russ. J. Inorg. Chem. (Engl. Transl.), 33[1] 109-112 (1988). 8

ln y Si 5 P 6 O 25 (s) + Si O 7 (s) T(C) excess H, J/mol SiO 2 - O 5 : calculation 3500 SP25+Baret, excess H 3000 1800 1600 1400 1200 1000 800 600 Liq+SiO2 Slag assumed eut line SiO 2 (s2) + Si 5 P 6 O 25 (s) glass+crist [Tien, 1962] glass+s2p [Tien, 1962] S2P [Tien, 1962] glass +high SP [Tien, 1962] high SP+S2P [Tien, 1962] low SP [Tien, 1962] high SP [Tien, 1962] glass [Tien, 1962] Liq+S3P2 Slag + Si 5 P 6 O 25 (s) Si 5 P 6 O 25 SiO 2 (s) + Si 5 P 6 O 25 (s) Liq+SP SiO 2 - O 5 1 atm glass+crist [Malshikov 1988,1989] glass+s5p3 [Malshikov 1988,1989] glass+sp [Malshikov 1988,1989] Tinv+Tm SP [Malshikov 1988,1989] 2-phase field [Baret 1991] In the present work, the compound 5SiO 2. 3 O 5 (Tm, XRD data) has been taken into account Si O 7 Slag + Si O 7 (s3) Slag + Si O 7 (s2) Slag + Si O 7 (s) Si O 7 (s) + O 5 (s2) 400 0 0.2 0.4 0.6 0.8 1 O 5 /(SiO 2 + O 5 ) (mol/mol) 2500 2000 1500 1000 500 exp, evaluated calculated, set 25 0 0.00 0.20 0.40 0.60 0.80 1.00 0.2 0.15 0.1 0.05 0-0.05-0.1-0.15 mole /5 O Activity coefficient in SiO 2 -PO 2.5, 1550 C exp, evaluated calculated, set 25-0.2 0.85 0.9 0.95 1 mole SiO 2 9

Modelling of ternary O 5 -containing phases In all ternary systems there are no ternary species, with the exception of the system Al 2 O 3 -MgO- O 5, where one ternary species Al 2 O 3. 3MgO. O 5 was incorporated System* Solid phase Description of solid phase Al 2 O 3 -SiO 2 - O 5 CaO-SiO 2 - O 5 CaO-MgO- O 5 AlPO 4 _MT AlPO 4 _HT SiO 2 _HT SiO 2 _MT Al 2 O 3. 4SiO 2. 3 O 5 (no data) Ca 2 SiO 4 -alpha =Ca 3 O 8 -alpha prime Ca 2 SiO 4 -alpha-prime 7CaO. O 5. 2SiO 2 5CaO. O 5. SiO 2 C3P- beta C3P-alpha C3P-alpha-prime M3P C2P-MT M2P C3M3P2 CMP (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 Stoichiometric (Ca 2+ ) 3 (Ca 2+,Va) 1 (P 5+,Si +4 ) 2 (O 2- ) 8 (Ca 2+ ) 3 (Ca 2+,Va) 1 (P 5+,Si +4 ) 2 (O 2- ) 8 Stoichiometric Stoichiometric (Ca 2+,Mg 2+ ) 3 (P 5+ ) 2 (O 2- ) 8 (Ca 2+,Mg 2+ ) 3 (P 5+ ) 2 (O 2- ) 8 (Ca 2+,Mg 2+ ) 3 (P 5+ ) 2 (O 2- ) 8 (Ca 2+,Mg 2+ ) 3 (P 5+ ) 2 (O 2- ) 8 (Ca 2+,Mg 2+ ) 2 (P 5+ ) 2 (O 2- ) 7 (Ca 2+,Mg 2+ ) 2 (P 5+ ) 2 (O 2- ) 7 (Ca 2+,Mg 2+ ) 3 (Mg 2+ ) 3 (P 5+ ) 4 (O 2- ) 16 (Ca 2+,Mg 2+ ) 1 (Ca 2+ ) 1 (P 5+ ) 2 (O 2- ) 7 *All other systems do not have ternary compound or phases 10

T(C) T(C) T(C) T(C) CaO-Al 2 O 3 - O 5 : isoplethal sections 2400 2200 2000 Al 2 O 8 - Ca 2 O 7 1 atm Slag [Stone, Egan and.lehr,1956] 1700 1500 [Stone, Egan and Lehr,1956] Al 2 P 6 O 18 - Ca O 6 1 atm Slag 1800 1600 Slag + AlPO 4 (s3) 1300 1400 1200 1000 AlPO 4 (s3) + Ca 2 O 7 (s3) AlPO 4 (s3) + Ca 2 O 7 (s2) Slag + Ca 2O 7(s3) 1100 900 Slag + Al 2 P 6 O 18 (s) Slag + Ca(PO 3 ) 2 (s) 800 600 400 AlPO 4(s3) + Ca 2O 7(s) AlPO 4(s2) + Ca 2O 7(s) AlPO 4(s) + Ca 2O 7(s) AlPO 4 (s) + Ca 2 O 7 (s) 200 0 0.2 0.4 0.6 0.8 1 Ca 2 O 7 /(Al 2 O 8 +Ca 2 O 7 ) (g/g) 700 Al 2 P 6 O 18 (s) + Ca(PO 3 ) 2 (s) AlPO 4 (s) + Al 2 P 6 O 18 (s) + Ca 2 P 6 O 17 (s) AlPO 4(s) + Ca(PO 3) 2(s) + Ca 500 2P 6O 17(s) 0 0.2 0.4 0.6 0.8 1 Ca O 6 /(Al 2 P 6 O 18 +Ca O 6 ) (g/g) Al 2 O 8 - Ca 3 O 8 Al 2 P 6 O 18 - Ca 2 O 7 2400 [Stone, Egan and Lehr, 1956] 1700 [Stone, Egan and Lehr, 1956] 2200 2000 1800 1600 1400 1200 1000 800 600 400 Slag Slag + AlPO 4 (s3) Slag + Ca 3(PO 4) 2(s3) Slag + Ca 3(PO 4) 2(s2) AlPO 4 (s3) + Ca 3 (PO 4 ) 2 (s2) AlPO 4 (s3) + Ca 3 (PO 4 ) 2 (s) AlPO 4 (s2) + Ca 3 (PO 4 ) 2 (s) AlPO 4 (s) + Ca 3 (PO 4 ) 2 (s) 200 0 0.2 0.4 0.6 0.8 1 Ca 3 O 8 /(Al 2 O 8 +Ca 3 O 8 ) (g/g) 1500 Slag 1300 Slag + Ca 2O 7(s3) Slag + AlPO 4(s3) + Ca 2O 7(s3) 1100 Slag + AlPO 4 (s3) Slag + Al 2P 6O 18(s) Slag + AlPO 4(s3) + Ca 2O 7(s2) 900 Slag + AlPO 4(s3) + Al 2P 6O 18(s) AlPO 4(s3) + Ca(PO 3) 2(s2) + Ca 2O 7(s) AlPO 4 (s3) + Al 2 P 6 O 18 (s) + Ca(PO 3 ) 2 (s) 700 AlPO 4(s2) + Ca(PO 3) 2(s) + Ca 2O 7(s) 500 AlPO 4(s) + Al 2P 6O 18(s) + Ca 2P 6O 17(s) AlPO 4(s) + Ca(PO 3) 2(s) + Ca 2O 7(s) AlPO 4(s)+P 6Al 2O 18(s)+CaP 4O 11(s) AlPO 300 4(s)+Ca(PO 3) 2(s)+Ca 2P 6O 17(s) 0 0.2 0.4 0.6 0.8 1 Ca 2 O 7 /(Al 2 P 6 O 18 +Ca 2 O 7 ) (g/g) 11

CaO-Al 2 O 3 - O 5 : liquidus surface P. E. Stone, E. P. Egan, Jr., and J. R. Lehr, J. Am. Ceram. Soc., 39 [10], (1956), pp. 361-362. 12

Modelling of AlPO 4 -SiO 2 phases Solid solubility of AlPO 4 in SiO 2 and SiO 2 in AlPO 4 for 2 crystalline modifications on the each side is described using the formula (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 Si 4+ :Si 4+ Al 3+ :Si 4+ Si 4+ :P 5+ Al 3+ :P 5+ For each phase, the following reciprocal equation was applied: G(Si:Si:O) + G(Al:P:O) - G(Al:Si:O) G(Si:P:O) = 0 W. F. Horn and F. A. Hummel, Cent. Glass Ceram. Res. Inst. Bull., 26 [1-4] 47-59 (1979). System Solid phase Description of solid phase Al 2 O 3 -SiO 2 - O 5 AlPO 4 _MT AlPO 4 _HT SiO 2 _HT SiO 2 _MT Al 2 O 3. 4SiO 2. 3 O 5 (no experimental data) (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 (Al 3+, Si 4+ )(P 5+, Si 4+ )(O 2- ) 4 Stoichiometric 13

SiAP_MT T(C) Al 2 O 3 -SiO 2 - O 5 : calculation Al 2 O 3 - SiO 2 - O 5 Projection (Slag), 1 atm; liq IO O 5 O 5 (s2) T(min) = 460.92 o C, T(max) = 2053.83 o C 2100 2500 2300 2100 1900 1700 1500 1300 1100 900 700 Slag ALPO4_HT Slag + ALPO4_HT ALPO4_MT SiO 2 - AlPO 4 1 atm proposed lines from PED database [Horn 1979] MT-AlPO4 HT-AlPO4 HT-AlPO4+glass MT-AlPO4+SiO2_sol_sol ALPO4_HT + SiAP_HT ALPO4_MT + SiAP_HT HT-AlPO4+SiO2_sol_sol glass+ht-alpo4(trace)+sio2_sol_sol glass glass+sio2_sol_sol(trace) ALPO4_MT + SiAP_MT Slag + SiAP_HT SiAP_HT 500 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 SiO 2 /(SiO 2 +AlPO 4 ) (mol/mol) SiAP_MT 1211 54 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SiP2O7(s3) Si O 7 (s2) SiAP_HT Si 5 P 6 O 25 (s) 2 7 AlSi2P3O13(s) ALPO4_MT 3 8 MULLITE Si O 7 (s) 9 P 6 Al 2 O 18 (s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 SiO 2 Al 2 O 3 6 ALPO4_HT mole fraction Al 6 O 14 (s) 1 Al 2 O 3 There is not enough experimental data on phase diagrams and compounds. The few data available is contradictory. Hence, experimental studies are needed. 1 12 1900 1650 1400 1150 900 650 400 T o C 14

T(C) Mg 3 O 8 (s) Mg 2 SiO 4 (s) T(C) 2200 MgO-SiO 2 - O 5 : isoplethal sections Mg 2 SiO 4 - Mg 3 O 8 1 atm experiment 2000 1800 1600 exp.points [Wojciechowska 1959] proposed points [Wojciechowska 1959] Slag 1400 Slag + Mg 2 SiO 4 (s) 1200 Slag + Mg 3O 8(s) 1000 Mg 3 O 8 (s) + Mg 2 SiO 4 (s) 800 600 0 0.2 0.4 0.6 0.8 1 Mg 2 SiO 4 /(Mg 2 SiO 4 +Mg 3 O 8 ) (g/g) 2600 SiO 2 - Mg 3 O 8 1 atm exp.points [Wojciechowska 1959] proposed points [Wojciechowska 1959] Slag 2400 2200 exp. points [Wojciechowska 1959] proposed lines [Wojciechowska 1959] Slag Slag + Mg 2 SiO 4 (s) + Mg 2 O 7 (s) Slag + Mg 2SiO 4(s) 2000 1800 Slag + Slag#2 Mg 3 O 8 Slag + Mg 2 SiO 4 (s) Slag + MgSiO 3 (s4) Slag + MgSiO 3 (s4) + Mg 2 SiO 4 (s) MgSiO 3 T(C) 2000 MgSiO 3 - Mg 3 O 8 1 atm 1800 1600 1400 1200 1000 800 MgSiO 3 (s4) + Mg 2 SiO 4 (s) + Mg 2 O 7 (s) MgSiO 3 (s3) + Mg 2 SiO 4 (s) + Mg 2 O 7 (s) MgSiO 3 (s2) + Mg 2 SiO 4 (s) + Mg 2 O 7 (s) 600 0 0.2 0.4 0.6 0.8 1 MgSiO 3 /(MgSiO 3 +Mg 3 O 8 ) (g/g) 1600 1400 1200 1000 800 600 400 Slag + Mg 2O 7 Slag + SiO 2 (s4) SiO 2 (s4) + MgSiO 3 (s4) + Mg 2 O 7 (s) SiO 2 (s2) + MgSiO 3 (s3) + Mg 2 O 7 (s) SiO 2 (s) + MgSiO 3 (s2) + Mg 2 O 7 (s) 200 0 0.2 0.4 0.6 0.8 1 SiO 2 /(SiO 2 +Mg 3 O 8 ) (g/g) J. Wojciechowska, J. Berak, Rocz. Chem., 33[1] 21-31 (1959). 15

MgO-SiO 2 - O 5 : liquidus surface MgO - SiO 2 - O 5 Projection (Slag), 1 atm SiO 2 SiO 2 (s4) T(min) = 559.97 o C, T(max) = 2826.83 o C 2900 MgSiO 3 (s4) MgSiO 3 Slag#2 Mg 2 SiO 4 MgO(s) Mg2SiO4(s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SiO2(s4) 3 2 1 mass fraction 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 4 7 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 MgO O 5 8 Mg 2 O 7(s) M3P M2P MP Mg 3 O 8 (s) 12 1 10 5 Si 5 P 6 O 25 6 911 1314 Si O 7 Si O 7 (s3) Mg O 6 (s) Si O 7 (s2) 15 15 Si O 7 (s) 2750 2500 2250 2000 1750 1500 1250 1000 750 500 T o C J. Wojciechowska, J. Berak, Rocz. Chem., 33[1] 21-31 (1959). There is not enough experimental data on phase diagrams, especially in the O 5 -rich area. The few data available is contradictory. Hence, experimental studies are needed. 16

CaO-SiO 2 - O 5 : section Ca 2 SiO 4 -Ca 3 O 8 -Ca 2 SiO 4, modelled before with solubility for CrO and MgO -Ca 3 O 8 modelled before with solubility for MgO W. Fix, H. Heymann, and R. Heinke, J. Am. Ceram. Soc., 52 [6] 346-347 (1969). 17

CaO-SiO 2 - O 5 : modelling of α-ca 2 SiO 4 Previous description: - Ca 2 SiO 4 : (Ca 2+,Cr 2+,Mg 2+ ) 2 (Si 4+ ) (O 2- ) 4 - Ca 3 O 8 : (Ca 2+,Mg 2+ ) 3 (P 5+ ) 2 (O 2- ) 8 The following description was suggested for the phase C2S-C3P: (Ca 2+,Cr 2+,Mg 2+ ) 3 (Ca 2+,Va 0 ) 1 (P 5+,Si 4+ ) 2 (O 2- ) 8 For the description of C2S-C3P the following reciprocal equation has been applied: G(Ca:Ca:Si:O) + G(Ca:Va:P:O) - G(Ca:Ca:P:O) - G(Ca:Va:Si:O) = 0 System Solid phase Description of solid phase CaO-SiO 2 - O 5 Ca 2 SiO 4 -alpha =Ca 3 O 8 -alpha prime Ca 2 SiO 4 -alpha-prime 7CaO O 5 2SiO 2 5CaO O 5 SiO 2 (Ca 2+ ) 3 (Ca 2+,Va) 1 (P 5+,Si +4 ) 2 (O 2- ) 8 (Ca 2+ ) 3 (Ca 2+,Va) 1 (P 5+,Si +4 ) 2 (O 2- ) 8 Stoichiometric Stoichiometric 18

The phase Ca 2 SiO 4 in different systems 19

CaO-SiO 2 - O 5 : section Ca 2 SiO 4 -Ca 3 O 8 -Ca 2 SiO 4, modelled before with solubility for FeO and MgO W. Fix, H. Heymann, and R. Heinke, J. Am. Ceram. Soc., 52 [6] 346-347 (1969). 20

CaO-SiO 2 - O 5 : modelling of α`-ca 2 SiO 4 The following description characterises the solubility for MgO, FeO and O 5 in the phase -Ca 2 SiO 4 C2S-PRIME : (Ca 2+,Fe 2+,Mg 2+ ) 3 (Ca 2+,Va 0 ) 1 (P 5+,Si 4+ ) 2 (O 2- ) 8 System Solid phase Description of solid phase CaO-SiO 2 - O 5 Ca 2 SiO 4 -alpha =Ca 3 O 8 -alpha prime Ca 2 SiO 4 -alpha-prime 7CaO O 5 2SiO 2 5CaO O 5 SiO 2 (Ca 2+ ) 3 (Ca 2+,Va) 1 (P 5+,Si +4 ) 2 (O 2- ) 8 (Ca 2+ ) 3 (Ca 2+,Va) 1 (P 5+,Si +4 ) 2 (O 2- ) 8 Stoichiometric Stoichiometric 21

The phase Ca 2 SiO 4 in different systems 22

CaO-SiO 2 - O 5 : section Ca 2 SiO 4 -Ca 3 O 8 W. Fix, H. Heymann, and R. Heinke, J. Am. Ceram. Soc., 52 [6] 346-347 (1969). Both phases, α and α,based on Ca 2 SiO 4, are included into the dataset to describe the phase diagram R. W. Nurse, J. H. Welch, W. H. Gutt, J. Chem. Soc.,1077-1083 (1959). 23

CaO-SiO 2 - O 5 : liquidus surface CaO - O 5 - SiO 2 SiO 2 Ca 3 Si 2 O 7 (s) 1500 CaSiO 3 (s) Ca 3 SiO 5 (s) 2600 2800 2400 2200 0.1 0.2 0.3 0.4 MeO 1700 1900 2100 2200 0.1 0.2 0.3 0.4 C2S_C3P J. Berak and J.Wojciechowska, Rocz. Chem., 30[3], (1956), pp.757-769. CaO 0.9 0.8 0.7 mass fraction 0.6 Ca 4 (PO 4 ) 2 O(s) O 5 H. Margot-Marette, P. V. Riboud, Mem. Sci. Rev. Metall., 69 [9] 593-604, (1972). 24

Conclusions The liquid phase in all subsystems was evaluated using non-ideal associate species model (two cations per species). All systems were assessed using experimental phase diagram information. Solid solubility SiO 2 in AlPO 4, and vice versa, was considered. The new models of Ca 2 SiO 4 and -Ca 2 SiO 4 were introduced within the transition from Ca 2 SiO 4 to Ca 3 O 8 as well as the solubility of corresponding oxides have been described. Outlook Addition of alkalis in the Al 2 O 3 -CaO-MgO-SiO 2 - O 5 system Thermodynamic assessment of all combination of 2,3 etc. oxides 25

On behalf of all co-authors: Thank you for your attention! Vielen Dank für Ihre Aufmerksamkeit! Благодарю за внимание! 26