CORRELATION OF THE HYBRID LAYER THICKNESS AND RESIN TAGS LENGTH WITH THE BOND STRENGTH OF A SELF-ETCHING ADHESIVE SYSTEM



Similar documents
Bond strength evaluation of self-etch and total-etch adhesive systems on intact and ground human enamel

Influence of Water Storage Time on the Bond Strength of Etch-and-Rinse and Self-Etching Adhesive Systems

Ultimate tensile strength of tooth structures

24 HOURS AND 3-MONTHS BOND STRENGTH BETWEEN DUAL-CURED RESIN CEMENTS AND SIMPLIFIED ADHESIVE SYSTEMS

Effect of salivary contamination at different steps of the bonding process on the microleakage around Class V restorations

Influence of Ormocer component on the performance of dentin adhesive systems

Etching time evaluation on the shear bond strength of two adhesive systems in primary teeth

Effect of storage and disinfection methods of extracted bovine teeth on bond strength to dentin

Clinical randomized controlled study of Class II restorations of a highly filled nanohybrid resin composite (4U)

THE EFFECT OF STORAGE SOLUTIONS ON ENAMEL OF BOVINE TEETH

Adhesive Solutions. Scotchbond Universal Adhesive. SEM pictures of Scotchbond Universal Adhesive. One bottle for all cases! Total-Etch and Self-Etch

DENT 5351 Final Examination 2007 NAME

Interaction between total-etch and self-etch adhesives and conventional and self-adhesive resin cements

CAN ULTRASOUND APPLICATION INFLUENCE THE BOND STRENGTH OF SELF-ADHESIVE RESIN CEMENTS TO DENTIN?

FORMAÇÃO DE CÁRIE AO REDOR DE COMPÓSITOS RESTAURADORES E CIMENTO DE IONÔMERO DE VIDRO

Objective: To assess microleakage in conservative class V cavities prepared with

1- Fatigue-Resistance and Microleakage of CAD/CAM Ceramic and Composite Molar crowns

Low shrinkage composite resins: influence on sealing ability in unfavorable C-factor cavities

Chemical stability of two dentin single-bottle adhesives as a function of solvent loss

Eliminating effect of Er, Cr: YSGG laser irradiation on the smear layer of dentin

Bonding Agent Underneath Sealant: Shear Bond Strength to Oil-Contaminated Enamel

Influence of ultrasound and diamond burs treatments on microtensile bond strength

Effect of waiting time for placing resin composite restorations after bleaching on enamel bond strength

Effect of water storage and hydrophobic

Er:YAG (2940nm) laser cavity preparation and semidirect composite resin restorations. A microleakage study

Intra-radicular dentin treatments and retention of fiber posts with selfadhesive

The effect of hydroxyapatite presence on the degree of conversion and polymerization rate in a model self-etching adhesive

Our Mission: Protecting partially. erupted teeth. With Fuji TriageTM from GC. One of many GC solutions for caring for youngsters.

Shear bond strength of metallic brackets bonded with a new orthodontic composite

In vivo evaluation of different techniques for establishment of proximal contacts in posterior resin composite restorations

RSBO Revista Sul-Brasileira de Odontologia ISSN: Universidade da Região de Joinville Brasil

Deposited on: 8 June 2009

BIOACTIVE COATINGS ON 316L STAINLESS STEEL IMPLANTS

Assessment of variability in experiments in the operative dentistry area applied to shear bond strength tests

Preventive Care Solutions. Clinpro. Comfortable Oral Care. The healthy. smile concept. Clinpro Prophy Powder Clinpro Prophy Paste

Effect of photoactivation methods and base materials on the stress generated by the polymerization shrinkage of a resin composite

TENSILE BEHAVIOUR OF OPEN CELL CERAMIC FOAMS

Lasers and Specturbility of Light Scattering Liquids - A Review

Jacket crown. Advantage : Crown and Bridge

priti crown Your patients deserve you

Evaluation of Survival Time of Tooth Color Dental Materials in Primary Anterior Teeth

The effects of anti-oxidant agents as neutralizers of bleaching agents on enamel bond strength

Tooth preparation J. C. Davenport, 1 R. M. Basker, 2 J. R. Heath, 3 J. P. Ralph, 4 P-O. Glantz, 5 and P. Hammond, 6

Class I and II Indirect Tooth-Colored Restorations

Rebilda DC. Rebilda Post System. Rebilda

INFLUENCE OF IRRIGANTS ON THE CORONAL SEALING ABILITY OF TWO SEALERS

Influence of the power level of an ultra-sonic system on dental cavity preparation

RESTORATIVES. Simply beautiful. GRADIA DIRECT Composite Restoratives

Comparative radiopacity of four lowviscosity

CHAPTER 10 RESTS AND PREPARATIONS. 4. Serve as a reference point for evaluating the fit of the framework to the teeth.

Objective: The aim of this study was to evaluate the effect of multiple layers of an

Humoral response to therapeutic low-intensity pulsed ultrasound (LIPUS) treatment of rat maxillary socket after the removal of a molar tooth

Non-carious dental conditions

Microtensile test in dental research. Controversial aspects in statistical analysis (experimental unit and premature failures)

A COMPARISON OF THE FILM THICKNESS OF TWO ADHESIVE LUTING AGENTS AND THE EFFECT OF THERMOCYCLING ON THEIR μtbs TO FELDSPATHIC CERAMIC

HYDROGEN STORAGE AND MICROSTRUCTURE INVESTIGATIONS OF La 0.7- Av. Prof. Lineu Prestes, 2242, ZIP , São Paulo, Brazil.

Composite artistry- speedy mock up

Effect of Cement Type and Water Storage Time on the Push-Out Bond Strength of a Glass Fiber Post

TA3 Dosimetry and Instrumentation. Evaluation of the Field Size in Dental Diagnostic Radiology System ANDRADE PS 1, POTIENS MP 1

Press Abutment Solutions

Histologic comparison of biologic width around teeth versus implants: The effect on bone preservation

In 1972, Wilson & Kent introduced

Supporting Online Material for

The Effect of Autoclave on the Powder of (PMMA) on the Water Sorption, Solubility and Porosity

Universal Crown and Bridge Preparation

IPS Empress CAD for CAD/CAM technology Information for Dentists. Confidence. Reliability. Esthetics. Empress CAD. The world s leading all-ceramic

Tooth preparation for indirect bonded restorations (eg,

SEM Analysis of CO 2 Laser Treated Cotton Grey Fabric

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Ridge Reconstruction for Implant Placement

Longitudinal behavioral analysis during dental care of children aged 0 to 3 years

OCCURRENCE OF SENSITIVITY DURING AT-HOME AND IN-OFFICE TOOTH BLEACHING THERAPIES WITH OR WITHOUT USE OF LIGHT SOURCES

THE CLASSIC COMPOSITE FOR EXQUISITE ESTHETICS

Use of orthodontic records in human identification*

OVERJET AND OVERBITE ANALYSIS DURING THE ERUPTION OF THE UPPER PERMANENT INCISORS

Basic Properties and Application of Auto Enamels

Crown Dilaceration in Permanent Teeth after Trauma to the Primary Predecessors: Report of Three Cases

Case Report(s): Uncomplicated Crown Fractures

Randall G. Cohen, DDS 501 Floral Vale Blvd Yardley, PA Curriculum Vitae

h e l p s y o u C O N T R O L

20TDNH 214. Course Description:

SUITABILITY OF RELATIVE HUMIDITY AS AN ESTIMATOR OF LEAF WETNESS DURATION

Porcelain Veneers for Children and Teens. By Fred S. Margolis, D.D.S., F.I.C.D., F.A.C.D., F.A.D.I. Abstract

Preventive Care Solutions. Clinpro White Varnish With Tri-Calcium Phosphate. It s good to have a little. extra protection

DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings

Correlation between marginal accuracy and fracture resistance of indirect composite restorations varying cavity preparation design

Adper Easy Bond. Self-Etch Adhesive. Your invitation to the. heavyweight showdown. November 28 30, 2010 Booth #4407.

Evaluation of Permeability and Mechanical Properties of Composite Polyvinyl Alcohol Films

Location of the apical foramen and its relationship with foraminal file size

Mechanical Characterization of the Damage Process in a Structural Adhesive Joint by Acoustic Emission

Certificate Standard Reference Material 1866b

Prosthetic treatment planning on the basis of scientific evidence.

Dental caries is an infectious disease caused

THE VOICE OF TECHNO-CLINICAL DENTISTRY

SAMPLE DENTAL SEALANT AGENCY PROTOCOL

SEALANTS. 1. UltraSeal XT plus 4.5 Ultradent. 2a. Clinpro Sealant 4.0 3M ESPE. 2b. Guardian Seal 4.0 Kerr. 2c. Teethmate F-1 4.

Influence of Diet and Oral Hygiene Practices on Retention of Fissure Sealant in Rural and Urban Children An in vivo Study

Restoration of a screw retained single tooth restoration in the upper jaw with Thommen Titanium base abutment.

Influence of heat treatment on the sorption and solubility of direct composite resins

Selected Properties of Core-Buildup Materials for Prosthetic Restorations

Transcription:

CORRELATION OF THE HYBRID LAYER THICKNESS AND RESIN TAGS LENGTH WITH THE BOND STRENGTH OF A SELF-ETCHING ADHESIVE SYSTEM Fernanda Garcia de Oliveira 1, Rodolfo Bruniera Anchieta 1, Vanessa Rahal 1, Rodrigo Sversut de Alexandre 2, Lucas Silveira Machado 1, Maria Lúcia Marçal Mazza Sundefeld 1, Marcelo Giannini 3, Renato Herman Sundfeld 1 1 Araçatuba Dental School, São Paulo State University, Brazil. 2 Guarulhos Dental School, Guarulhos University, Brazil. 3 Piracicaba School of Dentistry, University of Campinas, Brazil. 177 ABSTRACT The objective of this study was to measure the thickness of the hybrid layer (HLT), length of resin tags (RTL) and bond strength (BS) in the same teeth, using a self-etching adhesive system Adper Prompt L Pop to intact dentin and to analyze the correlation between HLT and RTL and their BS. Ten human molars were used for the restorative procedures and each restored tooth was sectioned in mesio-distal direction. One section was submitted to light microscopy analysis of HLT and RTL (400 ). Another section was prepared and submitted to the microtensile bond test (0.5 mm/min). The fractured surfaces were analyzed using scanning electron microscopy to determine the failure pattern. Correlation between HLT and RTL with the BS data was analyzed by linear regression. The mean values of HLT, RTL and BS were 3.36 µm, 12.97 µm and 14.10 MPa, respectively. No significant relationship between BS and HLT (R 2 = 0.011, p>0.05) and between BS and RTL (R 2 = 0.038) was observed. The results suggested that there was no significant correlation between the HLT and RTL with the BS of the self-etching adhesive to dentin. Key words: dentin, dentin-bonding agents, tensile strength, microscopy. CORRELAÇÃO DA ESPESSURA DA CAMADA HÍBRIDA E DO COMPRIMENTO DOS PROLONGAMENTOS RESINOSOS COM A RESISTÊNCIA DE UNIÃO DE UM ADESIVO AUTOCONDICIONANTE. RESUMO O objetivo dessa pesquisa foi mensurar a espessura da camada híbrida de adesão (CH), o comprimento dos prolongamentos resinosos (Tags) e a resistência de união (RU) em um mesmo espécime e analisar a correlação entre esses fatores, usando o adesivo autocondicionante Adper Prompt L Pop em dentina hígida. Dez molares humanos foram utilizados e após a realização dos procedimentos restauradores, de acordo com os fabricantes, cada espécime foi cortado ao meio no sentido mésio/distal. Em uma hemi-secção dental os espécimes foram descalcificados para análise e mensuração dos tags e da camada híbrida de adesão em microscopia óptica comum (AXIOPHOT, 400X). Na outra hemi-secção, foi realizado o teste de microtração em uma velocidade de 0,5 mm/min até sua ruptura. A superfície fraturada foi mensurada e classificada de acordo com o tipo de fratura observada em microscopia eletrônica de varredura. Os valores obtidos para os fatores em análise, correspondentes a cada espécime foram submetidos a um teste de correlação. As médias correspondentes a CH, Tags e RU foram 3,36µm, 12,97 µm 14,10 MPa, respectivamente. Não foi observado correlação entre a CH e RU (R 2 = 0,011, p>0,05) e entre os Tags e RU (R 2 = 0,038). Diante dos resultados, observamos não haver correlação entre a camada híbrida e a resistência à tração, assim como entre os tags e a resistência à tração do sistema adesivo autocondicionante empregado. Palavras chaves: dentina, adesivos dentinários, força de união, microscopia óptica comum. INTRODUCTION Adhesive systems are indispensable in current dental practice. The efficiency of bonding to dentin depends on micromechanical retention promoted by resin infiltration in partially demineralized dentin, leading to the formation of the hybrid layer and tags 1. To fulfill these requirements, there are two strategies: the etch-&-rinse and self-etch approaches 2. Self-etching adhesives have been developed in an attempt to reduce technique sensitivity and simplify the clinical steps of the adhesive technique. They do not require previous acid etching and simultaneously provide enamel and dentin surface demineralization, followed by infiltration of resin monomers 3. Most of information in the literature on adhesive systems has been obtained by electron microscopy studies, which provide images of small resin-dentin interface areas. However, little consistent information is available about the performance and the

178 Fernanda Garcia de Oliveira, Rodolfo Bruniera Anchieta, Vanessa Rahal, et al. Table 1: Materials employed in this study (components, manufacturers). Material Composition Adper Prompt L Pop 3M/ESPE, St Paul, MN, US Z 250 (Liquid 1 (red compartment) methacrylate esters derived from phosphoric acid, Bis- GMA, camphorquinone initiators, stabilizers; Liquid 2 (yellow compartment) water, HEMA, polyalkenoic acid, stabilizers, methacrylate ester derived from phosphoric acid, fluoride compounds) (3M/ESPE, St Paul, MN, USA) UDMA: urethane dimethacrylate, Bis-EMA: Bisphenol A polyethylene glycol dieter, dimethacrylate; TEGDMA: triethylene glycol dimethacrylate; inorganic fillers ability of these systems in large areas, as reported by some authors 4,5,6. Conversely, Sano et al. developed the microtensile bond test, which evaluates the bond strength in small bonded areas 7. Compared to conventional tests, this method has two important advantages: homogeneous stress distribution at the bonded interface and low incidence of cohesive fracture in the substrate or in restorative composite, both of which contribute to the measurement of actual bond strength 8,9. The literature has described the presence of the hybrid layer and resin tags 6,10,11 and has reported several results of microtensile bond strength to dentin for self-etching adhesives 12,13. However, few studies have evaluated the correlation between the length of resin tags and hybrid layer thickness with bond strength to dentin 14,15, mainly evaluated in the same specimen. The objective of this study was to evaluate the bond strength, measure the hybrid layer thickness and the length of resin tags of a self-etching adhesive to dentin and correlate the bond strength with the hybrid layer thickness and the length of resin tags in the same tooth. The null hypothesis tested was that bond strength is not influenced by the hybrid layer thickness and the length of resin tags. MATERIAL AND METHODS Specimen Preparation and Bonding Procedures Ten intact third human molars, which were stored in distilled water, were used in this study (up to 6 months after extraction). The study was revised and approved by the Institutional Review Board (Araçatuba UNESP). The single-step self-etching adhesive system Adper Prompt L Pop (3M ESPE, Seefeld, Germany), and the composite resin (Filtek Z250, 3M ESPE, St. Paul, MN, USA) (Table 1) were used. The occlusal enamel was removed with a diamond disc (IsoMet Diamond Wafering Blade, Buehler Ltd, Lake Bluff, IL, USA) under constant water irrigation. The occlusal surface was abraded with silicon-carbide sandpaper grit 320 under water irrigation on a polishing machine (Fortel Ltda, São Paulo, SP, Brazil) to expose the middle-depth dentin. A standardized smear layer was then created with silicon-carbide sandpaper grit 600, under continuous irrigation for 30 seconds. The adhesive system Adper Prompt L Pop was applied on the dentin surface following the manufacturer s instructions and was light cured for 20 seconds (Ultralux Lens, Dabi Atlante, Ribeirão Preto, SP, Brazil) at an intensity of 450mW/cm 2. A Filtek Z250 composite resin block (shade A2) measuring nearly 4 mm in height was incrementally built-up on dentin surfaces and each increment was light-cured for 40 seconds. The bonding procedures were performed in controlled environmental conditions at 22 C under 45% to 55% of humidity. Each restored tooth was sectioned mesio-distally with a diamond disc (IsoMet Diamond Wafering Blade, Buehler Ltd, Lake Bluff, IL, USA) under constant irrigation on a sectioning machine ISOMET 2000 (Buehler, Lake Bluff, IL, USA) to obtain two (buccal and lingual) hemi-samples. Light Microscopy Analysis The hemi-samples that were used for optical microscopy were decalcified in 50% formic acid and 20% sodium citrate water solution, which was changed after 5 days. Decalcification of each specimen was monitored radiographically 6,11. Complete decalcification was achieved after 3 months. This process completely removed the dental enamel, leaving only the demineralized dentin tissue, which was the object of evaluation in the present study. After decalcification, the restorations were carefully removed and embedded in paraffin. Then, the Acta Odontol. Latinoam. 2009 ISSN 0326-4815 Vol. 22 Nº 3 / 2009 / 177-181

Correlation among the adhesion factors 179 decalcified hemi-samples were sectioned (ISOMET 2000 - Buehler, Lake Bluff, IL, USA) longitudinally through their crowns at 6 μm and mounted on glass slides. Fifteen slides of each hemi-sample, containing approximately six sections each, were selected by systematic sampling, with an interval proportional to the number of sections obtained for each hemi-sample 6,11. These sections were stained with the Brown and Brenn stain 16 and the best histological sections, showing the best stained hybrid layer and tags were analyzed on a light microscope (Axiophot, Zeiss DSM-940 A, Carl Zeiss MicroImaging Inc, Thornwood, NY, USA) at 400X magnification, with a micrometric 40/075 ocular lens (or eyepiece) (Fig. 1). The hybrid layer and resin tags of each section were measured by a single, calibrated examiner over the entire extension of the histological section. Three measurements were recorded per section for hybrid layer thickness and the length of resin tags. The mean of the three measurements was recorded as the thickness of the hybrid layer and the length of the resin tags. Thus, fifteen mean values were obtained for each hemisample, for both the hybrid layer and the resin tags. Fig. 1: Light microscope image (400X magnification), revealing hybrid layer and resin tag formation. ( A Adhesive; CH hybrid layer and T resin tags.) Fig. 2: SEM photomicrograph, revealing adhesive fracture pattern. A) 100X magnification. B) 1000X magnification revealing many pores of the adhesive layer. Microtensile Bonding Test The other hemi-samples of restored teeth were used for the microtensile bond strength test. The hemisample teeth were serially sectioned vertically into several 1 mm thick slabs with a diamond disc. Each slab was further sectioned to produce several bonded sticks of approximately 1.0 mm 2. Each bonded stick was fixed to the grips of a testing device (Instron model 4411 Instron Inc., Canton, MA, USA) with cyanoacrylate glue (Super Bonder - Henkel Ltda., Itapevi, Sao Paulo, Brazil) and tested under tension at 0.5 mm/min crosshead speed until failure. After testing, the specimens were carefully removed from the fixtures with a scalpel blade and the cross-sectional area at the site of fracture was measured to the nearest 0.01 mm with a digital caliper (Digimess, Shinko Precision Gaging, LTD, China) to calculate bond strength that was expressed in MPa. The dentin side of failed specimens was sputtercoated with gold (Balzers SCD 050, Balzers Union, Balzers, Liechtenstein) and observed under a SEM (JSM 5600 LV, Jeol Inc., Peabody, MA, USA). Photomicrographs of a representative area of the surface were taken at 100X and 1000X magnification (Fig. 2). The fracture patterns were classified as adhesive, cohesive in dentin, cohesive in composite, or mixed if more than one structure was involved in the fracture. Data treatment Individual bond strength values (n=10) were correlated with hybrid layer thickness and length of resin tags and analyzed by linear regression. Statistical significance was set at a = 0.05. RESULTS The values of hybrid layer thickness, resin tag length and bond strength are presented in Table 2. The mean values of hybrid layer thickness, resin tag length and bond strength were 3.36 µm, 12.97 µm and 14.10 MPa, respectively.

180 Fernanda Garcia de Oliveira, Rodolfo Bruniera Anchieta, Vanessa Rahal, et al. Table 2: Values of hybrid layer thickness, resin tag length and bond strength. Specimen 1 2 3 4 5 6 7 8 9 10 Hybrid layer thickness 3.39 µm 3.83 µm 3.11 µm 3.94 µm 3.06 µm 3.22 µm 3.94 µm 3.00 µm 2.33 µm 3.72 µm Resin tag length 14.06 µm 13.00 µm 13.17 µm 15.56 µm 13.67 µm 14.28 µm 8.61 µm 12.94 µm 11.56 µm 11.56 µm The self-etching adhesive Adper Prompt L-Pop exhibited a high percentage of adhesive fractures (69%), followed by cohesive fractures in resin (17%) and mixed fractures (14%). No dentin fracture was observed. There was no significant correlation between bond strength and hybrid layer thickness (R 2 = 0.011, p>0.05) and between bond strength and resin tag length (R 2 = 0.038, p>0.05). DISCUSSION This study evaluated the ability of penetration and bond strength of the adhesive material Adper Prompt L-Pop to intact dentin tissue. The light microscopy analysis allowed the assessment and measurement of the thickness of the hybrid layer and length of resin tags, in an extensive dentin area within the same tooth (Fig. 1), thus yielding consistent information, as reported by other authors 5,6,11. These resin structures are intensely stained by the Brown & Brenn method 16, allowing adequate microscopic observation of the structures 11. The mean value of bond strength of Adper Prompt L- Pop self-etching adhesive to dentin was 14.10 MPa, which can be considered a low value compared to conventional etch&rinse systems and self-priming adhesives 17,18. This mean value corroborates other studies that showed similar values 11,19-22. The Gregoire & Millas study (2005) 23 reported a lower mean value than that reported herein. Regarding the resin tag length, this study showed a mean value similar to that reported by Sundfeld et al. (2005) 4 and Lohbauer et al. (2007) 18. The hybrid layer has been described as thicker than for one- or two-step self-etching systems 9,21,23, which can form a thin hybrid layer of one or two µm and short resin tags 24. Adper Prompt L-Pop self- etching adhesive is considered a strong self-etch adhesive with a very low Bond strength 16.4 MPa 10.34 MPa 10.28 MPa 13.91 MPa 16.55 MPa 19.21 MPa 21.13 MPa 10.07 MPa 13.69 MPa 9.51 MPa ph (0.35) 23 and high concentration of hydrophilic monomers. The adhesive hydrophilicity results in increased water sorption, decreasing water stability. Moreover, the lack of hydrophobic components at resin-dentin interfaces may be responsible for the low values of bond strength 25,26. The simplification of bonding pro ce - dures has resulted in loss of bonding effectiveness due to the more hydrophilic nature of this adhesive that forms a hybrid layer that is more permeable to water 27. Clinically, it is not easy to evaporate the water of these adhesive solutions after applying on the dentin surface. The water is necessary to provide the medium for ionization and action of acidic resin monomers. However, the residual water can impair the polymerization of this adhesive and the mechanical properties of the hybrid layer 28,29. Thus, the low bond strength and the high incidence of adhesive failures found in this study are related to the hybridization process and the chemical characteristics of the adhesive. A study published by Anchieta et al., 2008 17 showed a significant relationship between bond strength of conventional 3-step etch&rinse adhesive and hybrid layer thickness. However, in this study this correlation was not observed and the null hypothesis was accepted. The lack of correlation observed between the length of resin tags and the bond strength for the self-etching adhesive system Adper Prompt L Pop can be explained by the report of Wang & Spencer, in 2002 30. These authors stated that the application of a self-etching adhesive on dentin promotes deeper migration of molecules with lower molecular weight such as hydrophilic monomers (HEMA). Therefore, most of the tags are formed by monomers with low molecular weight, which are weakly cured, reducing their contribution to the bond strength 17,28. CONCLUSION Within the limits of these experiments it can be concluded that the bond strength of the one-step self-etching adhesive to dentin is not dependent on the hybrid layer thickness and length of resin tags. Acta Odontol. Latinoam. 2009 ISSN 0326-4815 Vol. 22 Nº 3 / 2009 / 177-181

Correlation among the adhesion factors 181 ACKNOWLEDGEMENTS This study was supported by FAPESP. CORRESPONDENCE Dra. Fernanda Garcia de Oliveira Departamento of Restorative Dentistry Araçatuba School of Dentistry UNESP Rua José Bonifácio, 1193 Araçatuba SP Zip code: 16015-050 - Brazil fergaroli@hotmail.com REFERENCES 1. Pashley DH, Ciucchi B, Sano H, Carvalho RM, Russell CM. Bond strength versus dentine structure: a modelling approach. Arch Oral Biol 1995;40:1109-1118. 2. Tay FR, Gwinnett AJ, Pang KM. Micromorphologic relationship of the resin-dentin interface following a total etch technique in vivo using a dentinal bonding system. Quintessence Int 1995;26:63-70. 3. Tay, FR, Pashley DH. Aggressiveness of contemporary self-etching systems. I: Depth of penetration beyond dentin smear layers. Dent Mater 2001;17:296-308. 4. Sundfeld RH, Briso AL, De Sa PM, Sundfeld ML, Bedran- Russo AK. Effect of time interval between bleaching and bonding on tag formation. Bull Tokyo Dent Coll 2005;46:1-6. 5. Sundfeld RH, da Silva AM, Croll TP, de Oliveira CH, Briso AL, de Alexandre RS, Sundefeld ML. The effect of temperature on self-etching adhesive penetration. Compend Contin Educ Dent 2006;27:552-556. 6. Sundfeld RH, Mauro SJ, Sundefeld MLMM, Briso AL. Avaliação clínico/microscópica da camada híbrida de adesão e dos prolongamentos resinosos (tags), em tecido dentinário condicionado: efeitos de materiais, técnicas de aplicação e de análise. J Bras Dent Estet 2002;1:315-331. 7. Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, Pashley DH. Relationship between surface area for adhesion and tensile bond strength-evaluation of a microtensile bond test. Dent Mater 1994;10:236-240. 8. Shono Y, Terashita M, Pashley EL, Brewer PD, Pashley DH. Effects of cross-sectional area on resin-enamel tensile bond strength. Dent Mater 1997;13:290-296. 9. Toledano M, Osorio R, Ceballos L, Fuentes MV, Fernandes CA, Tay FR, Carvalho RM. Microtensile Bond strength of several adhesive systems to different dentin depths. Am J Dent 2003;16:292-298. 10. Nakabayashi N. Hybridization of natural tissues containing collagen with biocompatible materials: adhesion to tooth substrates. J Biomed Mater Res 1989;23:265-273. 11. Sundfeld RH, Valentino TA, de Alexandre RS, Briso AL, Sundefeld MLMM. Hybrid layer thickness and resin tag length of a self-etching adhesive bonded to sound dentin. J Dent 2005;33:675-681. 12. Kaaden C, Powers JM, Friedl KH, Schmalz G. Bond strength of self-etching adhesives to dental hard tissues. Clin Oral Investig 2002;6:155-160. 13. Can Say E, Nakajima M, Senawongse P, Soyman M, Ozer F, Ogata M, Tagami J. Microtensile bond strength of a filled vs unfilled adhesive to dentin using self-etch and total-etch technique. J Dent 2006;34:283-291. 14. Pioch T, Stotz S, Buff E, Duschner H, Staehle HJ. Influence of different etching times on hybrid layer formation and tensile bond strength. Am J Dent 1998;11:202-206. 15. Prati C, Chersoni S, Mongiorgi R, Pashley DH. Resin infiltrated dentin layer formation of new bonding systems. Oper Dent 1998;23:185-194. 16. Brown JH, Brenn L. A method for differential staining of Gram positive and Gram negative bacteria in tissue reactions. Bull Johns Hopkins Hosp 1931;48:69-73. 17. Anchieta RB, Oliveira FG, Sundfeld RH, Rahal V, Machado LS, de Alexandre RS, Marquezini Jr. L, Sundefeld MLMM. Evaluation of the correlation of hybrid layer and resin tags with the microtensile bond strength of a conventional adhesive system applied on intact dentin tissue. Compend Contin Educ Dent. Forthcoming 2009, in press. 18. Lohbauer U, Nikolaenko SA, Petschelt A, Frankenberger R. Resin tags do not contribute to dentin adhesion in selfetching adhesives. J Adhes Dent 2008;10:97-103. 19. Anchieta RB, Rocha EP, Ching-Chang KO, Sundfeld RH, Martin Junior M, Archangelo CM. Localized mechanics of dentin self etching adhesive system. J Appl Oral Sci 2007;15:321-326. 20. Jacques P, Hebling J. Effect of dentin conditioners on the microtensile bond strength of a conventional and a self-etching primer adhesive system. Dent Mater 2005;21:103-109. 21. Reis AF, Arrais CAG, Novaes PD, Carvalho RM, De Goes MF, Giannini M. Ultramorphological analysis of resindentin interfaces produced with water-based single- step and two- step adhesives: nanoleakage expression. J Biomed Mater Res B Appl Biomater 2004;71:90-98. 22. Wang Y, Spencer P. Continuing etching of an all-in-one adhesive in wet dentin tubules. J Dent Res 2005;84:350-354. 23. Gregoire G, Millas A. Microscopic evaluation of dentin interface obtained with 10 contemporary self-etching systems: correlation with their ph. Oper Dent 2005;30:481-491. 24. Frankenberguer R, Perdigão J, Rosa BT, Lopes M. No bottle vs multi-bottle dentin adhesives- a microtensile bond strength and morphological study. Dent Mater 2001;17:373-380. 25. Garcia RN, de Goes MF, Giannini M. Effect of water storage on bond strength of self-etching adhesives to dentin. J Contemp Dent Pract 2007;8:46-53. 26. Reis AF, Bedran-Russo AK, Giannini M, Pereira PN. Interfacial ultramorphology of single-step adhesives: nanoleakage as a function of time. J Oral Rehabil. 2007 Mar;34:213-221. 27. Tay F, Pashley DH. Have dentin adhesives become too hydrophilic? J Can Dent Assoc 2003;69:726-731. 28. Rocha PI, Borges AB, Rodrigues JR, Arrais CA, Giannini M. Effect of dentinal surface preparation on bond strength of selfetching adhesive systems. Braz Oral Res 2006;20:52-58. 29. Yuan Y, Shimada Y, Ichinose S, Tagami J. Effect of dentin depth on hybrization quality using different bonding tactics in vivo. J Dent 2007;35:664-672. 30. Spencer P, Wang Y. Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res. 2002;62:447-456.