Low noise millimeter wave receivers for Cosmic Microwave Background radiometers Eduardo Artal, Beatriz Aja, Luisa de la Fuente, Juan Luis Cano, Enrique Villa, Jaime Cagigas (1) Enrique Martínez-González, Francisco Casas, David Ortiz (2) (1) Departamento de Ingeniería de Comunicaciones, Universidad de Cantabria. Santander. (2) Instituto de Física de Cantabria. Santander. Jornadas de Instrumentación Espacial Astro Madrid 29-30 June 2011 1
Summary Introduction Cosmic Microwave Background. Spatial missions NASA missions European Space Agency and Planck mission Planck satellite receivers Microwave polarimeters in El Teide Polar modulators, orthomode transducers Low noise receivers 2
Big Bang and Cosmic Microwave Background Time line of the Universe First stars 200 millions years CMB last interaction 380,000 years Inflation At present 13,700 millions years 0.00..(42)..001 seconds 3
Cosmic Microwave Background The earliest image of the Universe (thousands of millions of years) Cosmic Microwave Image obtained by COBE satellite (NASA) (Celestial sphere deployed) Today: Cosmic Microwave Background (CMB) radiation temperature - 270 ºC CMB: the relic radiation from the Big Bang, the earliest print of the origin of the Universe (a lot of information about the early state) 4
Discovery of Cosmic Microwave Background 1964 Isotropic radio noise from the sky The Horn Antenna, at Bell Telephone Laboratories in Holmdel, New Jersey (constructed in 1959) 5
NASA missions: COBE satellite Satellite launched by NASA in 1989 to test CMB radiation and CMB Far-InfraRed spectrum. First evidence of CMB anisotropies (1 part in 100,000) 6
COBE satellite Artist s view of COBE satellite in orbit Instruments DMR= Differential Microwave Radiometer FIRAS = Far-InfraRed Absolute Spectrophotometer DIRBE = Diffuse InfraRed Background Experiment 7
NASA missions: WMAP (2001) WMAP (Wilkinson Microwave Anisotropy Probe) WMAP (Wilkinson Microwave Anisotropy Probe) better sensitivity and resolution than COBE a complete map of the sky now it is still providing science data 8
NASA missions: WMAP (2001) Temperature fluctuations map (CMB) after 5 years tests with WMAP satellite (variations of 0.0002 degrees) 9
ESA Planck mission Telescope of ESA Planck mission: dedicated to study the microwave background radiation Planck satellite will give answers about the origin and evolution of the universe by mapping the sky temperature: Cosmic background anisotropies 10
Missions comparison Cosmic Microwave Background anisotropies CMB anisotropies simulation at the Planck mission expected level PLANCK versus WMAP: Sensitivity 10x Frequency coverage 10x Angular resolution 2x 11
Planck and Herschel missions Launched together on Ariane V on 14-May-2009 Separated before reaching their orbit (Lagrangian 2 point, Lissajous orbit) Herschel Planck 12
Planck payload Planck mission instruments: HFI - High Frequency Instrument bolometer receivers 100-850 GHz (6 bands) cooled to 0.1 K LFI - Low Frequency Instrument radiometric receivers at 30, 44 and 70 GHz cooled to 20 K with a reference load cooled to 4K 13
Planck receivers (LFI+HFI) 14
Planck-LFI radiometers 4 K load reference Feed-horn Radiometer Feed-horn 20K WG 300K Channel 4 Channel 3 OMT FEM BEM to DAE 20K WG 300K Channel 2 Channel 1 Radiometer 4 K load reference Feed-horn LNA Back End Module: BEM LNA BPF DET DC Amp LNA LNA BPF DET DC Amp 15
One branch of the 30 GHz BEM EBB L 50 mm LNA (MMIC) Detector output Filter Detector DC amplifier 16
One branch of the 44 GHz BEM EBB LNA (MMIC) Attenuator Filter Detector Detector output DC amplifier 17
MMIC amplifiers (LNA) at 44 GHz Two LNA (Low Noise Amplifier): same topology PHEMT OMMIC ED02AH Gate Width : 90 m (6x15 m) Gate Length : 0.18 m LNA (HEMT-Depletion) LNA (HEMT-Enhancement) Size: 3x1 mm 2 18
30 GHz BEM. Qualification Model (QM) RF channels 19
30 GHz BEM. Flight Model (FM) Size: 60 x 65 x 39 mm 3 DC amplifiers 20
44 GHz BEM. Flight Model (FM) RF channels 21
Low frequency instrument (LFI) integration 3 Back End Modules at 44 GHz 2 Back End Modules at 30 GHz 22
Planck satellite: first results 17 September 2009, (News from ESA): Preliminary results from ESA s Planck mission to study the early Universe indicate that the data quality is excellent 23
QUIJOTE CMB experiment overview Q-U-I JOint TEnerife (Stokes parameters Q, U and I) Cosmic Microwave Background (CMB) polarization receivers To obtain five polarization maps in the frequency range 11-30 GHz Angular resolution: ~1 degree
QUIJOTE experiment consortium Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain): Coordinator Instituto de Física de Cantabria (IFCA), Santander (Spain) Universidad de Cantabria (UC), Santander (Spain) University of Cambridge, (UK) University of Manchester, Jodrell Bank Centre for Astrophysics (UK) IDOM, Bilbao (Spain)
Observatorio del Teide (Tenerife, Canary Islands) Izaña site, 2.390 m QUIJOTE Instruments 1 and 2 and enclosure
QUIJOTE experiment. Basic features Instrument 1 Instrument 2 Frequency (GHz) 11.0 13.0 17.0 19.0 30.0 30.0 Bandwidth (GHz) 2.0 2.0 2.0 2.0 8.0 8.0 Number of channels 8 8 8 8 2 32 Beam FWHM (deg) (*) 0.92 0.92 0.60 0.60 0.37 0.37 T sys (K) 20.0 20.0 20.0 20.0 30.0 20.0 Sensitivity (mk s 1/2 ) 0.22 0.22 0.22 0.22 0.34 0.05 Sensitivity per beam (Jy s 1/2 ) 0.24 0.34 0.24 0.30 0.43 0.07 (*) Pixel = a square with each side is FWHM (Full Width at Half Maximum) of the beam.
Radiometer scheme for QUIJOTE 1 Simultaneous Q and U detection
QUIJOTE 1: Corrugated feed-horns (Sept. 2010) 14-20 GHz 10-14 GHz 26-36 GHz
QUIJOTE 1: Receivers integration LNA 26-36 GHz OMT 26-36 GHz
Polar Modulator Key component of the polarimeter Rotating polar modulator (40 Hz): switch out 1/f noise Incoming signal modulated at 4 x (modulator frequency) Cryogenically cooled: low losses, low impact on noise Waveguide component: turnstile 4-way junction Units: 10-14 GHz 14-20 GHz 26-36 GHz
Orthomode Transducer (OMT) Units: 10-14 GHz 14-22 GHz 26-36 GHz
Cryo-LNA. Gain and Noise Temperature 30 GHz Channel (26-36 GHz) Te (K) LNA#40A39, Vd = 0.8V, Vg1 = 0.3V, Vg2 = 0.3V, Id = 23mA, Tp = 11.5K 100 90 40 36 80 32 70 28 60 24 50 20 40 16 30 12 20 8 10 4 0 0 22 24 26 28 30 32 34 36 38 40 Frequency (GHz) Gi (db) Te (K) Gain (db) Gain and noise temperature of Caltech LNA at 12 K
30 GHz BEM (QUIJOTE 1) RF circuits DC circuits BEM branch (top cover removed)
30 GHz BEM (QUIJOTE 1) Waveguide input RF sample output (K connector)
Test results (30 GHz BEM) BEM_QUIJOTE_01 30 10*log(Vo(mV)) 20 10 0 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Frequency, GHz UNIT#1 UNIT#2 Gain vs. frequency for two units (detector included)
Facilities at Universidad de Cantabria Test equipment from DC to 50 GHz: Gain, Noise temperature, Signal analysis, Spectrum analysis, 1/f noise, at Room temperature (300 K) and at cryogenic temperature (20 K) Cryostats general view Two LNA units installed inside
QUIJOTE 2 30 GHz Instrument FOCAL PLANE Connectors for 26-36GHz Receivers Displacer 26-36 GHz Feedhorn Motor mount Telescope Mounting Interface Flange Connector for Temperature sensors and heaters Pressure Sensor Vacuum Valve FRONT VIEW Hermetic Feedthroughs for encoders signals
Telescope QUIJOTE 1 IAC (La Laguna, Tenerife) May 2009
Acknowledgments Spanish participation in Planck mission and QUIJOTE experiment is funded by the Ministry of Science and Innovation. Grants: AYA2007-68058-C03 AYA2010-21766-C03 40
End