R&D activity in Bari for the ALICE Inner Tracking System upgrade



Similar documents
Silicon-On-Glass MEMS. Design. Handbook

Flex Circuits for the ATLAS Pixel Detector

A.Besson, IPHC-Strasbourg

THE CMS PIXEL DETECTOR: FROM PRODUCTION TO COMMISSIONING

Dry Film Photoresist & Material Solutions for 3D/TSV

Information about the T9 beam line and experimental facilities

San Francisco Circuits, Inc.

Good Boards = Results

DFX - DFM for Flexible PCBs Jeremy Rygate

MEMS Processes from CMP

INFN Rome Silicon Microstrip Detector for SBS F. De Persio S. Kiprich - F. Meddi G.M. Urciuoli

Operation and Performance of the CMS Silicon Tracker

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor

AC coupled pitch adapters for silicon strip detectors

Performance of Silicon N-in-P Pixel Detectors Irradiated up to neq /cm2 for Future ATLAS Upgrades

Proton tracking for medical imaging and dosimetry

CMS Tracker sensors Upgrade

CMS Tracker module / hybrid tests and DAQ development for the HL-LHC

Analysis of Blind Microvias Forming Process in Multilayer Printed Circuit Boards

European bespoke wafer processing & development solutions for : Grinding, CMP, Edge Treatment, Wafer Bonding, Dicing and Cleaning

Track Trigger and Modules For the HLT

Development of on line monitor detectors used for clinical routine in proton and ion therapy

An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout

The LHCb Tracking System. Jeroen van Hunen

Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz,

Flex Circuit Design and Manufacture.

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Development of High-Speed High-Precision Cooling Plate

MEMS mirror for low cost laser scanners. Ulrich Hofmann

1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Photolithography. Class: Figure Various ways in which dust particles can interfere with photomask patterns.

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Large Hadron Collider am CERN

Innovative Wafer and Interconnect Technologies - Enabling High Volume Low Cost RFID Solutions

Recent developments in high bandwidth optical interconnects. Brian Corbett.

Solar Photovoltaic (PV) Cells

Calibration of Dallas sensors

ECP Embedded Component Packaging Technology

Thermoelectric Generator (TEG) for Heavy Diesel Trucks John C. Bass, Aleksandr S. Kushch, Norbert B. Elsner Hi-Z Technology, Inc.

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

HDI. HDI = High Density Interconnect. Kenneth Jonsson Bo Andersson. NCAB Group

Dual Integration - Verschmelzung von Wafer und Panel Level Technologien

State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop

Printed Circuit Boards

Power distribution systems

White Paper. Recommendations for Installing Flash LEDs on Flex Circuits. By Shereen Lim. Abstract. What is a Flex Circuit?

Graduate Student Presentations

Silicon Drift Detector Product Brochure Update 2013

Table of Contents. Flex Single-Side Circuit Construction. Rigid Flex Examples. Flex Double-Side Circuit Construction.

FLEXIBLE CIRCUITS MANUFACTURING

Rogers 3003, 3006, 3010, 3035, 3203, 3206, 3210

Technology Developments Towars Silicon Photonics Integration

Silicon Lab Bonn. Physikalisches Institut Universität Bonn. DEPFET Test System Test DESY

Advanced VLSI Design CMOS Processing Technology

High. Thickness. epitaxial Silicon. Carbide Detectors. INFN - Gruppo V 2009

Why silicon MEMS? Silicon is a strong material... Photolithography. Micromachining. Dicing and packaging

Silicon Seminar. Optolinks and Off Detector Electronics in ATLAS Pixel Detector

Basic Designs Of Flex-Rigid Printed Circuit Boards

Flexible Circuit Simple Design Guide

Lapping and Polishing Basics

Welcome & Introduction

Experimental study of beam hardening artefacts in photon counting breast computed tomography

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage

Fraunhofer ISIT, Itzehoe 14. Juni Fraunhofer Institut Siliziumtechnologie (ISIT)

FABRICATION 2011 SERVICES TECHNOLOGIES CAPABILITIES INDUSTRY

IBS - Ion Beam Services

Volumes. Goal: Drive optical to high volumes and low costs

Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

Printed Circuits. Danilo Manstretta. microlab.unipv.it/ AA 2012/2013 Lezioni di Tecnologie e Materiali per l Elettronica

A Novel Flex Circuit Area-Array Interconnect System for a Catheter-Based Ultrasound Transducer

Flexible Circuit Design Guide

Designing with High-Density BGA Packages for Altera Devices

Semiconductor doping. Si solar Cell

Outline PARTE I. PARTE I Assemblaggio rivelatori a GEM Tripla presso la G&A

Integrated Circuit Packaging and Thermal Design

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June Institut für Experimentalphysik Forschungsgruppe Neutrinophysik


Balancing the Electrical and Mechanical Requirements of Flexible Circuits. Mark Finstad, Applications Engineering Manager, Minco

CIRCUITS AND SYSTEMS- Assembly and Printed Circuit Board (PCB) Package Mohammad S. Sharawi ASSEMBLY AND PRINTED CIRCUIT BOARD (PCB) PACKAGE

Introduction to Photolithography Concepts via printed circuit board (PCB) manufacturing. PCB Background Information (courtesy of Wikipedia)

BB-18 Black Body High Vacuum System Technical Description

SIGRAFLEX . Properties. Applications

Thin Is In, But Not Too Thin!

Surface Mount 905 nm Pulsed Semiconductor Lasers High Power Laser-Diode Family for Commercial Range Finding

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Basic Properties and Application Examples of PGS Graphite Sheet

Trace Layer Import for Printed Circuit Boards Under Icepak

Rapid Prototyping and Development of Microfluidic and BioMEMS Devices

Transcription:

R&D activity in Bari for the ALICE Inner Tracking System upgrade Referee Meeting, 24 Giugno 2011 Vito Manzari INFN Bari (vito.manzari@cern.ch)

ALICE Pixel Material Budget Ø Contributions to one current Pixel layer Carbon fiber support: 200 µm Cooling tube (Phynox): 40 µm wall thickness Grounding foil (Al-Kapton): 75 µm Silicon pixel chip: 150 µm ² 0.16% X 0 Bump bonds (Pb-Sn): diameter ~15-20 µm Silicon sensor: 200 µm ² 0.22% X 0 Multilayer Al/Kapton pixel bus: 280 µm ² 0.48% X 0 SMD components Glue (Eccobond 45) and thermal grease Two main contributors: silicon and multilayer flex (pixel bus) 2

Hybrid Pixel R&D: Material Budget Ø How can the material budget be reduced? Reduce silicon front-end chip thickness Reduce silicon sensor thickness Reduce interconnect bus contribution - reduce power Reduce edge dead regions on sensor - reduce overlaps to avoid gaps Review also other components - average contribution ~0.02% Ø What can be a reasonable target Hybrid pixels overall material budget: 0.5 % X 0 ü silicon: 0.16% X 0 overall (100µm sensor + 50µm front end chip), at present 0.38% ü bus: 0.24% X 0, at present 0.48% ü others: 0.1% X 0 overall, at present 0.24% Monolithic pixels: 0.3 0.4% X 0 (e.g. STAR HFT) 3

Hybrid Pixel R&D: Material Budget Ø To reduce the silicon contribution to the overall material budget Threefold activity Thin Planar Sensor based on the current ALICE layout ü bump-bonded to present ALICE front-end chip for testing Thin Planar Active Edge Sensor based on the current ALICE layout ü bump-bonded to present ALICE front-end chip for testing Thinning the existing ALICE front-end chip ü Bump-bonded to standard ALICE sensor 200 µm thick for testing And then combine them 4

Hybrid Pixel R&D: Thin Planar Sensor Ø Procurement, Processing and Handling of 100µm thick wafers is an issue Ø Alternative: Epitaxial Wafers to be thinned during the bump-bonding process Epitaxial wafers provide a mean to use very thin sensor wafers carrier wafer included for free First tests of epitaxial sensors by PANDA (D. Calvo et al.) [see NIM A 595(2008)] Ø ALICE Epi-Pixel sensor Goal: achieve a sensor thickness of 100 µm (~ 0.11% X 0 ) Test with the ALICE pixel front-end chip (optimized for 200µm sensor) Epitaxial wafers produced by ITME (Poland) - Substrate thickness 525µm, doping n/sb, resistivity 0.008-0.02 Ωcm, <111> - Epitaxial layer thickness 95-105µm, doping n/p, resistivity 2000±100 Ωcm 5

ALICE Epi-Pixel Sensor Ø 5 sensor wafers fabricated at FBK Ø 3 wafers processed at VTT - successfully through all process steps, including thinning and back side patterning - Overall thickness: 105-115 µm (i.e. epi layer + 10 µm) Ø 5 singles flip-chip bonded to the current ALICE pixel front-end chip - electrical tests: ~30 na at 20V at RT, min. threshold ~ 1500 el., ~30 missing pixels 6

Beam Test of Epi-Pixel detector Ø Beam test of ALICE Epi-Pixel detector November 2010 CERN SPS: positive beam (pions, protons), 350 GeV/c, up to 10 4 particles/spill Duty cicle 49s, Flat top 9s, Trigger rate 3KHz ALICE 3D-Pixel detector samples were also tested - Double-sided Double-Type Column (DDTC) from FBK multi-project wafer Ø Tracking Telescope 4 ALICE standard Pixel detector arranged in 2 stations - each station contains 2 pixel detectors arranged in cross-geometry ü pixel cell dimensions 50 x 425 µm 2 - Estimated tracking precision 10µm both in x and y directions Ø Trigger Self-triggering: FastOr logic combining the information from the tracking planes 7

Beam Test Set-up Single assembly mounted on test card SPS beam test set-up 8

Beam Test Measurements Track Efficiency Cluster size Space accuracy Objectives vs Depletion Voltage Threshold Particle Crossing Angle Online beam spot Tracking Station 1 3D-sensor Epi-sensor Tracking Station 2 9

Residuals and Efficiency ALICE SPD Ø NIM paper in preparation Thr (DAC) Thr (el.) 200 3000 190 3600 180 4200 170 4800 10

Planar Pixel Sensor with Active Edge Ø Standard detectors Dead region (cracks and damages) a + d 500 µm Ø Active edge to limit dead region Cut lines not sawed but etched with Deep Reactive Ion Etching (DRIE) and doped Standard Detector Active Edge Detector Ø R&D in collaboration with FBK Within the MEMS2 agreement FBK-INFN Epitaxial wafer in order to achieve an Active Edge 100µm thick Planar Sensor 11

Processing w thicknesses Active Edge Detector www.vtt.fi www.vtt.fi/detectors www.micronova.fi Ø Main process steps and critical issues Attach support wafer ü provides mechanical Various detector support designs after trench on 6 etching inch wafer (SOI, wafer bonding, ) Trench opening by Deep Reactive Ion Etching (DRIE) - 5 x 5 cm ü dimensional aspect 1/20, 2 deep etching (200-230 µm) Inside trench doping ü solid source technology Wafer Layout and Detector Struc Main edgeless strip detectors - 50 µm edge distance Baby edgeless strip detectors - 1 x 1 cm 2-20µm, 50µm, 100µm edge distance Trench filling with Medipix polysilicon edgeless pixel detectors: ü spin coating with standard photoresist is challenging due to trench - 1.4 x 1.4 cm 2 Remove devices from - support 20 µm & 50 wafers µm edge (after distance bumping in case of pixel sensors) 50µm, 10 Edge implan 12

Active Edge Detector 13

Active Edge Detector 14

Active Edge Detector 15

Active Edge Detector 16

ALICE Pixel with Active Edge Ø Recall ALICE Epi-Pixel detector Planar pixel sensor on epitaxial high resistivity silicon wafer ü Remove the bulk by back-grinding after the bumping to achieve a 100 µm thick sensor Ø Combine with the capability to etch a trench to achieve an Active Edge Thin pixel detector Scribe Line Trench 17

ALICE Pixel with Active Edge trench Guard ring pixel Scribe line passivazione N+ ossido P+ P+ epi substrato Dead area 18

Front-end Chip Thinning Ø Current ALICE chips: 150 µm thinned during bump bonding process Ø Thickness reduction will make inherent stresses come out stronger Ø First experience during the ALICE production Ø Thinning process needs to be well studied and tuned to produce coherent results S. Vahanen, VTT 19

Front-end Chip Thinning R&D Ø Study using dummy components with IZM Berlin Hybrid detector dummy components, i.e sensors and chips, based on ALICE layout Specific IZM process for thinning: - Glass support wafer during full process - Laser release of the support wafer Sensor wafers (200 µm) in processing, ASIC wafers ready in 4 weeks First components back by end July 2011 Si sensor [μm] X0 [%] ASIC [μm] X0 [%] X 0 total [%] First R&D step 200 0.22 50 0.05 0.27 R&D target 100 0.11 50 0.05 0.16 20

Front-end Chip Thinning R&D *+,- #+,0$B66(/CA2 D *(/01)&)2 97001)5$B00)1&:+ E)1:(66 FA18!"#$%&'() 97001)5$#+,0?,:,-.$1'$%&'()$ 95&:@ %&'()$ *+,--,-. 97001)5$#+,0 37/0$31-4,-. 97001)5$%&'() *(/01)&)2$%&'()$ 31-4,-.$51$67001)5$ 8&'() 9(-61) 97001)5$%&'() #1-5&:5$'1)/&5,1- ;<,:)1=37/0,-.> 97001)5$#+,0$!(A(&6(!"#$%&'()*!+&,"-*+$'()%./"#(0)'10 21

Front-end Chip Thinning R&D 1/02 4/0,+G$$(9#*H K 1(9,-&'&H!",,-&%+G,,&-'./ ;'$(&+<(#-2=02> "$02>?@AB(*('$(+)*"( CD+!%(,E+F*0,+4/0,+G$$(9#*H -I 4/0,$%'.J )*'$$+$",,-&%./0, 1/02+34 567+89:!"#$%&'%( ;(I%E+ 4/0,+'I%(&+#"9, #-2=02> $0L( CMNCC+99O+5PNC+FQA3R: B0>/%E+ 4&-$$+$(.%0-2 -I %/( I0&$% #"9, &-S 5H(**-S *02(: )*'$$+$",,-&%./0,!"#$%&'%( 1/02 34+567+89:!"#$%&'()*!+&,"-*+$'()%./"#(0)'10 22

Front-end Chip Thinning R&D =<,*&;<,9&>##$?(3@&A =$?9)%"%@&7.99)%8&>99%)"B<!"#$%&'$()*+,*-.#,*- /012$3$"#$&43.$ 56&78$9:&7.99)%8&;<,9&2$3$"#$ 2'34%&0)3&,%//*/5 #( 6%,73&*10 D*103(0E #/32F3G3223,$H3IJ#.6;03?@93KL4KD3MNOP83)0!*,;0Q3 1.$$C $#1.;0 %(!0)3,%))*0),"*: )0;0%&0 <=>$3!"*,7?@9 AB=>$3!"*,7 1.$$C &.6&!)%!0 8'39%))*0)3,"*: )0;0%&0?0;0%&01 5;%&&,%))*0),"*: L"*/,"*: $#1.;0 I?@93&*10 1#E/Q 2F3G3883,$H3IR.%13?@93KL4KD3MNOP83)0!*,;0&Q 1.$$C $#1.;0& %(!0)3,%))*0),"*: )0;0%&0!"#$%&'()*!+&,"-*+$'()%./"#(0)'10 23

Polyimide MicroChannel cooling Wtot = 1.6 cm OUT IN q = 0.4 W/cm 2 Ltot = 20 cm Pyralux PC 1020 (polyimide) 200µm Pyralux LF7001 (Kapton ) 24µm Pyralux LF110 (Kapton ) 50µm 1 2 4 3 5 SENSOR READOUT CHIP SMD COMP 1 2 4 3 5 SENSOR READOUT CHIP SMD COMP CARBONFIBER SUPPORT COOLING TUBE 24

MicroChannel Simulation (Fluent 6.2) Ø Assuming ΔT max = 3 C Leakless (underpressure) system Top Layer T water in 15 C L = 20 cm W= 1.6 cm T water out 18 C T water in 15 C 16.65 C 20.62 C T water out 18 C 16 channels 800 x 200 µm 2 IN OUT Axonometric view of a single channel Inlet section Middle section Outlet section 25

MicroChannel Production Ø Main fabrication process steps (R. De Oliveira, CERN TM-MPE-EM) Sheet 50 µm of LF110 Lamination 200 µm photoimageable coverlay (4 layers of PC1020) Creation of the grooves (800 x 200 µm 2 ) by photolithography process @ 180 C Gluing by hot pressing the LF7001 24 µm lid cured @ 180 C for 10h Pyralux PC 1020 (polyimide) 200µm Pyralux LF7001 (Kapton ) 24µm Pyralux LF110 (Kapton ) 50µm 26

MicroChannel Material Budget Material Radiation length [cm] Kapton 28.6 H 2 O 36.1 % Xo 0.094 0.085 0.094 Single channel Cross section 0 100 900 1000 µm Ø Material budget of the ALICE Pixel cooling (Phynox tube + C4F10) O.8 % X 0 27

Richieste finanziarie Ø Richieste straordinarie 2011 ü Sviluppo di sensori sottili per rivelatori a pixel ibridi ü Produzione di un run di sensori a pixel epitassiali planari sottili di tipo active edge presso la ditta FBK nell ambito dell accordo MEMS2 con l INFN - 25 keur Cons. ü Sviluppo di microcanali in polietilene per il raffreddamento ü Sviluppo e realizzazione dei raccordi per la connessione del bus di microcanali al sistema di test, valvole pneumatiche e non, misuratori di pressione e temperature, modulo di lettura per PLC - 5 keur Cons. ü Acquisto di un flussimetro integrato con valvola di regolazione, pompa micro gear, microfiltro, scambiatore di calore - 4 keur Inv. 28

Richieste finanziarie Ø Richieste Preventivi 2012 ü ü ü ü Completamento R&D sensori sottili active edge con layout ottimizzato: Run FBK - 25 keur Cons. Test dei microcanali di geometria reale: Produzione componenti, componentistica ed allestimento laboratorio - 5 keur Cons., 4 keur Inv. Assemblaggio di rivelatori per test di laboratorio e su fascio e di moduli dummy - 5 keur Cons. Test beam al CERN: 2 settimane x 3 persone = 6 settimane + 6 viaggi XX keur ME 29