A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.



Similar documents
Georgia Department of Education

An explanation of the coding of the science GPS is attached.

Forensic Science Curriculum

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

One Stop Shop For Teachers

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

Georgia Performance Standards for Science Grade 6. This Performance Standards document includes four major components. They are

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are

Third Grade Science Curriculum

Approved July 12, 2004

Second Grade Science Curriculum

RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE ENVIRONMENTAL SCIENCE

How To Teach Math

This Performance Standards include four major components. They are

Environmental Science Scope & Sequence

Environmental Science Overview

MIDLAND ISD ADVANCED PLACEMENT CURRICULUM STANDARDS AP ENVIRONMENTAL SCIENCE

COURSE TITLE: Agricultural Animal Production and Management

Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy

Essential Study Partner/ ESP:

Environmental Science

Unit: Charge Differentiated Task Light it Up!

PROGRAM CONCENTRATION:

Environmental Science Science Curriculum Framework. Revised 2005

Basic Skills of Marketing Sixth Grade

ENVIRONMENTAL SCIENCE CURRICULUM for CLASS IX to X

PROGRAM CONCENTRATION: Public Safety and Government COURSE TITLE: Exploring Public Safety and Government Education Sixth Grade

Healthcare Science- Personal Care Services Pathway Overview

A Correlation of Environmental Science Your World, Your Turn 2011

COURSE TITLE: Broadcast/Video Production 2

Basic Agricultural Science and Technology

Mathematics Georgia Performance Standards

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE ESCI INTRODUCTION TO ENVIRONMENTAL SCIENCE

One Stop Shop For Educators

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Earth, Moon, and Sun Inquiry Template Eclipses

PROGRAM CONCENTRATION: COURSE TITLE: Introduction to Early Childhood Care and Education PREREQUISITES:

GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world.

East Baton Rouge Parish Schools Environmental Science YID Table of Contents. Unit 1: Science and the Environment...2

PROGRAM CONCENTRATION: Business and Computer Science

One Stop Shop For Teachers

Utah State Office of Education Elementary STEM Endorsement Course Framework Nature of Science and Engineering

Broken Arrow Public Schools AP Environmental Science Objectives Revised

RUTHERFORD PUBLIC SCHOOLS ENVIRONMENTAL SCIENCE CURRICULUM GRADE 7

Understanding by Design. Title: BIOLOGY/LAB. Established Goal(s) / Content Standard(s): Essential Question(s) Understanding(s):

Science, Technology, Engineering, Mathematics Career Cluster Foundation of Electronics Course Number

Position Statement on Science Education

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site

a. a population. c. an ecosystem. b. a community. d. a species.

Standards of Quality and Effectiveness for Professional Teacher Preparation Programs APPENDIX A

State of Georgia. Teaching to Standards: SCIENCE Alignment to Georgia Science Standards Grades 3-12

Science Standards of Learning for Virginia Public Schools Correlation with National Science Standards

Ecology Module B, Anchor 4

One Stop Shop For Teachers

Elementary Courses. Grade 5 Language Arts

Garfield Public Schools Environmental Science Curriculum Grade Nine

Processes Within an Ecosystem

G u i d e l i n e s f o r K12 Global C l i m a t e Change Education

Scope and Sequence Interactive Science grades 6-8

TExMaT Master Science Teacher 4 8 (091) Test at a Glance

Seventh Grade Science Content Standards and Objectives

Greater Nanticoke Area School District Science/Technology Standards 5 th Grade

Whitnall School District Report Card Content Area Domains

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment.

Grade Level Expectations for the Sunshine State Standards

COURSE DESCRIPTION. Course Number: NM: RISD: 13109A, 13109B. Successful completion of Forensics I (C or better)

Diablo Valley College Catalog

AIE: 85-86, 193, , 294, , , 412, , , 682, SE: : 339, 434, , , , 680, 686

CALIFORNIA S TEACHING PERFORMANCE EXPECTATIONS (TPE)

A.P. ENVIRONMENTAL SCIENCE COURSE SYLLABUS Miller Grove High School. Teacher(s): Mrs. Christy Hodges Phone Number: Room Number/s: 906

Energy Flow in the Pond Teacher s Guide February 2011

Cherokee County School District Student Performance Standards Unit Guides - Science: Fifth Grade

Greater Nanticoke Area School District Chemistry Standards. Standard 3.1. Unifying Themes

APPENDIX F Science and Engineering Practices in the NGSS

Global Climate Change WebQuest

SALEM COMMUNITY COLLEGE Course Syllabus. Course Title: Environmental Science I. Course Code: BIO103. Lecture Hours: 2 Laboratory Hours: 4 Credits: 4

Prentice Hall Interactive Science Series 2011 Correlated to: Arizona Science Standards, Strands 1-6 (Grade 7)

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links

Alternative Sources of Energy

Benjamin E. Mays High School Science Department Physical Science Course Syllabus

Core Science Curriculum Framework Grade 9. An Invitation for Students and Teachers to Explore Science and Its Role in Society

Assessment Plan Mission

Common Core Standards for Literacy in Science and Technical Subjects

Standards: Human activity has consequences on living organisms and ecosystems. (94412, )

One Stop Shop For Teachers

AP Biology Unit I: Ecological Interactions

Master of Education in Middle School Science

New Hampshire Department of Education Special Education Program Approval and Improvement Process

You are What You Eat

Science Stage 6 Skills Module 8.1 and 9.1 Mapping Grids

Earth Science & Environmental Science SOL

Criminal Investigation and Forensics

The Bachelor of Science program in Environmental Science is a broad, science-based

Teacher Evaluation. Missouri s Educator Evaluation System

AP Environmental Science Syllabus

Bangkok Christian College EIP Matayom Course Description Semester One

a. What is the period of validity for an educator s license? Less than 5 years 5 years X Greater than 5 years

PROCESS FOR APPROVING NON- IAI- GENERAL EDUCATION CORE CURRICULUM (GECC) COURSES FOR GENERAL EDUCATION CREDIT

Transcription:

Environmental Science Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is used as the core of the curriculum to determine appropriate content and process skills for students. The GPS is also aligned to the National Research Council s National Science Education Standards. Technology is infused into the curriculum. The relationship between science, our environment, and our everyday world is crucial to each student s success and should be emphasized. The performance standards should drive instruction. Hands-on, student-centered, and inquiry-based approaches should be the emphases of instruction. This curriculum is intended as a required curriculum that would show proficiency in science, and instruction should extend beyond the curriculum to meet the student needs. The hands-on nature of the science curriculum standards increases the need for teachers to use appropriate precautions in the laboratory and field. The guidelines for the safe use, storage, and disposal of chemicals must be observed. Safety of the student should always be foremost in science instruction. Science consists of a way of thinking and investigating, and includes a growing body of knowledge about the natural world. To become literate in science, therefore, students need to acquire understandings of both the Characteristics of Science and its Content. The Georgia Performance Standards for Science require that instruction be organized so that these are treated together. Therefore, A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME. For this reason they are presented as co-requisites. This Performance Standards include four major components. They are The Standards for Georgia Science Courses. The Characteristics of Science co-requisite standards are listed first followed by the Content co-requisite standards. Each Standard is followed by elements that indicate the specific learning goals associated with it. Tasks that students should be able to perform during or by the end of the course. These tasks are keyed to the relevant Standards. Some of these can serve as activities that will help students achieve the learning goals of the Standard while others can be used to assess student learning. Many of these tasks can serve both purposes. Samples of student work. As a way of indicating what it takes to meet a Standard, examples of successful student work are provided. Many of these illustrate how student work can bridge the Content and Characteristics of Science Standards. The Georgia DOE Standards web site will continue to add samples as they are identified and teachers are encouraged to submit examples from their own classroom experiences. Teacher Commentary. Teacher commentary is meant to open the pathways of communication between students and the classroom teacher. Showing students why they did or did not meet a standard enables them to take ownership of their own learning. 8/29/2006 3:50 PM Page 1 of 8

Georgia Performance Science Standards-- Explanation of Coding Characteristics of Science Standards SKCS1 Science Kindergarten Characteristics of Science Standard #1 S8CS2 Science Grade 8 Characteristics of Science Standard #2 SCSh8 Science Characteristics of Science high school Standard #8 Content Standards S5P3 Science Grade 5 Physical Science Standard #3 S4E2 Science Grade 4 Earth Science Standard #2 S7L4 Science Grade 7 Life Science Standard #4 SC1 Science Chemistry Standard #1 SB4 Science Biology Standard #4 SPS6 Science Physical Science Standard #6 SP3 Science Physics Standard #3 8/29/2006 3:50 PM Page 2 of 8

Environmental Science Approved July 13, 2006 The Environmental Science curriculum is designed to extend student investigations that began in grades K-8. This curriculum is extensively performance, lab and field based. It integrates the study of many components of our environment, including the human impact on our planet. Instruction should focus on student data collection and analysis. Some concepts are global; in those cases, interpretation of global data sets from scientific sources is strongly recommended. It would be appropriate to utilize resources on the Internet for global data sets and interactive models. Chemistry, physics, mathematical, and technological concepts should be integrated throughout the course. Whenever possible, careers related to environmental science should be emphasized Major Concepts/ Skills: Flow of energy & cycling of matter Interconnection of all life The stability and change in an ecosystem Conservation and resource allocation Evaluation of human activity and technology Concepts/Skills to Maintain: Characteristics of Science Records investigations clearly and accurately Uses scientific tools Organizes/interprets graphs, tables and charts Writes clearly Uses proper units Analyzes scientific data via calculations and inference Uses models Asks quality questions Uses technology Uses safety techniques Recognizes the importance of explaining data with precision and accuracy Co-Requisite Characteristics of Science Habits of Mind SCSh1. Students will evaluate the importance of curiosity, honesty, openness, and skepticism in science. a. Exhibit the above traits in their own scientific activities. b. Recognize that different explanations often can be given for the same evidence. c. Explain that further understanding of scientific problems relies on the design and execution of new experiments which may reinforce or weaken opposing explanations. SCSh2. Students will use standard safety practices for all classroom laboratory and field investigations. a. Follow correct procedures for use of scientific apparatus. b. Demonstrate appropriate technique in all laboratory situations. c. Follow correct protocol for identifying and reporting safety problems and violations. 8/29/2006 3:50 PM Page 3 of 8

SCSh3. Students will identify and investigate problems scientifically. a. Suggest reasonable hypotheses for identified problems. b. Develop procedures for solving scientific problems. c. Collect, organize and record appropriate data. d. Graphically compare and analyze data points and/or summary statistics. e. Develop reasonable conclusions based on data collected. f. Evaluate whether conclusions are reasonable by reviewing the process and checking against other available information. SCSh4. Students use tools and instruments for observing, measuring, and manipulating scientific equipment and materials. a. Develop and use systematic procedures for recording and organizing information. b. Use technology to produce tables and graphs. c. Use technology to develop, test, and revise experimental or mathematical models. SCSh5. Students will demonstrate the computation and estimation skills necessary for analyzing data and developing reasonable scientific explanations. a. Trace the source on any large disparity between estimated and calculated answers to problems. b. Consider possible effects of measurement errors on calculations. c. Recognize the relationship between accuracy and precision. d. Express appropriate numbers of significant figures for calculated data, using scientific notation where appropriate. e. Solve scientific problems by substituting quantitative values, using dimensional analysis and/or simple algebraic formulas as appropriate. SCSh6. Students will communicate scientific investigations and information clearly. a. Write clear, coherent laboratory reports related to scientific investigations. b. Write clear, coherent accounts of current scientific issues, including possible alternative interpretations of the data. c. Use data as evidence to support scientific arguments and claims in written or oral presentations. d. Participate in group discussions of scientific investigation and current scientific issues. The Nature of Science SCSh7. Students analyze how scientific knowledge is developed. Students recognize that: a. The universe is a vast single system in which the basic principles are the same everywhere. b. Universal principles are discovered through observation and experimental verification. c. From time to time, major shifts occur in the scientific view of how the world works. More often, however, the changes that take place in the body of scientific knowledge are small modifications of prior knowledge. Major shifts in scientific views typically 8/29/2006 3:50 PM Page 4 of 8

occur after the observation of a new phenomenon or an insightful interpretation of existing data by an individual or research group. d. Hypotheses often cause scientists to develop new experiments that produce additional data. e. Testing, revising, and occasionally rejecting new and old theories never ends. SCSh8. Students will understand important features of the process of scientific inquiry. Students will apply the following to inquiry learning practices: a. Scientific investigators control the conditions of their experiments in order to produce valuable data. b. Scientific researchers are expected to critically assess the quality of data including possible sources of bias in their investigations hypotheses, observations, data analyses, and interpretations. c. Scientists use practices such as peer review and publication to reinforce the integrity of scientific activity and reporting. d. The merit of a new theory is judged by how well scientific data are explained by the new theory. e. The ultimate goal of science is to develop an understanding of the natural universe which is free of biases. f. Science disciplines and traditions differ from one another in what is studied, techniques used, and outcomes sought. Reading Standard Comment After the elementary years, students are seriously engaged in reading for learning. This process sweeps across all disciplinary domains, extending even to the area of personal learning. Students encounter a variety of informational as well as fictional texts, and they experience text in all genres and modes of discourse. In the study of various disciplines of learning (language arts, mathematics, science, social studies), students must learn through reading the communities of discourse of each of those disciplines. Each subject has its own specific vocabulary, and for students to excel in all subjects, they must learn the specific vocabulary of those subject areas in context. Beginning with the middle grades years, students begin to self-select reading materials based on personal interests established through classroom learning. Students become curious about science, mathematics, history, and literature as they form contexts for those subjects related to their personal and classroom experiences. As students explore academic areas through reading, they develop favorite subjects and become confident in their verbal discourse about those subjects. Reading across curriculum content develops both academic and personal interests in students. As students read, they develop both content and contextual vocabulary. They also build good habits for reading, researching, and learning. The Reading Across the Curriculum standard focuses on the academic and personal skills students acquire as they read in all areas of learning. SCSh9. Students will enhance reading in all curriculum areas by: a. Reading in all curriculum areas Read a minimum of 25 grade-level appropriate books per year from a variety of subject disciplines and participate in discussions related to curricular learning in all areas. 8/29/2006 3:50 PM Page 5 of 8

Read both informational and fictional texts in a variety of genres and modes of discourse. Read technical texts related to various subject areas. b. Discussing books Discuss messages and themes from books in all subject areas. Respond to a variety of texts in multiple modes of discourse. Relate messages and themes from one subject area to messages and themes in another area. Evaluate the merit of texts in every subject discipline. Examine author s purpose in writing. Recognize the features of disciplinary texts. c. Building vocabulary knowledge Demonstrate an understanding of contextual vocabulary in various subjects. Use content vocabulary in writing and speaking. Explore understanding of new words found in subject area texts. d. Establishing context Explore life experiences related to subject area content. Discuss in both writing and speaking how certain words are subject area related. Determine strategies for finding content and contextual meaning for unknown words. Co-Requisite Content SEV1. SEV2. Students will investigate the flow of energy and cycling of matter within an ecosystem and relate these phenomena to human society. a. Interpret biogeochemical cycles including hydrologic, nitrogen, phosphorus, oxygen, and carbon cycles. Recognize that energy is not recycled in ecosystems. b. Relate energy changes to food chains, food webs, and to trophic levels in a generalized ecosystem, recognizing that entropy is a primary factor in the loss of usable food energy during movement up the trophic levels. c. Relate food production and quality of nutrition to population growth and the trophic levels d. Relate the cycling of matter and the flow of energy to the Laws of Conservation of matter and energy. Identify the role and importance of decomposers in the recycling process. e. Distinguish between abiotic and biotic factors in an ecosystem and describe how matter and energy move between these. Students will demonstrate an understanding that the Earth is one interconnected system. a. Describe how the abiotic components (water, air, and energy) affect the biosphere. b. Recognize and give examples of the hierarchy of the biological entities of the biosphere (organisms, populations, communities, ecosystems, and biosphere). c. Characterize the components that define a Biome. Abiotic Factors to include precipitation, temperature and soils. 8/29/2006 3:50 PM Page 6 of 8

SEV3. SEV4. SEV5. Biotic Factors plant and animal adaptations that create success in that biome. d. Characterize the components that define fresh-water and marine systems. Abiotic Factors to include light, dissolved oxygen, phosphorus, nitrogen, ph and substrate. Biotic Factors plant and animal adaptations characteristic to that system. Students will describe stability and change in ecosystems. a. Describe interconnections between abiotic and biotic factors, including normal cyclic fluctuations and changes associated with climatic change (i.e. ice ages). b. Explain succession in terms of changes in communities through time to include changes in biomass, diversity, and complexity. c. Explain how succession may be altered by traumatic events. d. Explain how biotic and abiotic factors influence populations. e. Describe interactions between individuals (i.e. mutualism, commensalisms, parasitism, predation, and competition). Students will understand and describe availability, allocation and conservation of energy and other resources a. Differentiate between renewable and nonrenewable resources including how different resources are produced, rates of use, renewal rates, and limitations of sources. Distinguish between natural and produced resources. b. Describe how technology is increasing the efficiency of utilization and accessibility of resources. c. Describe how energy and other resource utilization impact the environment and recognize that individuals as well as larger entities (businesses, governments, etc.) have impact on energy efficiency. d. Describe the relationship of energy consumption and the living standards of societies. e. Describe the commonly used fuels (e.g. fossil fuels, nuclear fuels, etc.) and some alternative fuels (e.g. wind, solar, ethanol, etc.) including the required technology, availability, pollution problems and implementation problems. Recognize the origin of fossil fuels and the problems associated with our dependence on this energy source. f. Describe the need for informed decision making of resource utilization. (i.e. energy and water usage allocation, conservation, food and land, and long-term depletion) Students will recognize that human beings are part of the global ecosystem and will evaluate the effects of human activities and technology on ecosystems. a. Describe factors affecting population growth of all organisms, including humans. Relate these to factors affecting growth rates and carrying capacity of the environment. b. Describe the effects of population growth, demographic transitions, cultural differences, emergent diseases, etc. on societal stability. c. Explain how human activities affect global and local sustainability. d. Describe the actual and potential effects of habitat destruction, erosion, and depletion of soil fertility associated with human activities. 8/29/2006 3:50 PM Page 7 of 8

e. Describe the effects and potential implications of pollution and resource depletion on the environment at the local and global levels (e.g. air and water pollution, solid waste disposal, depletion of the stratospheric ozone, global warming, and land uses). f. Describe how political, legal, social, and economic decisions may affect global and local ecosystems. 8/29/2006 3:50 PM Page 8 of 8