How to Use the KENNA PERFECT Insert Selection System... 4

Similar documents
COATED CARBIDE. TiN. Al 2 O 3

The mechanical properties of metal affected by heat treatment are:

Cutting Tool Materials

Grade Selection... Coated Grades / CVD... Coated Grades / PVD... Cermet... PCBN (T-CBN)... PCD (T-DIA)... Ceramics...

CUTTING TOOL TECHNOLOGY. 1. Tool life 2. Tool Materials 3. Tool Geometry 4. Cutting fluids

Module 3 Machinability. Version 2 ME, IIT Kharagpur

Think precision, Think HSS REAMING

North American Stainless

U-Max Chamfering endmill SPMT-WL 0.17 ( ) -WH 0.35 ( ) R Long edge cutter ( ) R AAH 0.12 (

HEAT TREATMENT OF STEEL

X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE.

ALLOY 2205 DATA SHEET

North American Stainless

New cutting tools from Sandvik Coromant

North American Stainless

Lapping and Polishing Basics

North American Stainless

Section 4: NiResist Iron

AISI O1 Cold work tool steel

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing

Technical Data BLUE SHEET. Martensitic. stainless steels. Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES APPLICATIONS PRODUCT FORM

North American Stainless

GENERAL PROPERTIES //////////////////////////////////////////////////////

High speed machining and conventional die and mould machining

GEOMETRY OF SINGLE POINT TURNING TOOLS

North American Stainless

UDDEHOLM VANADIS 30 SUPERCLEAN

Full Density Properties of Low Alloy Steels

Summary of Insert Grades. Insert Lineup Turning Milling Drilling Insert Selection Table Grade Properties PCD CBN. Ceramic. Cell Fiber. Cermet.

AUSTENITIC STAINLESS DAMASCENE STEEL

Iron Alloys. Iron castings are produced by a variety

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance.

Engine Bearing Materials

Stainless steel grade chart

Tableting Punch Performance Can Be Improved With Precision Coatings

North American Stainless

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association

Saw Tooth Design and Tipping Materials

WJM Technologies excellence in material joining

Durcomet 100 CD4MCuN. Bulletin A/7l

Avoiding Shrinkage Defects and Maximizing Yield in Ductile Iron

RAMAX S Prehardened stainless holder steel

SS-EN ISO 9001 SS-EN ISO 14001

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-

Improved Broaching Steel Technology

PRELIMINARY BROCHURE. Uddeholm Ramax HH

SAND CAST CHILL CAST LM4 - TF

UDDEHOLM BALDER UDDEHOLM BALDER UDDEHOLM STEEL FOR INDEXABLE INSERT CUTTING TOOLS

MATERIALIZING VISIONS. Bohler-Uddeholm P20 Modified

LABORATORY EXPERIMENTS TESTING OF MATERIALS

Comparison of the Mechanical Properties of Steel and Ductile Iron Pipe Materials

ALLOY C276 DATA SHEET

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati

Uddeholm Vanadis 4 Extra SuperClean. Uddeholm Vanadis 4 Extra SuperClean

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

Standard Specification for Stainless Steel Bars and Shapes 1

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Caps STANDARD WEIGHT Inches / Pounds

North American Stainless

MATERIAL SPECIFICATIONS CATALOGUE

North American Stainless

Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation

INTERTECH EDM Technology To cut PCD Materials. Presented by. Eric Ostini Product Manager +GF+ Agie Charmilles Group

THE INFLUENCE OF STEEL GRADE AND STEEL HARDNESS ON TOOL LIFE WHEN MILLING IN HARDENED TOOL STEEL

Kennametal Grade System for Cutting Materials

Three Key Elements of a Cutting Tool

STAVAX SUPREME. Stainless tool steel

Valve Steel. Valve Steel

High-Strength Low-Alloy Steels

Start the Design Study!

CENTRIFUGAL CASTING.

KNOCK OUT NAK80 INTRODUCING PLASTIC MOLDS RUBBER MOLDS JIGS & FIXTURES PRESS DIES. 40 HRC Pre-Hardened High Performance High Precision Mold Steel

Chapter 6 Machining Center Carbide Insert Fundamentals

MSS Monobloc holders for parting and grooving

Chapter Outline: Phase Transformations in Metals

Lecture 35: Atmosphere in Furnaces

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS

Handling Corrosive or Abrasive Liquids

Inno vation. Parting and grooving program HX Heavy duty machining - stability & process security

COMPAX SUPREME Mold Quality Tool Steel

North American Stainless

Aluminum Alloys. casting or a semisolid casting

Influence of Steel Scrap on Microstructure and Mechanical Properties of Spheroidal Graphite Cast Iron

Table of contents BRAZED TURNING TOOLS. Toolholders H 2. Tips H 6. Rods H 8. Technical information H 9 H 1

TechCut 4 Precision Low Speed Saw

Copper Alloys for Injection, Thermoform and Blow Molds

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

UDDEHOLM IMPAX SUPREME

Milling. COPYRIGHT 2008, Seco Tools AB 1/111

Manufacturing Tooling Cutting Tool Design. Elements of Machining. Chip Formation. Nageswara Rao Posinasetti

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA

Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 1

Understanding the Wire EDM Process

Introduction to JIGS AND FIXTURES

Experiment: Heat Treatment - Quenching & Tempering

Heat Treatment of Steel

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Products. EschmannStahlGrades Plastic Mould Steel Hot Work Tool Steel Cold Work Tool Steel Overview

Transcription:

Table of Contents page How to Use the KENNA PERFECT Insert Selection System................... 4 KENNA PERFECT Insert Selection System Negative Wiper Inserts............................. 6 Positive Wiper Inserts.............................. 8 Negative Inserts................................... 10 Positive Inserts..................................... 12 Insert Systems................................. 14 Tool Tips........................................ 18 New Cutting Tool Technologies............................. 20 Metallurgy and Machinability of Cast Irons.................... 32 Cast Iron Material Properties............................... 37 Cast Iron Cross-Reference/Workpiece Comparison Table........ 40 Expert Application Advisor (Troubleshooting Guide).............. 44 Failure Mechanism Analysis................................. 47 Insert Edge Preparations.................................... 49 Chip Control Geometries.................................... 50 Carbide and Ceramic Grades................................ 52 Technical Application Data............................ 55 Standard Inserts.................................... 65 Your Local Sales Representative Name: Phone #: Cell Phone #: Pager #: Office #: For quick technical assistance, call: USA & Canada: 800-835-3668 Outside USA & Canada: 724-539-6921 Available Monday thru Friday: 7am 7pm Eastern Time Zone 3

KENNA PERFECT Insert Selection System KENNA PERFECT, Kennametal s 3-step cutting tool selection system, makes choosing and applying the most productive tool as easy as 1, 2, 3. Tool recommendations are based on six workpiece material groups, optimizing selection accuracy. Example: 6 workpiece material groups Example: ductile cast iron 60 KSI tensile 1st Step Select the insert geometry Given: Unknown: Solution: depth of cut =.040 and feed =.016 ipr insert geometry -UN 2nd Step Select the grade Given: Geometry: Unknown: Solution: cutting conditions: lightly interrupted cut -UN grade KC9315 3rd Step Select the cutting speed Given: Unknown: Solution: grade KC9315 cutting conditions cutting speed 750 sfm 4

KENNA PERFECT Insert Selection System Steel Stainless Steel Cast Iron Non-Ferrous High-Temp Alloy Hardened Material 1st Step Negative Inserts Roughing Selection of the Insert Geometry..MA -T0820 -S0820 Medium Machining -UN -UN -T0820 -RP Finishing -FN -T0820 2nd Step Selection of the Grade Insert Geometry Cutting Condition Finishing Med. Machining Roughing -T0820 -FN -T0820 -UN (-RP) -T0820..MA heavily interrupted cut KC9315 KY3500 KC9325 KY3500 KC9325 lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface 3rd Step KY3400 KY3400 Speed - sfm (m/min) KC9315 KT315 KT315 Selection of the Cutting Speed KY3400 KY3400 KY3400 KC9315 KC9315 KC9315 KY3400 KY3400 KY3400 KC9315 KC9315 KC9315 Starting Cond. grade 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 sfm m/min (90) (135) (180) (225) (275) (320) (360) (410) (460) (500) (550) (600) KT315 900 275 KC9315 850 260 KC9325 850 260 KY3400 1400 430 KY3500 1200 365 5

KENNA PERFECT Negative Wipers Cast Iron Ductile and Gray Irons 1st Step Select the Insert Geometry Negative Wiper Inserts -MW Medium Wiper -T0820 FW -T0420 FW -FW Finishing Wiper -T0420FW -T0820FW -T0420FW -T0820FW -FW Finishing Wiper 2nd Step Select the Grade Gray Iron Cutting Condition heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface *KY1310 available January 2004. Insert Geometry -FW -MW -T0420FW, -T0820FW KY3500 KC9315 KC9325 KY3500 KT315 KC9315 KY1310* KT315 KC9315 KY1310* Ductile Iron heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface Cutting Condition Insert Geometry -FW -MW -T0420FW KC9315 KC9315 KY3500 KT315 KC9315 KY3400 KT315 KC9315 KY3400 6

KENNA PERFECT Negative Wipers Cast Iron 3rd Step Select the Cutting Speed Gray Cast Iron ASTM A48: class 20, 25, 30, 35, 40, 45, 50, 55, 60 SAE J431: grade G1800, G3000, G3500, G4000 grade KT315 900 275 KC9315 900 275 KC9325 900 275 KY3500 2500 760 KY1310* 2500 760 *KY1310 available January 2004. Speed - sfm (m/min) 400 1000 1600 2200 2800 3400 3700 (120) (305) (490) (670) (855) (1035) (1130) Starting Conditions sfm m/min Ductile, Compacted Graphite & Malleable Cast Irons (<80 KSI tensile strength) ASTM: A536; 60-40-18, 65-45-12, 80-55-06 SAE J434: D4018, D4512, D5506 ASTM A47: grade 32510, 35018 SAE J158: grade M3210, M4504, M5003, M5503, M7002 ASTM: A842; grade 250, 300, 350, 400, 450 grade Speed - sfm (m/min) 400 650 900 1150 1400 1650 1900 (120) (200) (275) (350) (430) (505) (580) Starting Conditions KT315 900 275 KC9315 850 260 KY3400 1400 430 KY3500 1200 365 sfm m/min Ductile, Malleable & Austempered Cast Irons (>80 KSI tensile strength) ASTM: A536; 100-70-03, 120-90-02 SAE J434: D7003 SAE J158: grade M8501 ASTM: A897; 125-80-10, 150-100-7, 175-125-4, 200-150-1, 230-185 grade Speed - sfm (m/min) 400 650 900 1150 1400 1650 1900 (120) (200) (275) (350) (430) (505) (580) Starting Conditions KT315 750 230 KC9315 700 215 KY3400 1200 365 KY3500 1100 335 sfm m/min To further optimize your operation, please reference pages 18-19 for Tool Tips and the Expert Application Advisor on pages 44-46. 7

KENNA PERFECT Positive Wipers Cast Iron Ductile and Gray Irons 1st Step Select the Insert Geometry Positive Wiper Inserts -MW Medium Wiper -FW Finishing Wiper SCG-FW Kyon Finishing Wiper 2nd Step Select the Grade Gray Iron heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface Cutting Condition *KY1310 available January 2004. Ductile Iron Cutting Condition Insert Geometry -FW SCG-FW -MW KY3500 KC9315 KY3500 KC9315 KC9315 KY1310* KC9315 KT315 KY1310* KT315 Insert Geometry -FW SCG-FW -MW KC9315 KY3500 KC9315 KC9315 KY3400 KC9315 KT315 KY3400 KT315 8

KENNA PERFECT Positive Wipers Cast Iron 3rd Step Select the Cutting Speed Gray Cast Iron ASTM A48: class 20, 25, 30, 35, 40, 45, 50, 55, 60 SAE J431: grade G1800, G3000, G3500, G4000 grade KT315 900 275 KC9315 900 275 KY3500 2500 760 KY1310* 2500 760 *KY1310 available January 2004. Speed - sfm (m/min) 400 1000 1600 2200 2800 3400 3700 (120) (305) (490) (670) (855) (1035) (1130) Starting Conditions sfm m/min Ductile, Compacted Graphite & Malleable Cast Irons (<80 KSI tensile strength) ASTM: A536; 60-40-18, 65-45-12, 80-55-06 SAE J434: D4018, D4512, D5506 ASTM A47: grade 32510, 35018 SAE J158: grade M3210, M4504, M5003, M5503, M7002 ASTM: A842; grade 250, 300, 350, 400, 450 grade Speed - sfm (m/min) 400 650 900 1150 1400 1650 1900 (120) (200) (275) (350) (430) (505) (580) Starting Conditions KT315 900 275 KC9315 850 260 KY3400 1400 430 KY3500 1200 365 sfm m/min Ductile, Malleable & Austempered Cast Irons (>80 KSI tensile strength) ASTM: A536; 100-70-03, 120-90-02 SAE J434: D7003 SAE J158: grade M8501 ASTM: A897; 125-80-10, 150-100-7, 175-125-4, 200-150-1, 230-185 grade Speed - sfm (m/min) 400 650 900 1150 1400 1650 1900 (120) (200) (275) (350) (430) (505) (580) Starting Conditions KT315 750 230 KC9315 700 215 KY3400 1200 365 KY3500 1100 335 sfm m/min To further optimize your operation, please reference pages 18-19 for Tool Tips and the Expert Application Advisor on pages 44-46. 9

KENNA PERFECT Negative Inserts Cast Iron Ductile and Gray Irons 1st Step Select the Insert Geometry Negative Inserts -RN Roughing..MA -T0820 -S0820 -MN Medium Machining -UN -T0820 -RP Finishing -FN -T0820 *RP geometry can be used in medium machining operations to reduce tool pressure in high-strength metals. 2nd Step Select the Grade Gray Iron Cutting Condition heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface *KY1310 available January 2004. Ductile Iron Cutting Condition heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface Insert Geometry Finishing Med. Machining Roughing -T0820 -FN -T0820 -UN (-RP) -T0820..MA -S0820 KC9315 KY3500 KC9325 KY3500 KC9325 KB9640 KC9315 KY3500 KC9325 KY3500 KC9325 KB9640 KY1310* KT315 KY1310* KC9325 KY3500 KC9325 KB9640 KY1310* KT315 KY1310* KC9315 KY1310* KC9315 KB9640 Insert Geometry Finishing Med. Machining Roughing -T0820 -FN -T0820 -UN (-RP) -T0820..MA KC9315 KY3500 KC9325 KY3500 KC9325 KC9315 KY3400 KC9315 KY3400 KC9315 KY3400 KT315 KY3400 KC9315 KY3400 KC9315 KY3400 KT315 KY3400 KC9315 KY3400 KC9315 10

KENNA PERFECT Negative Inserts Cast Iron 3rd Step Select the Cutting Speed Gray Cast Iron ASTM A48: class 20, 25, 30, 35, 40, 45, 50, 55, 60 SAE J431: grade G1800, G3000, G3500, G4000 grade KT315 900 275 KC9315 900 275 KC9325 900 275 KB9640 2500 760 KY1310* 2500 760 KY3500 2500 760 *KY1310 available January 2004. Speed - sfm (m/min) 200 600 1000 1400 1800 2200 2600 3000 3400 3800 (60) (180) (305) (430) (550) (675) (800) (920) (1040) (1160) Starting Conditions sfm m/min Ductile, Compacted Graphite & Malleable Cast Irons (<80 KSI tensile strength) ASTM: A536; 60-40-18, 65-45-12, 80-55-06 SAE J434: D4018, D4512, D5506 ASTM A47: grade 32510, 35018 SAE J158: grade M3210, M4504, M5003, M5503, M7002 ASTM: A842; grade 250, 300, 350, 400, 450 grade Speed - sfm (m/min) 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 (90) (135) (180) (225) (275) (320) (360) (410) (460) (500) (550) (600) Starting Conditions KT315 900 275 KC9315 850 260 KC9325 850 260 KY3400 1400 430 KY3500 1200 365 sfm m/min Ductile, Malleable & Austempered Cast Irons (>80 KSI tensile strength) ASTM: A536; 100-70-03, 120-90-02 SAE J434: D7003 SAE J158: grade M8501 ASTM: A897; 125-80-10, 150-100-7, 175-125-4, 200-150-1, 230-185 grade Speed - sfm (m/min) 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 (90) (135) (180) (225) (275) (320) (360) (410) (460) (500) (550) (600) Starting Conditions KT315 750 230 KC9315 700 215 KC9325 700 210 KY3400 1200 365 KY3500 1100 335 sfm m/min To further optimize your operation, please reference pages 18-19 for Tool Tips and the Expert Application Advisor on pages 44-46. 11

KENNA PERFECT Positive Inserts Cast Iron Ductile and Gray Irons 1st Step Select the Insert Geometry Positive Inserts -MN Medium Machining -MF -T0820 Finishing -LF -T0820 Fine Finishing -11 Cermet -UF -T0820 2nd Step Select the Grade Gray Iron Ductile Iron Cutting Condition heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface *KY1310 available January 2004. Cutting Condition heavily interrupted cut lightly interrupted cut varying depth of cut, casting or forging skin smooth cut, pre-turned surface Insert Geometry Fine Fin. Finishing Med. Machining -T0820 -T0820 -LF -T0820 -MF KY3500 KC9325 KY3500 KC9325 KY3500 KC9325 KY3500 KC9325 KY1310* KY1310* KC9325 KY3500 KC9325 KY1310* KY1310* KC9315 KY1310* KC9325 Insert Geometry Fine Finishing Finishing Med. Machining -T0820-11/-UF -T0820 -LF -T0820 -MF KY3500 KC9325 KY3500 KC9325 KC5010 KY3400 KC9315 KY3400 KC9315 KY3400 KT315 KY3400 KC5010 KY3400 KC9315 KY3400 KT315 KY3400 KT315 KY3400 KC9315 12

KENNA PERFECT Positive Inserts Cast Iron 3rd Step Select the Cutting Speed Gray Cast Iron ASTM A48: class 20, 25, 30, 35, 40, 45, 50, 55, 60 SAE J431: grade G1800, G3000, G3500, G4000 grade Speed - sfm (m/min) 200 600 1000 1400 1800 2200 2600 3000 3400 3800 (60) (180) (305) (430) (550) (675) (800) (920) (1040) (1160) Starting Conditions KC9315 900 275 KC9325 900 275 KY1310* 2500 760 KY3500 2500 760 *KY1310 available January 2004. sfm m/min Ductile, Compacted Graphite & Malleable Cast Irons (<80 KSI tensile strength) ASTM: A536; 60-40-18, 65-45-12, 80-55-06 SAE J434: D4018, D4512, D5506 ASTM A47: grade 32510, 35018 SAE J158: grade M3210, M4504, M5003, M5503, M7002 ASTM: A842; grade 250, 300, 350, 400, 450 grade Speed - sfm (m/min) 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 (90) (135) (180) (225) (275) (320) (360) (410) (460) (500) (550) (600) Starting Conditions KT315 900 275 KC5010 650 200 KC9315 850 260 KC9325 850 260 KY3400 1400 430 KY3500 1200 365 sfm m/min Ductile, Malleable & Austempered Cast Irons (>80 KSI tensile strength) ASTM: A536; 100-70-03, 120-90-02 SAE J434: D7003 SAE J158: grade M8501 ASTM: A897; 125-80-10, 150-100-7, 175-125-4, 200-150-1, 230-185 grade Speed - sfm (m/min) 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 (90) (135) (180) (225) (275) (320) (360) (410) (460) (500) (550) (600) Starting Conditions KT315 750 230 KC5010 500 150 KC9315 700 215 KC9325 700 215 KY3400 1200 365 KY3500 1100 335 sfm m/min To further optimize your operation, please reference pages 18-19 for Tool Tips and the Expert Application Advisor on pages 44-46. 13

Negative Insert Systems Kenloc Negative Inserts Kenloc inserts are your first choice for general machining of all materials on medium to large lathes. Kenloc inserts offer the best economy for high metal removal rates. Available in flat top and chip control geometries with both molded and ground peripheries, suitable for all workpiece materials. Top Notch Turning Inserts Ceramic Top Notch Turning inserts are your first choice for high-speed roughing and finishing of cast iron parts. Available in flat top geometries with molded and ground peripheries. Kendex Negative Inserts Kendex ceramic negative rake inserts are recommended for the machining of cast irons. Available in flat top geometries with molded and ground peripheries. Wide selection of standard toolholders. 14

Positive Insert Systems Screw-On Positive Inserts Screw-on inserts are your first choice for ID turning of all materials and OD turning on small to medium size lathes. Available in flat top and chip control geometries with both molded and ground peripheries, suitable for all workpiece materials. Kendex Positive Inserts Kendex positive ceramic inserts can be effectively used for productive machining of cast irons on medium to large lathes. Available in flat top geometries with ground periphery. Top Notch Turning Inserts Maximize rigidity for optimum ceramic insert performance. Ideal for applications ranging from heavy roughing to finishing. Excellent performance for continuous to severely interrupted cuts. 15

Kenclamp The Industry s Quickest Insert Indexing Quick-release clamping system reduces machine downtime. 1.5 turns releases the insert. Robust clamping design reduces chatter and improves tool life. The Kenclamp design ensures insert repeatability and seating. Fewer moving parts than competitive systems. Improved shim screw design provides consistent shim and insert alignment. Torx Plus Drive hardware increases clamping forces and hardware life. One wrench fits both the shim screw and the clamp screw. 16

Top Notch Turning THE SUPERIOR TOOLHOLDER SYSTEM FOR CERAMIC INSERTS! Top Notch-style clamping is a proven, superior system for holding ceramic inserts rigidly in the pocket in turning and profiling operations. Kennametal Top Notch turning toolholders use standard insert sizes and shapes of 80, 75, and 55 diamond, and square as well as the new trigon TNT. These inserts offer excellent value with their double-sided cutting edges. The Top Notch turning system is supplied with the MX style clamp for use with Top Notch turning inserts. New Top Notch Turning trigon inserts offer an economical six cutting edges for turning, profiling, and facing. 17

KENNA PERFECT Inserts Cast Iron Tool Tips: Wiper Inserts Wiper inserts are an excellent choice for straight OD, ID, and facing cuts. Feed rates can be doubled, reducing machining time by 50% while maintaining the surface finish. Insert nose radius has no effect on finish since the wiper radius generates the final finish. Wiper inserts typically last longer since the work is spread over a longer cutting edge. Grade KC9315 Grade KC9315 is the first choice for machining ductile irons. The thick medium-temperature CVD TiCN layer combats flank wear, which is the usual failure mechanism when machining ductile irons with a tensile strength of 50 ksi and greater. Use geometries..ma, MG-UN, and MG-RP. Grade KC9325 Grade KC9325 is ideally suited for machining gray irons and low-strength ductile irons (<45 ksi). Crater wear is the primary wear mechanism when machining gray irons at high speeds. Grade KC9325 combats crater wear with a very thick Al 2 O 3 layer. The grade s unique combination of toughness and speed capability make it a first choice for gray iron machining up to 1300 sfm. MG-RP Geometry The -RP geometry is available in a wide variety of grades and can be used to reduce cutting forces on unstable cuts or where work holding is not optimal. This is particularly advantageous when machining high-strength ductile irons ( 80 ksi). Reduced forces lower the temperature at the cutting interface, providing long, predictable tool life. Grade KC9110 Grade KC9110 is an excellent choice for interrupted cutting conditions where grades KC9315 and KC9325 are not tough enough. Its unique combination of speed capability and outstanding toughness makes it an excellent choice for heavily interrupted cuts. Use MG-RN geometry as a first choice. 18

KENNA PERFECT Inserts Cast Iron Tool Tips: Grade KY3500 Kyon 3500 is your first-choice ceramic cutting tool for tough gray cast iron applications, especially those with interruptions and scale. KY3500 is the most dependable ceramic grade for harsh gray cast iron applications, and can be run wet or dry. Grade KY1310 (available January 2004) Kyon 1310 is designed specifically to maximize tool life in dry, continuous gray cast iron applications. Although not as tough as KY3500, KY1310 possesses good toughness at a high hardness level to optimize abrasive wear properties. Use KY1310 for continuous cutting in tandem with KY3500 for more severe gray cast iron cutting applications to maximize tool life and minimize costs. Top Notch Turning System for Ceramics When cutting with ceramics at high speeds, it is important to maximize the rigidity of the insert and toolholder. The Top Notch tooling system used in tandem with grades KY3500, KY1310, and KY3400 dimple inserts provides ultimate rigidity for cast iron applications. Insert Failure Analysis Check the insert thoroughly for signs of failure. To optimize your metalcutting process, remove inserts from the toolholder and inspect regularly for wear. Signs of chipping, deformation, built-up edge, cratering, flank wear, and thermal cracking are very evident in the early stages of wear but are almost impossible to detect after total insert failure. Boring with Wiper Inserts When boring with wiper inserts, chatter may increase due to the large wiper radii. To offset this lateral tool pressure, decrease the nose radius and increase the depth of cut. Remember that the nose radius of a wiper insert doesn t affect surface finish. 19

New Cutting Tool Technologies Grade KC9315 During the last 20 years, dramatic improvements have been made in turning insert performance through the development of innovative coating materials such as aluminum oxide (Al 2 O 3 ) and medium-temperature titanium carbonitride (MT-TiCN). In recent years, cutting tool materials have advanced even further through improvements in coating interface adhesion, which can provide thicker and more complex coating layers. This innovative processing produces smoother, less reactive coating surfaces that resist edge build up, microchipping, and chip hammering. Coating Systems The thickness and of layers of coatings on an insert typically have been limited to ensure the integrity and stability of the coating. A coating thickness of 10 to 14 microns typically was the limit, which is significantly less than the optimum value. New technologies now make it possible to increase both the and thickness of the layers by providing high-strength interface transition zones that increase the adhesion between the coatings. We employ this new technology on our new 18-micron coating system for grade KC9315. In conjunction with a hard deformation-resistant substrate, KC9315 is designed especially for high-performance machining of ductile irons and high-strength steels. This new coating consists of three main layers. The bottom layer is titanium carbonitride to protect against flank wear a major failure mechanism in ductile iron and steel turning. This layer is applied in a medium-temperature chemical vapor deposition coating process that reduces the mismatch in thermal contraction rates during cooling to provide fewer coating cracks and a tougher cutting edge. The middle layer is fine-grained alpha crystal structure alumina that protects against the elevated temperatures encountered in high-speed cutting and provides an abrasion-resistant, chemically inert TiN/TiCN }18 µm Al 2 O 3 total (alpha crystal structure) K-MTCVD TiCN Micro-finished edge barrier. The alpha crystal structure is more stable than the more common kappa structure and improves the coating resistance to failure. The top layer is a 2-micron titanium nitride/titanium carbonitride layer that provides additional wear resistance and serves as a wear indicator. Grade KC9315 has an improved post-coating surface treatment that contributes to increased tool performance. Polishing the outer coating surface to a higher-than-normal degree minimizes the potential for built-up edge. In particular, the surface treatment removes the outer TiN / TiCN coating from the tool-chip interface zone to further reduce the possibility of built-up edge. The net advantage is the ability to run at higher speeds and feeds relative to existing coated materials without suffering a reduction in tool life. KC9315 is an excellent performer at finishing to medium machining at the elevated speeds required to be competitive when machining cast iron. 20

KC9315 Proven Solutions market: product: material: automotive turbine housing ductile iron COMPETITOR KENNAMETAL KC9315 on Ductile Iron Savings: 28% of process cost, or $26,282. grade: coated carbide KC9315 insert: CNMG-543 CNMA-543 speed: 700 sfm 1000 sfm feed:.015 ipr.015 ipr doc:.150.150 RESULTS: Grade KC9315 ran 43% faster and produced 10% more parts per edge than did the competitive grade. market: product: material: automotive differential case ductile iron 250 HB COMPETITOR KENNAMETAL KC9315-MW on Ductile Iron 250 HB Savings: 38% of process cost, or $89,716. grade: coated carbide KC9315 insert: CNMG-433ASW CNMG-433MW speed: 900 sfm 900 sfm feed:.015 ipr.018 ipr doc:.080.080 RESULTS: The Kennametal insert ran at a 20% higher feed rate and produced 35 parts per edge compared to the competitor s 7. market: product: material: automotive suspension component gray cast iron COMPETITOR KENNAMETAL KC9315-UN on Gray Cast Iron Savings: 22% of process cost, or $43,845. grade: coated carbide KC9315 insert: CNMA-543 CNMG-543UN speed: 850 sfm 850 sfm feed.020 ipr.025 ipr doc:.100.100 RESULTS: Grade KC9315 produced 65% more parts per edge at a 25% higher feed rate than a competitive brand. 21

New Cutting Tool Technologies Grade KC9325 Kennametal s reengineered KC9325 grade uses a coating technology similar to KC9315 and is designed specifically to maximize performance in gray cast irons. This coating features an extra thick top layer of fine alpha alumina to maximize resistance to crater wear. An under layer of medium-temperature titanium carbonitride provides excellent resistance to flank wear. A tough, deformation-resistant substrate is designed to work together with this new coating to maximize resistance to crater wear. The application range of KC9325 is expanded with improved performance in medium to heavy machining of both ductile irons and steels. Grade KC9325 also uses a mechanical post-treatment process to condition the surface to resist microchipping and chip hammering. The smooth alumina top layer provides excellent resistance to build up and enables the cut chip to flow quickly and easily over the cutting edge for significantly longer tool life. Coating: CVD Post coat treatment Al 2 O 3 16 µm total KMTCVD TiCN} Kennametal Tooling System Solutions Lathe Tooling Catalog 1010 Includes: Over 6,000 new products The KENNA PERFECT insert selection system A2 Cutoff System...unequaled clamping, even at high feed rates A3 Deep Grooving System...when depth exceeds 1.5 times width Wiper Insert Technology (double your productivity or achieve unsurpassed surface finishes) Request A01-44! 22

KC9325 Proven Solutions market: product: material: automotive power train component ductile iron COMPETITOR KENNAMETAL KC9325-UN on Ductile Iron Savings: 22% of process cost, or $123,516. grade: coated carbide KC9325 insert: CNMG-433ENZ CNMG-433UN speed: 500 sfm 700 sfm feed:.014 ipr.014 ipr doc:.050.050 RESULTS: Grade KC9325 ran 40% faster and produced 10% more parts per edge than the competitive grade. market: product: material: automotive dampener ductile iron 210 HB COMPETITOR KENNAMETAL KC9325 on Ductile Iron 210 HB Savings: 7% of process cost, or $997. grade: coated carbide KC9325 insert: WNMA-433 WNMA-433 speed: 750 sfm 750 sfm feed:.026 ipr.026 ipr doc:.060.060: RESULTS: The Kennametal insert produced 100 parts per edge compared to 80 by the competitor, a 25% increase in tool life. market: product: material: automotive suspension component ductile iron COMPETITOR KENNAMETAL KC9325-UN on Ductile Iron Savings: 9% of process cost, or $21,853. grade: coated carbide KC9325 insert: CNMA-433UM CNMG-433UN speed: 155 sfm 155 sfm feed:.014 ipr.014 ipr doc:.120.120 RESULTS: Grade KC9325 produced 125% more parts per edge than the competitive brand. 23

New Cutting Tool Technologies KB9640 the Metalcutting Industry s First CVD Alumina-Coated PCBN Grade! KB9640 is a truly innovative grade that provides the ultimate in crater wear protection. By defeating the main failure mechanism confronting PCBN cutting tools, Kennametal offers a new grade with superior tool life compared with uncoated PCBN and ceramic tools. Not only has KB9640 demonstrated performance improvements when machining hardened irons, steels, and powder metals, it has also shown tremendous success in machining softer low-ferrite-containing cast irons. In particular, KB9640 has achieved excellent results in the machining of gray cast iron brake discs. Beyond the performance advantages of its coating, solid PCBN KB9640 is economical, too, with multiple cutting edges per insert. The CVD alumina coating on grade KB9640 provides the best-known protection against thermal and chemical erosion. In addition, grade KB9640 offers a gold TiN outer layer for easy wear identification. CVD TiN coating CVD alumina coating tough PCBN substrate These two coatings must adhere properly to the tough high-content PCBN substrate for maximum performance. Kennametal's special adhesion technology ensures the coatings will remain intact. As a result, the protective element of the coating is prolonged. The combination of coating technology and extremely durable solid PCBN substrate results in a tool life nearly three times longer than traditional uncoated PCBN inserts. Kennametal Tooling System Solutions A4 Grooving & Turning System Catalog 2013 Tooling for accurate grooving and side turning, even at high metal removal rates For turning, facing, grooving, face grooving, and cutoff operationsin OD or ID applications Eliminates turret indexing time, minimizes insert inventory, and reduces tooling cost Request A02-46! 24

KB9640 Proven Solutions market: product: material: braking systems brake drum C.G.I. platinum series COMPETITOR KENNAMETAL KB9640 on C.G.I. Platinum Series Savings: 23% of process cost, or $26,395. grade: ceramic KB9640 insert: RNG-43T0820 RNM-42S0820 speed: 1400 sfm 1000 sfm feed:.025 ipr.025 ipr doc:.090.090 RESULTS: The ceramic tool typically achieved two parts per edge. Kennametal s KB9640 achieved 36 parts per edge, an 18X performance advantage for less downtime, better productivity. market: product: material: clutch industry flywheel gray iron G4000 COMPETITOR KENNAMETAL KB9640 on G4000 Gray Cast Iron Savings: 69% of process cost, or $5,561. grade: tipped CBN KB9640 insert: CNGA-433 CNM-323 speed: 1280 sfm 1280 sfm feed:.017 ipr.017 ipr doc:.020.020 RESULTS: Grade KB9640 achieved 450 parts per edge versus 150 parts per edge for the competitive CBN insert. The customer ran 1800 parts per insert with KB9640 versus 150 parts per insert with the competitive brand. market: product: material: brake systems drum gray cast iron COMPETITOR KENNAMETAL KB9640 on Gray Cast Iron Savings: 3% of process cost, or $15,374. grade: ceramic KB9640 insert: RNM-43T0820 RNM-42S0820 speed: 1800 sfm 1800 sfm feed:.030 ipr.030 sfm doc:.090.090 RESULTS: KB9640 ran 132 parts per edge versus 9 parts per edge from the ceramic tool. Total tool changes per year decreased from nearly 9,000 with the ceramic tool to just over 600 with grade KB9640. 25

New Cutting Tool Technologies Silicon Nitride Ceramics for Gray Cast Iron Silicon nitride-based ceramics are the predominant ceramic tools used for cast iron machining, particularly gray cast irons. These tools excel in cast iron applications because of a unique combination hardness, fracture toughness, and thermal conductivity. High hardness maintained at elevated temperatures (see figure 1) is key to the high-speed application of these tools and gives dramatic performance advantages over coated carbide tools. The combination of high hardness, good thermal conductivity, and high fracture toughness results in a very consistent, reliable tool that excels in demanding cast iron applications. In the 1980s and early 1990s, hot pressed silicon nitride ceramics were used in very few gray cast iron machining applications. The introduction of Kennametal s Kyon 3500 in 1993 changed that. Using breakthrough technology, KY3500 was produced using basic powder metallurgy methods and eliminated the need for onerous hot pressing. Today, Kyon 3500 remains the industry standard as the most dependable commercial ceramic grade on the market. KY3500 differentiates itself from the competition in difficult applications that involve aggressive conditions and interrupted cutting. Kyon 1310 continues the legacy of Kennametal breakthrough ceramic products. Through state-ofthe-art material development and processing, the wear resistance of KY1310 is greatly enhanced. KY1310 targets continuous turning of gray cast iron to provide superior wear resistance. It is ideal for automotive and truck brake disk and rotor applications. Proven Superiority Recently, we tested KY3500 and KY1310 against an incumbent competitor silicon nitride grade in a customer s continuous turning application on gray cast iron automotive valve rings. The speed, feed, and depth of cut of the operation (previously optimized for the competitor grade) were not changed for this test. Results achieved: COMPETITOR silicon nitride: 50 rings KENNAMETAL KY3500: 300 rings KY1310: 440 rings Figure 1: Hot hardness of cutting tool materials 26

New Cutting Tool Technologies Kyon 1310* for Continuous Gray Cast Iron Turning Developed specifically for continuous turning of gray cast iron. Unmatched tool life in brake disk and rotor applications! KY1310... sialon ceramic grade specifically engineered for continuous turning applications in gray cast iron formulated to provide maximum abrasion resistance for long-lasting tool life proven performer in a broad range of applications, from roughing to finishing, including through scale run at speeds up to 3700 sfm available in Top Notch Turning and wiper styles for dramatic performance advantages KY1310* COMING SOON: Molded-tolerance style of KY1310! *KY1310 is available January 2004. Kyon 3500 for Difficult Gray Cast Iron Turning Silicon nitride ceramic engineered to provide combined superior toughness and wear resistance for interrupted and difficult cast iron applications. KY3500... the industry standard for high-speed turning and milling of gray cast iron proven performer in the most difficult gray cast iron applications, particularly interrupted cuts provides unsurpassed reliability run at speeds up to 3400 sfm available in Top Notch Turning and wiper styles for dramatic performance advantages available in molded and ground tolerance styles to maximize economy for your applications works well in difficult interruped cuts in ductile or malleable cast iron (<70 ksi tensile strength) at speeds of 900 to 1600 sfm KY3500 27

KY1310* Proven Solutions market: product: material: application: automotive brakes brake rotor gray cast iron continuous KY1310 on Gray Cast Iron Savings: 10% of process cost, or $10,517. COMPETITOR KENNAMETAL grade: ceramic KY1310 insert: CNGX-454T0820 CNGX-454T0820 speed: 2600 sfm 2600 sfm feed:.022 ipr.022 ipr doc:.100.100 RESULTS: KY1310 machined 255 pieces, more than double the competitor s 110 pieces, at a savings of more than $10,000. market: product: material: application: automotive brakes brake rotor gray cast iron continuous KY1310 on Class 30 Gray Iron Savings: 40% of process cost, or $43,252. COMPETITOR KENNAMETAL grade: ceramic KY1310 insert: CNG-453T0820 CNGX-453T0820 speed: 3000 sfm 3000 sfm feed:.020 ipr.020 ipr doc:.080.080 RESULTS: KY1310 machined 440 pieces, more than 8 times the 50 pieces by the competitor, at a cost savings greater than $45,000. market: product: material: application: automotive valve ring gray cast iron continuous KY1310 on Gray Cast Iron Savings: 8% of process cost, or $1,303. COMPETITOR KENNAMETAL grade: ceramic KY1310 insert: CNGA-433T0820 CNGA-433T0820 speed: 2000 sfm 2000 sfm feed:.016 ipr.016 ipr doc:.030.030 RESULTS: KY1310 machined 735 pieces, a 140% increase over the competitor s 300 pieces, at a cost savings of more than $1,000. *Kyon 1310 available January 2004. 28

KY3500 Proven Solutions market: product: material: application: automotive brakes brake drum gray cast iron continuous KY3500 on Gray Cast Iron Savings: 74% of process cost, or $3,687. COMPETITOR KENNAMETAL grade: carbide KY3500 insert: CNGA-544KM CNGA-544T0820 speed: 500 sfm 2000 sfm feed:.012 ipr.011 ipr doc:.150.150 RESULTS: Kyon 3500 ran 40 pieces per edge versus the competitor s 30 pieces per edge at 4 times the speed. market: product: material: application: automotive carrier gray cast iron interrupted KY3500 on Gray Cast Iron Savings: 9% of process cost, or $8,525. COMPETITOR KENNAMETAL grade: ceramic KY3500 insert: CNGX-454T CNGX-454T0820 speed: 2500 sfm 2500 sfm feed:.025 ipr.025 ipr doc:.100.100 RESULTS: Kyon 3500 achieved 75% greater production by running 1,000 pieces per edge versus 250 pieces per edge by the competition. market: product: material: application: automotive brakes brake rotor gray cast iron variable depth of cut KY3500 on Gray Cast Iron Savings: 13% of process cost, or $3,297. COMPETITOR KENNAMETAL grade: ceramic KY3500 insert: SNMX-554 SNGX-554T0820 speed: 2625 sfm 2625 sfm feed:.024 ipr.024 ipr doc:.100.100 RESULTS: Kyon 3500 more than doubled production by running 460 pieces per edge versus the competitor s 150 pieces per edge. 29

New Cutting Tool Technologies Kyon 3400 for Ductile Iron Turning An advanced CVD-coated silicon nitride ceramic for high-speed turning of malleable and ductile cast irons. KY3400... has the toughness of silicon nitride ceramics combined with a coating for added wear resistance. your first choice ceramic material for high-speed turning of ductile irons (>75 ksi tensile strength) run at speeds from 1200 to 1900 sfm available in Top Notch Turning and wiper styles for optimized performance Micro-Machining Tooling Catalog 2090 Single-source for proven micro-machining and small turning center solutions Features the revolutionary KM Micro Quick-Change System for micro-machining Request A01-135! 30

KY3400 Proven Solutions market: product: material: application: automotive differential case ductile iron varied depth KY3400 on Ductile Iron Savings: 38% of process cost, or $36,430. COMPETITOR KENNAMETAL grade: ceramic KY3400 insert: CNGA-643 CNGA-643 speed: 1380 sfm 1430 sfm feed:.012 ipr.012 ipr doc:.100.100 RESULTS: Kyon 3400 ran 25 pieces per edge at a higher speed versus the 10 pieces per edge run by the competitor. market: product: material: application: automotive liner ductile iron varied depth, finish boring KY3400 on Ductile Iron Savings: 28% of process cost, or $3,688. COMPETITOR KENNAMETAL grade: ceramic KY3400 insert: CNGA-434T0820 CNGA-434T0820 speed: 1300 sfm 1300 sfm feed:.010 ipr.010 ipr doc:.030.030 RESULTS: Kyon 3400 achieved nearly 4 times greater production by running 15 pieces per edge versus the 4 pieces per edge by the competitor. market: product: material: application: automotive end plate ductile iron varied depth KY3400 on Ductile Iron Savings: 34% of process cost, or $1,400. COMPETITOR KENNAMETAL grade: carbide KY3400 insert: TNMG-432 CNGA-432T0820 speed: 1100 sfm 1100 sfm feed:.011 ipr.011 ipr doc:.060.060 RESULTS: Kyon 3400 ran 3 pieces per edge, while the competitor ran 1 piece per edge. 31

Metallurgy and Machinability Metallurgy Overview Cast irons are iron-carbon-silicon alloys containing large amounts of carbon either as graphite or as iron carbide. They have higher carbon (>1.7%) and silicon (1.0-3.5%) contents than steel. Silicon promotes dissociation of iron carbide to iron and graphite. By increasing the silicon content in cast iron, a greater proportion of graphite can be obtained at the expense of combined carbon. The microstructure and mechanical properties of cast irons can be controlled not only by chemical composition but also by cooling rate. Increasing the cooling rate will refine the graphite size as well as the matrix structure and will increase strength and hardness. It also may increase the chilling tendency, which may increase the hardness but decrease the strength. Alloys within the broad group of cast irons include white iron, gray cast iron, mottled cast iron, malleable cast iron, and ductile cast iron. Each of these alloys may be modified by alloy additions to obtain specific properties. Below are selected ASTM standards for different classes of cast irons. Selected ASTM Standards for Cast Irons Unalloyed Cast Irons A47 Malleable iron castings A48 Gray iron castings A126 Gray iron castings for valves, flanges, and pipe fittings A159 Automotive gray iron castings A197 Cupola malleable iron A220 Pearlitic malleable iron castings A278 Gray iron castings for pressure-containment with temperatures up to 345 C (650 F) A319 Gray iron castings for elevated temperatures non-pressure containing parts A395 Ferritic ductile iron pressure-retaining castings for elevated temperatures A476 Ductile iron castings for papermill dryer rolls A536 Ductile iron castings A602 Automotive malleable iron castings Low and Moderate Alloyed Cast Irons A319 A874 Gray iron castins for elevated temperatures for non-pressure containing parts Ferritic ductile iron castings for low-temperature service parts High-Silicon Cast Irons A532 Abrasion-resistant cast irons High-Nickel Austenitic Cast Irons A436 Austenitic gray iron castings A439 Austenitic ductile iron castings 571 Austenitic ductile iron castings for pressurecontaining parts for low-temperature service 32 Machinability Overview Machinability refers to the ease with which a workpiece can be machined and measured in terms of tool life, metal removal rates, surface finish, ease of chip formation, or cutting forces. It is not an intrinsic property of a material, but is a result of complex interactions between the mechanical properties of the workpiece, cutting tools, lubricants used, and machining conditions. Cast iron machinability varies greatly depending on the type of iron and its microstructure. Ferritic cast irons are easiest to machine, while white irons are extremely difficult to machine. Other grades of cast iron, such as malleable, ductile, compacted graphite, and alloyed cast irons, are in between ferritic and white irons in ease of machinability. Additionally, hard spots in castings formed during rapid cooling and in presence of excessive levels of carbide forming elements can seriously degrade machinability. Alloy cast irons (ASTM A532, A518) can be classified as white cast irons, corrosion-resistant irons, and heat-resistant irons. Generally, they are based on the iron (Fe) - carbon (C) - silicon (Si) system and contain one or more alloying elements that are added (>3%) to enhance one or more useful properties (corrosion resistance or strength or oxidation resistance at elevated temperatures). Small amounts of ferrosilicon, cerium, or magnesium that are added to control the size, shape, and distribution of graphite particles are called inoculants, rather than alloying elements. Inoculation does not change the basic composition or alter the properties of the constituents in the microstructure. The alloyed irons for corrosion resistance are either 13-36% nickel (Ni) gray and ductile irons (also called Ni-resist irons) or high silicon (~14.5% Si) gray irons. For elevated temperature service, nickel (Ni), silicon (Si), or aluminum (Al) alloyed gray and ductile irons are employed. Figure 1: Microstructure of white cast iron

Metallurgy and Machinability White cast irons, also known as abrasion-resistant cast irons, are an iron-carbon alloy in which the carbon content exceeds 1.7%. White cast iron does not have any graphite in the microstructure. Instead, the carbon is present either as ironcarbide or complex iron-chromium carbides (Figure 1), which are responsible for high hardness and resistance to abrasive wear. White iron shows a white, crystalline fracture surface because fracture occurs along the carbide plates. White iron can be produced either throughout the section or only on the surface by casting the molten metal against graphite or metal chill. In the latter case, it is referred to as chilled iron. Corrosion-resistant cast irons obtain their resistance to chemical wear primarily from their high alloy content of silicon, chromium, or nickel. Depending on which of the three alloys dominates the compositions, the corrosion-resistant material can be ferritic, pearlitic, martensitic, or austenitic. Machinability Alloy Cast Irons White irons and corrosion-resistant high-silicon (14.5%Si) gray irons are the most difficult cast irons to machine. Alloyed white irons such as nickel-hard (Ni-hard) alloys and high-silicon irons (ASTM A518) are generally ground to size or turned with a polycrystalline cubic boron nitride (PCBN) tool material such as Kennametal grades KB9640, KD120, or KB5625 Gray cast irons (ASTM A48, A126, A159, ASME AS278 and SAE J431) are named such because their fracture has a gray appearance and consists of graphite flakes embedded in a matrix of ferrite or pearlite, or a mixture of the two depending on the composition and cooling rate (Figures 2a-2d). Ferrite is a soft, low-carbon alpha iron phase with low tensile strength but high ductility. Pearlite consists of lamellar plates of soft ferrite and hard cementite. Gray irons contain 2.5 to 4% carbon (C), 1-3% silicon (Si), and manganese (Mn) (~0.1% Mn in ferritic gray irons and as high as 1.2% Mn in pearlitic gray irons). Sulfur (S) and phosphorus (P) may be present as residual impurities. Manganese is deliberately added to neutralize the sulfur. The resulting manganese sulfide is uniformly distributed in the matrix of gray iron as inclusions. ASTM specification A48 classifies gray cast irons in terms of tensile strength (class 20 with 20 ksi minimum tensile strength to class 60 with 60 ksi minimum tensile strength). The fluidity of liquid gray iron and its expansion during solidification due to the formation of graphite are responsible for the economic production of shrinkage-free, intricate castings such as engine blocks. Most gray iron components are used in the as-cast condition. However, for specific casting requirements, they can be heat treated (annealed, stress relieved, or normalized). Other heat treatments include hardening and tempering, austempering, martempering, and flame or induction hardening. Figure 2a: Type C flake graphite in gray iron Figure 2c: Coarse pearlite in gray cast iron Machinability Gray Cast Irons Figure 2b: Pearlite-ferrite gray cast iron Figure 2d: Pearlitic gray cast iron Most gray cast irons are easier to machine than other cast irons of similar hardness and virtually all steels. This is because the graphite flakes in the microstructure act as chip breakers and serve as a lubricant for the cutting tool. Machining difficulties can still occur in gray iron if chills are present in corners and thin sections or when sand is embedded in the casting surface. The material also shows a tendency to break out during exit from the cut. Although the graphite in cast iron imparts its free-machining characteristics, the matrix surrounding the graphite determines tool life. In fully annealed state, cast irons have a ferritic matrix and exhibit the best machinability. (While not as soft as ferrite in steel, the ferritic cast iron shows better machinability than ferritic steel due to the slight hardening effect of the dissolved silicon and the chip breaking and lubricating effect of the graphite.) As the ferrite content decreases Photomicrographs courtesy of Buehler Ltd., Lake Bluff, Illinois, USA, www.buehler.com 33

Metallurgy and Machinability and pearlite increases, tool life decreases rapidly. Both iron and alloy carbides, when present as large particles, are detrimental to tool life. Irons with higher phosphorous contents (~0.4%) form a hard constituent called steadite, which has a detrimental effect on tool life. Gray cast irons are productively turned and milled with multi-layered alumina and TiCN coated inserts. The substrate tool material can be either carbide or silicon nitride-based ceramic. Cermet grades such as KT315 are ideal for light depth-ofcut applications. A pure silicon nitride grade such as KY3500 often yields the highest productivity on general turning and milling applications at high speeds. Drilling applications are highly dependent on the drill geometry as well as drill grade. Kennametal solid carbide drills in the TF (triple flute) and SE (sculptured edge) geometries in TiALN-coated grades KC7210 and KC7215 are the most desirable. For indexable insert drilling applications, TiALN-coated KC7725 and alumina coated KC7935 grades are the first choice for high-speed, high productivity applications. Ductile (nodular) irons (ASTM A395, A476, A439, A536 and SAE J434), previously known as nodular iron or spheroidal-graphite cast iron, contain nodules of graphite embedded in a matrix of ferrite or pearlite or both (Figures 3a-3c). The graphite separates as nodules from molten iron during solidification because of additives cerium (Ce) and magnesium (Mg) introduced in the molten iron before casting. The nodules act as crack arresters and impart ductility to the material. By contrast, neither white iron nor gray iron shows a significant amount of ductility. Ductile iron is of higher purity (low phosphorus [P] and sulfur [S]) and is stronger than gray iron. With a high percentage of graphite nodules present in the microstructure, the matrix determines the mechanical properties of ductile iron. Table B compares the composition of ductile iron with that of gray iron and malleable iron. The ASTM classifies different grades of ductile irons in terms of tensile strength in ksi, yield strength in ksi, and elongation in percent. For example, ASTM A536 specifies five standard ductile iron grades: 60-40-18 / 65-45-12 (ferritic ductile iron), 80-55-06 (ferritic-pearlitic ductile iron), 100-70-03 (pearlitic ductile iron), and 120-90-02 (quenched and tempered martensitic ductile iron). Ferritic ductile iron the ferrite matrix provides good ductility and impact resistance and tensile strength equivalent to low-carbon steel. Ferritic ductile iron can be produced as-cast or may be given an annealing treatment to obtain maximum ductility and low-temperature toughness. Ferritic-pearlitic ductile irons usually produced in the as cast condition and feature both ferrite and pearlite in the microstructure. Properties are intermediate between ferritic and pearlitic ductile irons. Figure 3a: Ferritic annealed ductile iron Figure 3b: Pearlite/ferrite ductile iron Figure 3c: Coarse lamellar pearlite in ductile iron Table B Typical composition ranges for unalloyed cast irons 34 material total carbon manganese silicon (Si) chromium (Cr) composition % nickel (Ni) molybdenum (Mo) copper (Cu) phosphorus (P) sulfur (S) cerium (Ce) magnesium (Mg) gray iron 3.25-3.50 0.50-0.90 1.80-2.30 0.05-0.45 0.05-0.20 0.05-0.10 0.15-0.40 0.12 max 0.15 max...... malleable iron 2.45-2.55 0.35-0.55 1.40-1.50 0.04-0.07 0.05-0.30 0.03-0.10 0.03-0.40 0.03 max 0.05-0.07...... ductile iron 3.60-3.80 0.15-1.00 1.80-2.80 0.03-0.07 0.05-0.20 0.01-0.10 0.15-1.00 0.03 max 0.002 max 0.005-0.20 0.03-0.06

Metallurgy and Machinability Pearlitic ductile irons - the pearlitic matrix provides high strength, good wear resistance, and moderate ductility and impact resistance. While the aforementioned three types of ductile iron are most common and used in as-cast condition, ductile irons also can be alloyed and/or heattreated to provide additional grades as follows: Martensitic ductile irons are produced using sufficient alloy additions to prevent pearlite formation, and a quench-and-temper heat treatment to produce a tempered martensitic matrix. These materials have a high strength and wear resistance but lower levels of ductility and toughness. Bainitic ductile irons are produced through alloying and/or by heat treatment to provide a hard, wear-resistant material. Austenitic ductile irons are produced through alloying additions to provide good corrosion and oxidation resistance, magnetic properties, and strength and dimensional stability at high temperatures. Machinability - Ductile Irons The spherical graphite in ductile iron acts similar to the flake graphite in gray iron in chip breaking and lubrication in machining. Machinability increases with silicon content up to 3%, but decreases significantly at higher silicon levels. As in the case of gray cast iron, machinability decreases with increasing pearlite content in the microstructure. Finer pearlite structures also decrease machinability. Still, pearlitic ductile irons are considered to have the best combination of machinability and wear resistance. Cast irons with tempered martensitic structure have a better machinability than pearlite with similar hardness. Other microstructures such as acicular bainite and acicular ferrite formed during heat treatment of ductile irons have machinability similar to martensite tempered to the same hardness. The higher tensile strength of ductile irons compared to gray cast iron requires better rigidity within the machining system. Tool performance life may be slightly lower if run at gray cast iron surface speeds. Ductile cast irons can be productively turned and milled with multi-layered alumina and TiCN or PVD TiALN-coated inserts but at slightly slower speeds than gray cast irons. Malleable cast irons (ASTM A602 and A47) consist of uniformly dispersed and irregularly shaped graphite nodules (often called temper graphite because it is formed by the dissolution of cementite in the solid state) embedded in a matrix of ferrite, pearlite (Figure 4), or tempered martensite. Malleable iron is cast as white iron and then heat-treated to impart ductility to an otherwise brittle material. Malleable iron possesses considerable ductility and toughness due to the nodular graphite and a lower carbon metallic matrix. It has good fatigue strength and damping capacity, good corrosion resistance, good magnetic permeability, and low magnetic retention for magnetic clutches and brakes. Malleable iron, like medium-carbon steel, can be heat treated to obtain different matrix microstructures (ferrite, pearlite, tempered pearlite, bainite, tempered martensite, or a combination of these) and mechanical properties. Malleable and gray irons differ in two respects: the iron carbide is partially or completely dissociated in malleable cast iron; the dissociation occurs only when the alloy is solid. However, the dissociation in gray cast iron occurs during the early stages of solidification; hence the difference in the character of graphite in each material. Figure 4: Coarse pearlite in annealed malleable iron Machinability Malleable Cast Irons The machinability of malleable iron is considered to be better than that of free-cutting steel. Use lowstrength ductile iron machining recommendations. Austempered ductile irons (ADI) (ASTM A897-90) are used as cast, but some castings are heat treated to achieve desired properties. Austempered ductile irons are produced from conventional ductile iron through a special two-stage heat Photomicrographs courtesy of Buehler Ltd., Lake Bluff, Illinois, USA, www.buehler.com 35

Metallurgy and Machinability treatment. The microstructure consists of spheroidal graphite in a matrix of acicular ferrite and stabilized austenite (called ausferrite) (Figure 5). The fine-grained acicular ferrite provides an exceptional combination of high tensile strength with good ductility and toughness. ADI can be given a range of properties through control of austempering conditions. Compared to conventional grades of ductile iron, ADI offers twice the tensile strength for a given level of elongation. Compacted graphite iron (CGI) (ASTM A842) has a microstructure in which the graphite is interconnected like the flake graphite in gray cast iron, but the graphite in CGI is coarser and more rounded (Figure 6). In other words, the structure of CGI is between that of gray and ductile iron. The graphite morphology allows better use of the matrix, yielding higher strength and ductility than gray irons. The interconnected graphite in CGI provides better thermal conductivity and damping capacity than the spheroidal graphite in ductile iron. Although the CGI is less section-sensitive than gray iron, high cooling rates are avoided because of the high propensity of the CGI for chilling and high nodule count in thin sections. Figure 5: Austempered ductile iron Machinability Austempered Ductile Irons The machinability of the softer grades of austempered ductile iron (ADI) is equal or superior to that of steels with equivalent strength. ADI can be machined complete in the soft, as-cast state before heat treatment. This enables faster machine feeds and speeds and significantly increases tool life. As the hardness of ADI increases, tool life decreases substantially. For this reason, only the 125/80/10 and 150/100/7 grades of ADI are machined after austempering. Processing sequence for parts processed to the higher strength: cast the component subcritically anneal to a fully ferritic matrix machine austemper finish machine (if required) finish operations (rolling, grinding, peening, if required) Follow high-strength ductile iron recommendations during machining. Figure 6: Compacted graphite Machinability Compacted Graphite Iron The graphite morphology in compacted graphite iron enables chipbreaking but is strong enough to prevent powdery chip formations. This combination is ideal for good machinability. As a result, the machinability of compacted graphite iron lies between that of gray iron and ductile iron for a given matrix structure. Use low-strength ductile iron machining recommendations. Photomicrographs courtesy of Buehler Ltd., Lake Bluff, Illinois, USA, www.buehler.com 36

Metallurgy and Machinability Gray Cast Irons & Gray, Austenitic standard materials UNS tensile strength hardness HB ASTM 48 ASTM A126 ASTM A159 & SAE J431 ASTM A278 & ASME AS278 ASTM A319 ASTM A436 Gray Cast Irons F10001 generally below MPa 207 (30 ksi) Class l F10002 at or above 207 MPa (30 ksi) Class ll F10003 generally at or above 276 MPa (40 ksi) Class lll F10004 124 MPa (18 ksi) min. 187 max G1800 F10005 173 MPa (25 ksi) min. 170-229 G2500 F10006 207 MPa (30 ksi) min. 187-241 G3000 F10007 241 MPa (35 ksi) min. 207-255 G3500 F10008 276 MPa (40 ksi) min. 217-269 G4000 F11401 138 MPa (20 ksi) min. 156 20 (A-C) 20 F11501 145 MPa (21 ksi) min. 156 Class A F11701 172 MPa (25 ksi) min. 174 25 (A-C) 25 F12101 207 MPa (30 ksi) min. 210 30 (A-C) 30 F12102 214 MPa (31 ksi) min. 210 Class B F12401 241 MPa (35 ksi) min. 212 35 (A-C) 35 F12801 276 MPa (40 ksi) min. 235 40 (A-C) F12802 283 MPa (41 ksi) min. 235 Class C F12803 276 MPa (40 ksi) min. 235 40 F13101 310 MPa (45 ksi) min. 250 45 (A-C) F13102 310 MPa (45 ksi) min. 250 45 F13501 345 MPa (50 ksi) min. 265 50 (A-C) F13502 345 MPa (50 ksi) min. 265 50 F13801 379 MPa (55 ksi) min. 282 55 (A-C) F13802 379 MPa (55 ksi) min. 282 55 F14101 414 MPa (60 ksi) min. 302 60 (A-C) F14102 414 MPa (60 ksi) min. 302 60 F14801 483 MPa (70 ksi) min. 70 F15501 552 MPa (80 ksi) min. 80 Gray, Austenitic F41000 172 MPa (25 ksi) min. 131-183 1 F41001 207 MPa (30 ksi) min. 149-212 1b F41002 172 MPa (25 ksi) min. 118-174 2 F41003 207 MPa (30 ksi) min. 171-248 2b F41004 172 MPa (25 ksi) min. 118-159 3 F41005 172 MPa (25 ksi) min. 149-212 4 F41006 138 MPa (20 ksi) min. 99-124 5 F41007 172 MPa (25 ksi) min. 124-174 6 Grade, Type or Number 37

Metallurgy and Machinability Malleable Cast Irons & Pearlitic, Martensitic standard materials UNS tensile strength yield strength hardness HB ASTM A47 ASTM A220 ASTM A602 & SAE J158 Malleable Cast Irons F20000 345 MPa (50 ksi) min. 220.5 MPa (32 ksi) min. 156 max. M3210 F20001 447.9 MPa (65 ksi) min. 309.7 MPa (45 ksi) min. 163-217 M4504 F20002 516.5 MPa (75 ksi) min. 345 MPa (50 ksi) min. 187-241 M5003 F20003 516.5 MPa (75 ksi) min. 379.3 MPa (55 ksi) min. 187-241 M5503 F20004 620.3 MPa (90 ksi) min. 482.2 MPa (70 ksi) min. 229-269 M7002 F20005 723.2 MPa (105 ksi) min. 586 MPa (85 ksi) min. 269-302 M8501 F22200 345 MPa (50 ksi) min. 224 MPa (32 ksi) min. 156 max. 32510 F22400 365 MPa (53 ksi) min. 241 MPa (35 ksi) min. 156 max 35018 Malleable, F22830 414 MPa (60 ksi) min. 276 MPa (40 ksi) min. 149-197 40010 Pearlitic & F23130 448 MPa (65 ksi) min. 310 MPa (45 ksi) min. 156-197 45008 Martensitic F23131 448 MPa (65 ksi) min. 310 MPa (45 ksi) min.; elongation 6% min. 156-207 45006 F23530 483 MPa (70 ksi) min. 345 MPa (50 ksi) min. 179-229 50005 F24130 483 MPa (70 ksi) min. 345 MPa (50 ksi) min. 196-241 60004 F24830 586 MPa (80 ksi) min. 483 MPa (70 ksi) min. 217-269 70003 F25530 655 MPa (95 ksi) min. 552 MPa (80 ksi) min. 241-285 80002 F26230 724 MPa (105 ksi) min. 621 MPa (90 ksi) min. 269-321 90001 Ductile Cast Iron & Ductile, Austenitic Grade, Type, or Number standard materials UNS tensile strength yield strength hardness HB ASTM A395 A476 A536 ASTM A439 ASTM A571 AMS SAE J434 MIL-I- 24137 Ductile Cast Iron F30000 as required as req d DQ & T F32800 414 MPa (60 ksi) min. 276 MPa (40 ksi) min. 170 max. 60-40-18 D4018 F33100 448 MPa (65 ksi) min. 310 MPa (45 ksi) min. 156-217 65-45-12 D4512 F33101 414 MPa (60 ksi) min. 310 MPa (45 ksi) min. 190 5315 (A) F33800 552 MPa (80 ksi) min. 379 MPa (55 ksi) min. 187-255 80-55-06 D5506 F34100 552 MPa (80 ksi) min. 414 MPa (60 ksi) min. 163 80-60-03 5316 F34800 689 MPa (100 ksi) min. 483 MPa (70 ksi) min. 241-302 100-70-03 D7003 F36200 827 MPa (120 ksi) min. 621 MPa (90 ksi) min. 270-350 120-90-02 Ductile, Austenitic F43000 400 MPa (58 ksi) min. 207 MPa (30 ksi) min. 139-202 D-2 F43001 400 MPa (58 ksi) min. 207 MPa (30 ksi) min. 148-211 D-2B F43002 400 MPa (58 ksi) min. 193 MPa (28 ksi) min. 121-171 D-2C F43003 379 MPa (55 ksi) min. 207 MPa (30 ksi) min. 139-202 D-3 F43004 379 MPa (55 ksi) min. 207 MPa (30 ksi) min. 131-193 D-3A F43005 414 MPa (60 ksi) min. 207 MPa (30 ksi) min. 202-273 D-4 F43006 379 MPa (55 ksi) min. 207 MPa (30 ksi) min. 131-185 D-5 F43007 379 MPa (55 ksi) min. 207 MPa (30 ksi) min. 139-193 D-5B F43010 448 MPa (65 ksi) min. 207 MPa (30 ksi) min. 121-171 D-2M-1, D-2M-2 F43020 379 MPa (50 ksi) min. 207 MPa (30 ksi) min. (B) F43021 345 MPa (50 ksi) min. 172 MPa (25 ksi) min. (C) 38 Grade, Type, or Number

Metallurgy and Machinability Austempered Ductile Iron (ADI) standard materials UNS tensile strength yield strength hardness HB ASTM A897-90 Austempered n/a 850 MPa (125 ksi) min. 550 MPa (80 ksi) min./elongation 10% 269-321 125-80-10 Ductile Iron (ADI) n/a 1050 MPa (150 ksi) min. 700 MPa (100 ksi) min./elongation 7% 302-363 150-100-7 n/a 1200 MPa (175 ksi) min. 850 MPa (125 ksi) min./elongation 4% 341-444 175-125-4 n/a 1400 MPa (200 ksi) min. 1100 MPa (155 ksi) min./elongation 1% 388-477 200-155-1 n/a 1600 MPa (230 ksi) min. 1300 MPa (185 ksi) min. 444-555 230-185 Grade, Type, or Number Compacted Graphite Iron (CGI) standard materials UNS tensile strength yield strength hardness HB ASTM A842 Compacted n/a 250 MPa min. 175 MPa min./elongation 3% 179 Max. 250 Graphite Iron (CGI) n/a 300 MPa min. 210 MPa min./elongation 1.5% 143-207 300 n/a 350 MPa min. 245 MPa min./elongation 1.0% 163-229 350 n/a 400 MPa min. 280 MPa min./elongation 1.0% 197-255 400 n/a 450 MPa min. 315 MPa min./elongation 1.0% 207-269 450 Grade, Type, or Number Nickel (Ni) Hard / White Cast Iron standard materials UNS properties hardness HB ASTM A532 (class) Austempered F45000 nickel-chromium irons 550-600 (I) A, Ni hard Ductile Iron (ADI) F45001 nickel-chromium irons 550-600 (I) B, Ni hard F45002 nickel-chromium irons 550-600 (I) C, Ni hard F45003 nickel-chromium irons 400-600 (I) D, Ni hard F45004 chromium-molybdenum irons 400-600 (II) A, white iron F45005 chromium-molybdenum irons 400-600 (II) B, white iron F45006 chromium-molybdenum irons 400-600 (II) C, white iron F45007 chromium-molybdenum irons 400-600 (II) D, white iron F45008 chromium-molybdenum irons 400-600 (II) E, white iron F45009 chromium-molybdenum irons 400-600 (III) A, white iron Grade, Type, or Number 39

Metallurgy and Machinability Cast Iron Cross-Reference / Workpiece Comparison Table UNS USA Australia Belgium Denmark France Gray Cast Iron ASTM 48, ASME SA278, ASTM A159, SAE J431 F10004 G1800 F10005 G2500 F10006 G3000 F10007 G3500 F10008 G4000 F11401 20-A T150 FGG10 GG10 FGL150 20 FGG15 GG15 FGL150A F11701 25-A FGL200A 25 FGL250A F12101 30-A T220 FGG20 GG20 FGL200 30 F12401 35-A FGG25 GG25 FGL250 35 FGL300A F12801 40-A F13101 45-A FGG30 GG30 FGL300 45 FGL350A FGL400A F13501 50-A FGG35 GG35 FGL350 50 F13801 55-A FGG40 GG40 50 F14101 60-A FGL400 60 Gray, Austenitic ASTM A436 F41000 1 L-NiCuCr1562 L-NUC1562 F41001 1b L-NiCuCr1563 L-NUC1563 F41002 2 L-NiCr202 L-NC202 S-NiCr202 F41003 2b L-NC203 F41004 3 L-NiCr303 S-NiCr303 F41005 4 NiSiCr3055 L-NSC2053 L-NSC3055 F41006 5 L-Ni35 L-N35 S-NiCr353 F41007 6 Malleable Iron ASTM 602, SAE J158, ASTM A7 F20000 M3210 M4504 M5003 M5503 M7002 M8501 F22200 32510 F22400 35018 40

Metallurgy and Machinability Germany Great Britain International Italy Japan Sweden Gray Cast Iron ASTM 48, ASME SA278, ASTM A159, SAE J431 Ch130 0212-00 Ch170 0215-00 0217-00 Ch190 0219-00 Ch210 0221-00 Ch230 0223-00 GG-10 100 100 G10 FC10-1 0110-00 150 150 FC15-2 GG-15 180 G15 GG-20 200 200 G20 FC20-3 220 250 G25 FC250-4 250 260 GG-25 FC25-4 0125-00 GG-30 300 300 G30 FC30-5 GG-35 350 350 G35 FC350-6 400 Gray, Austenitic ASTM A436 GGL-NiCuCr1562 F1 L-NiCuCr1562 GGL-NiCuCr1563 F1 L-NiCuCr1563 GGL-NiCr202 F2 L-NiCr202 0523-00 L-NiCr202 GGL-NiCr203 F2 L-NiCr203 GGL-NiCr303 F3 L-NiCr303 GGL-NiSiCr3055 L-NiSiCr2053 L-NiSiCr3055 L-Ni35 Malleable Iron ASTM 602, SAE J158, ASTM A7 S2 41

Metallurgy and Machinability Cast Iron Cross-Reference / Workpiece Comparison Table Ductile Cast Iron UNS USA Australia Belgium Denmark France ASTM A395, ASTM A476, ASTM A536, SAE J434 F32800 60-40-18 370-17 FNG38-17 715 FGS350-22 D4018 716 FGS350-22L FGS400-15 FGS400-18 FGS400-18L F33100 65-45-12 400-12 FNG42-12 D4512 F33101 5315 F33800 80-55-06 500-7 FNG50-7 727 FGS500-7 D5506 F34100 5316 F34800 100-70-03 700-0 FNG70-2 707 FGS700-2 D7003 800-2 FNG80-2 708 FGS800-2 F36200 120-90-02 FGA900-2 Ductile Cast Iron, Austenitic ASTM A439 F43000 D-2 S-NC202 F43001 D-2B L-NiCr203 S-NC203 S-NiCr203 F43002 D-2C S-Ni22 S-N22 F43003 D-3 S-NC303 F43004 D-3A S-NiCr301 S-NC301 F43005 D-4 S-NiSiCr3055 S-NSC3055 F43006 D-5 S-Ni35 S-N35 F43007 D-5B S-NC353 D-5S F43010 D-2M-1 S-NM234 D-2M-2 42

Metallurgy and Machinability Germany Great Britain International Italy Japan Sweden Ductile Cast Iron ASTM A395, ASTM A476, ASTM A536, SAE J434 GGG-40 350/22 350-22 GS370-17 FCD37-0 350/22L40 350-22L FCD40-1 0717-00 400/18 400-15 0717-02 400/18L20 400-18 0717-15 400-18L GGG-50 GS400-12 FDC45-2 GGG-60 500/7 500-7 GS500-7 FCD50-3 0727-02 FCD60-4 GGG-70 700/2 700-2 GS700-2 FCD70-5 800/2 800-2 GS800-2 FCD80-6 GGG-80 900/2 900-2 Ductile Cast Iron, Austenitic ASTM A439 GGG-NiCr202 S2 S-NiCr202 S2W GGG-NiCr203 S2B S-NiCr203 GGG-Ni22 S2C S-Ni22 GGG-NiCr303 S3 S-NiCr303 GGG-NiCr301 S3 S-NiCr301 GGG-NiSiCr3055 S-NiSiCr3055 GGG-Ni35 S-Ni35 GGG-NiCr353 S-NiCr353 GGG-NiMn234 S2M S-NiMn234 43

Expert Application Advisor Cast Irons Gray Cast Iron and Austenitic, Gray Iron (120-320 HB) ASTM: A48I: class 20, 25, 30, 35, 40, 45, 50, 55, 60 ASTM: 126: class A, B, C ASTM: A159 & SAE: J431; G1800, G2500, G3000, G3500, G4000 ASTM: A436; 1, 1b, 2, 2b, 3, 4, 5, 6 Material Characteristics out-of-balance condition may exist chucking on cast surface can be difficult tendency to break out during exit from cut contains abrasive elements; sand may be embedded in the cast surface potential for chatter on thin wall sections corners and thin sections can be chilled (hard and brittle) potential scale, inclusions Common Tool Application Considerations Problems & Solutions excessive edge wear 1. Use grade KC9315 or KT315 if running at moderate to high speeds. 2.. Use silicon nitride-based ceramic grades Kyon 3500 or Kyon 1310, or PCBN grades, if running at ultra-high speeds. Machining system must have the rigidity and horsepower required to run at ultra-high speeds. 3. Increase the feed to reduce in-cut time. chipping 1. Increase toolholder lead angle. 2. Use a grade with good edge strength, such as grade KC9325. 3. Ensure proper insert seating. 4. Use strong, negative-rake insert geometries such as MA, GX-T or GA-T. 5. Use inserts with an MT-land edge prep. workpiece breakout 1. Use PVD-coated grade KC5010 at moderate to low speeds. 2. Reduce feed rate during exit. 3. Pre-chamfer casting edge at exit. 4. Increase toolholder lead angle. workpiece chatter 1. Use a smaller nose radius. 2. Apply insert geometries that are free-cutting, such as MG-FN and MG-RP. 3. Increase feed to stabilize workpiece. 4. Shorten toolholder or bar overhang. 5. Check toolholder and workholding system for rigidity. 6. Use Top Notch Turning (GX-T style) insert for increased tooling rigidity. 44

Expert Application Advisor Cast Irons Ductile Iron (120-320 HB) ASTM: A395, A476, A536; 60-40-18, 65-45-12, 80-55-06, 80-60-03, 100-70-03, 120-90-02 SAE: J434; DQ & T, D4018, D4512, D5506, D7003 AMS: 5315, 5316 ASTM: A439. A571; D2, D2B, D2C, D3, D3A, D4, D5, D5B, D2M Material Characteristics graphite is in spherical form, rather than flake form customary in gray cast iron hard spots are common concentrations of carbide in the structure workpiece material structure may vary dramatically Malleable Cast Iron (120-320 HB) ASTM: A47: 32510, 35018 ASTM: A602 & SAE J158; M3210, M4504, M5003, M5503, M7002, M8501 ASTM: A220; 40010, 45008, 45006, 50005, 60004, 70003, 80002, 90001 machining difficulties may develop from flank and crater wear on the tool higher tensile strength requires good rigidity in machining system decreased tool life should be expected, compared to machining gray or malleable cast iron Material Characteristics graphite is in irregular-shaped nodules, rather than flake form customary in gray cast iron generally easy to machine at aggressive conditions. Common Tool Application Considerations Problems & Solutions excessive edge wear 1. Apply grade KC9315 to achieve higher speeds and longer tool life. 2. Use grade KC9325 for general purpose and interrupted cutting. 3. Apply grade KC9315 or KT315 if edge wear is excessive in smooth cuts. 4. Use ceramic grade Kyon 3400. Increase speed and make sure the machining set up and workpart clamping is rigid. 5. Increase feed to reduce time in cut. crater wear 1. Apply grade KC9315 or KT315. 2. Reduce speed to lower the heat at cutting edge. 3. Apply ceramic grade Kyon 3400 when machining at high speeds. 4. Apply large amounts of flood coolant. chipping 1. Use a strong negative-rake insert geometry. Apply the MX-T, GA-T, or MA insert geometry as a first choice; use MG-UN insert geometry as a second choice. 2. Select a T-land or large hone edge prep for greater edge strength. 3. Increase toolholder lead angle. 4. Reduce toolholder or boring bar overhang. 5. Ensure proper insert seating. 6. Apply grade KC9325. 7. Use grade KC9325, increase speed, and decrease feed when cutting with interruptions. 8. Choose grade Kyon 3500 to replace Kyon 3400 for heavy interruptions. catastrophic failure 1. Reduce speed and feed. 2. Use a T-land plus hone edge prep. torn or dull workpiece 1. Apply insert geometries that are free-cutting surface finish, such as the MG-FN. 2. Use a larger nose radius insert. 3. Use coated cermet grade KT315. 45

Expert Application Advisor Cast Irons Austempered Ductile Iron (269-444 HB) ASTM: A897; 125-80-10, 150-100-7, 175-125-4, 200-155-1, and 230-185 Material Characteristics material is produced by heat treating (austempering) high-quality ductile iron grades 200-155-1 and 230-185 are hard and not recommended for machining with carbide tooling Austempered ductile irons machine similarly to high-strength ductile irons. Due to the higher strength of these materials, tool life is shortened compared to conventional irons. Use high-strength ductile iron (>80 ksi) machining recommendations for these materials. See KENNA PERFECT recommendations on pages 6-13. Compacted Graphite Iron (CGI) (179-269 HB) ASTM: A842; Grade 250, 300, 350, 400, 450 Material Characteristics graphite is in compacted (vermiform) shapes and relatively free of flake graphite lower hardness levels than gray irons of equivalent strength hard or brittle enough to produce short chips; not hard enough to produce powder Compacted graphite irons are machined similar to lower-strength ductile irons. Kennametal Tooling System Solutions KM Kenclamp Tooling Catalog 2014 Our newest quick-release (1.5 turns) clamping design Robust clamping design reduces chatter and improves tool life Ensures insert repeatability and seating Fewer moving parts vs. competitive systems Request A02-132! 46

Failure Mechanism Analysis Edge Wear* Chipping Corrective Action Increase feed rate. Reduce speed (sfm). Use more wear resistant grade. Apply coated grade. Corrective Action Utilize stronger grade. Consider edge preparation. Check rigidity of system. Increase lead angle. Heat Deformation Depth-of-Cut Notching Corrective Action Reduce speed. Reduce feed. Reduce depth-of-cut (doc). Use grade with higher hot hardness. Corrective Action Change lead angle. Consider edge preparation. Apply different grade. Adjust feed. Thermal Cracking Built-Up Edge Corrective Action Properly apply coolant. Reduce speed. Reduce feed. Apply coated grades. Corrective Action Increase speed (sfm). Increase feed rate. Apply coated grades or cermets. Utilize coolant. Edge prep (smaller hone). Crater Catastrophic Breakage Corrective Action Reduce feed rate. Reduce speed (sfm). Apply coated grades or cermets. Utilize coolant. Corrective Action Utilize stronger insert geometry grade. Reduce feed rate. Reduce depth-ofcut (doc). Check rigidity of system. *NOTE: Generally, inserts should be indexed when.030 flank wear is reached. If it is a finishing operation, index at.015 flank wear or sooner. 47

Machinability Data Cast Iron Gray Cast Iron The ideal turning insert geometry for machining gray cast iron should have the following characteristics: square or diamond shaped for maximum strength negative insert geometry for maximum strength and of cutting edges minimum or no positive-rake chip-forming insert geometry for maximum edge strength medium edge hone on carbide inserts and a T-land edge prep on ceramic/sialon-grade inserts Ductile Cast Iron The ideal turning insert geometry for machining ductile cast iron should have the following characteristics: square or diamond shaped for maximum strength negative insert geometry for maximum strength and of cutting edges positive-rake chip-forming insert geometry for freer cutting action and chip control light edge hone on carbide inserts and a T-land edge prep on ceramic/sialon-grade inserts Pre-chamfer workpiece whenever possible to avoid workpiece material breakout and interrupted cut shock damage to insert edge. 48

Insert Edge Preparation Edge Preparation for Kennametal s Advanced Cutting Tool Materials Edge preparation is the term for the intentional modification of the cutting edge of an indexable insert to enhance its performance in a metalcutting operation. Ceramic cutting tool materials have a much higher hardness, but lower toughness, compared to conventional carbide materials. Because of this, ceramic materials have good bulk strength but lower edge strength versus carbide. To optimize performance of ceramic cutting tools, it is critical that tool material, workpiece material, and machining conditions be considered relative to edge preparation. To achieve optimum edge preparation, make the minimum amount of modification necessary to distribute forces sufficiently enough to prevent chipping and catastrophic insert failure. Edge preparations for standard inserts made with specific ceramic grades are determined by target applications and listed in the KENNA PERFECT insert selection system. There are three choices of edge preparation for ceramic materials: There is a tradeoff to the benefits of this edge preparation. Increasing the width T of the T-land or the angle A increases the overall cutting forces acting on the insert. This can negatively affect the wear rate of the insert and/or deformation of a thin-walled workpiece. For most cast iron turning applications, use a T-land width smaller than the feed rate. For heavily interrupted turning, hard turning (workpiece >50 HRC), and milling applications, use a T-land width larger than the feed rate. 2. Hone Hones protect the insert cutting edge by eliminating the sharp edge and distributing the cutting forces over a larger area. Hones generally are recommended for continuous or finishing operations; however, depending on the workpiece material, they can be used for interrupted or heavy cutting. 1. T-land 2. hone 3. T-land plus hone 1. T-land T lands protect the insert cutting edge by directing forces into the greater part of the insert, rather than to the smaller cross section of the sharp edge, during the metalcutting process. This helps prevent chipping and catastrophic failure. 3. T-land plus hone In aggressive applications, such as interrupted turning, chipping can occur at the intersection of the T-land and flank surface of the ceramic insert. This condition may be eliminated by applying a small hone to the intersection while leaving the other attributes of the T-land unchanged. 49

Chip Control Geometries Kenloc Inserts operation insert style application insert geometry profile feed rate inches.0015.0025.004.006.010.016.025.040.060.100.200.004.006.010.016.025.040.060.100.160.250.500 depth of cut inches wiper, finishing MG-FW.008 -.016 (0,2-0,4).010 -.080 (0,3-2,0) wiper, medium machining MG-MW.012 -.024 (0,3-0,6).030 -.200 (0,8-5,1) wiper, roughing MM-RW (single sided).010 -.050 (0,3-1,3).050 -.500 (1,3-12,7) finishing MG-FN.005 -.012 (0,1-0,3).010 -.100 (0,3-2,5) medium machining MG-UN.008 -.020 (0,2-0,5).030 -.150 (0,8-3,8) roughing MG-RP.010 -.025 (0,3-0,6).045 -.250 (1,1-6,4) roughing MG-RN.010 -.025 (0,3-0,6).045 -.250 (1,1-6,4) heavy roughing MM-RM (single sided).010 -.040 (0,3-1,0).050 -.500 (1,3-12,7) heavy roughing MM-RH (single sided).015 -.050 (0,4-1,3).050 -.500 (1,3-12,7) feed rate (mm) 0,04 0,063 0,01 0,16 0,25 0,4 0,63 1,0 1,6 2,5 5,0 0,1 0,16 0,25 0,4 0,63 1,0 1,6 2,5 4,0 6,3 10,0 depth of cut (mm) 50

Chip Control Geometries Screw-On Inserts operation insert style/ application insert geometry profile feed rate inches.0015.0025.004.006.010.016.025.040.060.100.200.004.006.010.016.025.040.060.100.160.250.500 depth of cut inches wiper, finishing MT-FW.003 -.013 (0,1-0,3).008 -.060 (0,2-1,5) wiper, medium machining MT-MW.005 -.020 (0,1-0,5).016 -.130 (0,4-3,3) fine finishing MT-11.003 -.010 (0,1-0,3).008 -.050 (0,2-1,3) fine finishing MT-UF.002 -.010 (0,1-0,3).005 -.050 (0,1-1,3) finishing MT-LF.007 -.015 (0,2-0,4).030 -.090 (0,8-2,3) medium machining MT-MF.009 -.017 0,2-0,4.045 -.090 1,1-2,3 feed rate (mm) 0,04 0,063 0,01 0,16 0,25 0,4 0,63 1,0 1,6 2,5 5,0 0,1 0,16 0,25 0,4 0,63 1,0 1,6 2,5 4,0 6,3 10,0 depth of cut (mm) 51

Kennametal Grade System for Cutting Materials Cermet (CERamics with METallic binders) grade coating composition and application C class ISO class KT315 composition: A multi-layered, PVD TiN/TiCN/TiN, coated cermet turning grade. application: Ideal for high-speed finishing to medium machining of most carbon and alloy steels and stainless steels. Performs very well in cast and ductile iron applications too. Provides long and consistent tool life and will produce excellent workpiece finishes. C3 C7 K10 - K20 M10 - M20 P10 - P20 PVD Coated Carbide Grades grade coating composition and application C class ISO class KC5010 composition: A PVD TiAlN coating over a very deformation-resistant unalloyed, carbide substrate. application: The KC5010 grade is ideal for finishing to general machining of most workpiece materials at higher speeds. Excellent for machining most steels, stainless steels, cast irons, non-ferrous materials and super alloys under stable conditions. It also performs well machining hardened and short chipping materials. C3 C4 K10 - K20 M10 - M20 P10 - P20 CVD Coated Carbide Grades grade coating composition and application C class ISO class KC9315 KC9325 composition: A multi-layered CVD coating with a very thick K-MTCVD layer of TiCN, for maximum wear resistance, is applied over a substrate specifically engineered for cutting cast and ductile irons. application: The KC9315 grade delivers longer tool life when high-speed machining ductile and cast irons. The thick K-MTCVD TiCN coating ensures a tremendous tool life advantage, especially when cutting higher tensile strength ductile and cast irons where workpiece size consistency and reliability of tool life are critical. This new Kennametal grade is excellent when used for either straight or lightly interrupted cut applications. Moreover, if you re looking for high productivity performance, the KC9315 grade is an ideal choice. composition: A TiCN and alumina-coated grade with a strong, reliable substrate. application: Grade development for the KC9325 grade focused on a variety of ductile and cast iron operations. The coating and substrate are optimized for flexibility. If you are machining different types of ductile or cast irons where application confidence, flexibility and broad range reliability are your primary requirements, the KC9325 grade is the perfect choice. C3 - C4 K10 - K25 C2 - C3 K15 - K30 Silicon Nitride-Based Ceramic grade coating composition and application C class ISO class KY1310* composition: An advanced sialon ceramic grade. application: Grade KY1310 provides maximum wear resistance. Use it for high-speed continuous turning of gray cast iron, including through scale. *KY1310 will be available January 2004. K05-K15 KY3400 composition: CVD coated pure silicon nitride grade. application: Excellent combination of toughness and edge wear resistance; used for general purpose machining of gray cast irons and ductile or nodular cast irons. C3 K10 - K30 KY3500 composition: Pure silicon nitride grade. application: Maximum toughness; used at high feed rates for rough machining of gray cast iron, including machining through interruptions. C2 K15 - K35 M15 - M30 PCBN Polycrystalline Cubic-Boron Nitride grade coating composition and application C class ISO class KB9640 composition: A high CBN content, solid PCBN structure having multiple cutting edges and a CVD alumina coating. application: The KB9640 grade is applied in the roughing to semi-finishing of fully pearlitic gray cast iron, chilled irons, high chrome alloy steels, sintered powdered metals, and heavy cuts in hardened steels (>45 HRC). Use for finished chilled cast iron and fully pearlitic cast iron. Do not apply on finishing hardened steels. KB9640 can be applied effectively when roughing hardened steels. C1 K05-K15 52

Kennametal Grade System for Cutting Materials Gray Cast Irons Ceramic Cutting Tools Ductile Cast Irons Ceramic Cutting Tools KY3500 Carbide Cutting Tools Carbide Cutting Tools 53

KENNAMETAL TOOL MANAGEMENT SOLUTIONS No matter how intricate your metalworking manufacturing operations or equipment, Kennametal s new ToolBoss System, powered by our exclusive, built-to-suit ATMS software, will enable your machinists to spend more time machining parts far less energy locating tools. ToolBoss System Our unique, new, easy-to-use/ easy-to-audit tool dispenser can help reduce your: tool-buying costs by as much as 90%! tool-inventory costs by up to 50%! tool-supply costs by nearly 30%! www.kennametal.com 54

Technical Information page Wiper Insert Application Guidelines........... 56 Conversion Tables......................... 60 Nose Radius Selection for Surface Finish........... 61 Insert Size Selection Guide...................... 62 Tool Performance Report Form.................... 63 Insert Identification System........................ 66 55

Three Ways To Improve Your Turning Operations! Kennametal introduces three new geometries that are the latest in state-of-the-art turning technology. Our new -RW (Roughing Wiper), -MW (Medium Wiper) and -FW (Finishing Wiper) inserts employ a modified corner radius design that delivers a superior surface finish compared to conventional inserts. This technology allows you to choose the metalcutting benefit that s most important to your application. Double Productivity Kennametal s new wiper geometries allow you to double your current feed rate and still achieve surface finishes comparable to conventional inserts. You ll also see equivalent or better tool life using the appropriate KENNA PERFECT grade specifically designed for your workpiece material. Better Workpiece Finish These new wiper geometries also will give you a markedly improved surface finish at your current machining conditions. Under typical conditions, you ll see as much as a 250% improvement in the workpiece surface finish, all with inserts that meet your corner radius specifications. You choose! Either way, we re sure you ll agree that the new wiper geometries from Kennametal provide an outstanding way to optimize your turning operations. Please see the accompanying information for proper application guidelines. Conventional Turning Insert doc...0.050 feed...0.012 ipr speed...1,100 sfm finish...160 R a (µin.) Kennametal Wiper Technology MW doc...0.050 feed...0.020 ipr speed...1,100 sfm finish...60 R a (µin.) 56

Negative Wiper Inserts Application Technology Surface Finish Theoretical Surface Finish R a µin. (µm) insert feed rate ipr (mm/rev) FW, MW,.008.012.016.020.024.028.032.036.040.044.048 & RW (0,2) (0,3) (0,4) (0,5) (0,6) (0,7) (0,8) (0,9) (1) (1,1) (1,2) 3/8 IC 14 30 50 80 (0,3) (0,75) (1,3) (2) 1/2 IC 23 41 63 91 120 160 200 250 (0,6) (1) (1,6) (2,2) (3) (4) (5) (6,2) 3/4 + 1 IC 103 141 184 232 287 347 413 (2,6) (3,5) (4,6) (5,8) (7,2) (8,7) (10,3) How It Works Wiper Insert Standard Insert LEGEND f feed r corner radius r w wiper radius R a surface finish Corner Radius Configuration CNMG and WNMG wiper inserts create a true corner radius on the workpiece, just as a standard insert does. DNMG and TNMG wiper inserts do not provide an exact corner radius on the workpiece. The radius produced falls within a ±.0025 tolerance band. (blue lines) 57

Negative Wiper Inserts Application Technology C and W Style Inserts Kenloc Toolholders surface with wiper effect surface with standard insert edge CN.. 80 corner insert requires MCLN 5 reverse lead angle toolholder CN.. 100 corner insert requires MCRN 15 lead angle toolholder CN.. 100 corner insert requires MCKN 15 lead angle toolholder WN.. 80 corner insert requires MWLN 5 reverse lead angle toolholder D and T Style Inserts Kenloc Toolholders surface finish with wiper effect surface with designated insert nose radius surface finish with.016 radius DN.. 55 corner insert requires MDJN 3 reverse lead angle toolholder TN.. 60 corner insert requires MTJN 3 reverse lead angle toolholder S Style Inserts Kenloc Toolholders surface with wiper effect surface with standard insert edge SN..90 corner insert requires MSRN 15 lead angle toolholder SN.. 90 corner insert requires MSKN 15 lead angle toolholder NOTE: The holder guidelines above also apply to ceramic/pcbn wiper inserts in similar insert shapes; i.e.: CNGA, CNGX, DNGA, etc. 58

Positive Wiper Inserts Application Technology Positive geometry wiper inserts offer the same advantages as negative style inserts. When compared to conventional inserts, feed rates can be doubled while maintaining surface finish, or surface finish can be improved by a multiple of 2.5 while maintaining productive feed rates. Surface Finish -FW Finishing Wiper -MW Medium Machining Wiper Theoretical Surface Finish R a µin. (µm) insert FW, MW feed rate ipr (mm/rev).002.004.006.008.010.012.014.016.018.020 (0,05) (0,10) (0,15) (0,20) (0,25) (0,30) (0,35) (0,40) (0,45) (0,50) 1/4 IC 1 6 14 22 35 49 (0,03) (0,15) (0,35) (0,55) (0,90) (1,25) 3/8 IC 1 4 8 14 22 30 39 (0,02) (0,10) (0,20) (0,35) (0,55) (0,75) (1,00) 1/2 IC 1 2 6 10 16 24 31 39 51 63 (0,02) (0,06) (0,15) (0,25) (0,40) (0,60) (0,80) (1,00) (1,30) (1,60) CCMT and CPMT Inserts Screw-On Toolholders and Boring Bars surface with wiper effect surface with designated insert nose radius C.MT 80 inserts require 5 reverse lead SCL toolholders. C.MT 100 inserts require 15 lead SCK toolholders. DCMT and DPMT Style Inserts surface finish with wiper effect surface with designated insert nose radius surface finish with.016 radius SDN SDU SDJ D.MT 55 inserts require a 3 reverse lead angle and can be used in SDN, SDU, and SDJ style toolholders and boring bars. 59

Application Guidelines Cast Iron Conversion Charts hardness Brinell Rockwell HB HRB HRC 654 60 634 59 615 58 595 57 577 56 560 55 543 54 525 53 512 52 496 51 481 50 469 49 455 48 443 47 432 46 421 45 409 44 400 43 390 42 381 41 371 40 362 39 353 38 344 37 336 109.0 36 327 108.5 35 319 108.0 34 311 107.5 33 301 107.0 32 294 106.0 31 286 105.5 30 279 104.5 29 271 104.0 28 264 103.0 27 258 102.5 26 Brinell Rockwell HB HRB HRC 253 101.5 25 247 101.0 24 243 100.0 23 237 99.0 22 231 98.5 21 228 98.0 20 222 97.0 18.6 216 96.0 17.2 210 95.0 15.7 205 94.0 14.3 200 93.0 13 195 92.0 11.7 190 91.0 10.4 185 90.0 9.2 180 89.0 8 176 88.0 6.9 172 87.0 5.8 169 86.0 4.7 165 85.0 3.6 162 84.0 2.5 159 83.0 1.4 156 82.0.30 153 81.0 150 80.0 147 79.0 144 78.0 141 77.0 139 76.0 137 75.0 135 74.0 132 73.0 130 72.0 127 71.0 125 70.0 123 69.0 NOTE: Values in shaded areas are beyond normal range and given for information only. inch to metric diameter Ø inches mm.315 8,0.374 9,5.394 10,0.472 12,0.500 12,7.626 15,9.630 16,0.752 19,1.787 20,0.874 22,2.984 25,0 1.000 25,4 1.260 32,0 1.500 38,1 1.968 50,0 2.000 50,8 2.480 63,0 2.500 63,5 Turning Formulas to find sfm rpm diameter Ø inches mm 3.000 76,2 3.150 80,0 3.500 88,9 3.937 100,0 4.000 101,6 4.921 125,0 5.000 127,0 6.000 152,4 6.299 160,0 7.000 177,8 7.874 200,0 8.000 203,2 9.842 250,0 10.000 254,0 12.000 304,8 12.401 315,0 14.000 355,6 15.748 400,0 formula d x rpm 3.82 sfm x 3.82 d mpm sfm 3.27 sfm mpm x 3.27 ipr ipm ipm rpm ipr x rpm mm inch x 25.4 inches mm 25.4 cut loc time ipr x sfm (minutes) 60 doc inches mm.010 0,254.015 0,381.030 0,762.050 1,270.100 2,540.125 3,175.150 3,810.250 6,350.375 9,525.500 12,700 ipr feed mm/rev.003.076.005.120.005.127.006.152.007.178.008.203.009.229.010.254.011.279.012.305 speed sfm m/min. 300 91 400 122 500 152 600 183 800 244 1000 305 1200 366 2000 610 4000 1219 10000 3048 surface finish (Ra) µinch µm 492 12,5 248 6,3 126 3,2 63 1,6 31 0,8 16 0,4 Abbreviations sfm = surface feet per minute rpm = revolutions per minute mpm = meters per minute ipr = inches per revolution ipm = inches per minute d = diameter mm = millimeters loc = length of cut

Application Guidelines Cast Iron Nose Radius Selection and Surface Finish for Conventional Inserts* 1 2 3 4 Nose radius and feed rate have the greatest impact on surface finish. To determine the nose radius required for a theoretical surface finish, use the following procedure and the chart above. 1 Locate the required surface finish (rms or AA) on the vertical axis. 2 Follow the horizontal line corresponding to the desired theoretical finish to where it intersects the diagonal line corresponding to the intended feed rate. 3 Project a line downward to the nose radius scale and read the required nose radius. 4 If this line falls between two values, choose the larger value. If no available nose radius will produce the required finish, feed rate must be reduced. Reverse the procedure to obtain surface finish from a given nose radius. *NOTE: See pages 57-59 for radius and surface finish specifications using wiper-style inserts. NOTE: Peaks produced with a small radii insert (top) compared to those produced with a large radius insert (bottom). 61

Insert Size Selection Guide Cast Iron Geometries C-80 Diamond D-55 Diamond cutting insert shape IC edge length finishing MG-FN MG-FW MA-T0820 T0420-FW.250.250.050 maximum depth of cut general purpose MG-UN MG-RP MG-MW.375.375.075.150 roughing MX-T0820..MA S0820.500.500.120.250.250.625.625.313.313.750.750.375.375 1.000 1.000.500.500.250.275.030.375.433.060.125.150.500.590.100.175.200.625.748 R-Round S-Square T-Triangle.375.188.112.112.500.250.200.200.625.313.250.250.750.375.300.300 1.000.500.400.400.375.375..075.150.150.500.500..120.250.250.625.625.313.313.750.750.375.375 1.000 1.000.500.500.250.433.030.375.630.060.125.150.500.866.100.175.200.625 1.060.250.300 V-35 Diamond.375.630.045.060.070.500.866.120 W-Trigon.250.157.375.236.075.100.120.500.315.100.150.200 62

Turning Tool Performance Report COMPANY & LOCATION DATE ENGINEER CUSTOMER NAME MATERIAL TYPE AND CONDITION HARDNESS PART DESCRIPTION CUTTING CONDITION (CIRCLE) MACHINE & TYPE OPERATION CONDITION OF MACHINE HP CONSTANT SFM YES PART CONFIGURATION COMMENTS NO PERFORMANCE, TECHNICAL & COST DATA TEST 1 TEST 2 TEST 3 1 OPERATION NUMBER 2 TURRET POSITION 3 TOOLHOLDER 4 INSERT STYLE 5 GRADE 6 DEPTH OF CUT 7 LENGTH OF CUT 8 FEED RATE (IPR) 9 WORKPIECE DIAMETER 10 CUTTING SPEED RPM SFM 11 CUTTING TIME PER PIECE (MINUTES) (30 SECONDS =.5) 12 PIECES PER EDGE 13 CUTTING TIME PER EDGE (MINUTES) (11 x 12) 14 CUTTING EDGES PER INSERT 15 PIECES PER INSERT (14 x 12) 16 REASONS FOR INDEXING 17 TYPE OF COOLANT 18 HORSEPOWER REQUIRED 19 FINISH (RMS) 20 CHIP CONTROL (GOOD, FAIR, POOR) 21 INSERT COST 22 INSERT COST PER PIECE (21 15) 23 MACHINE COST PER HOUR 24 MACHINE COST PER PIECE (11 x 23 60) 25 TOTAL COST PER PIECE (24 + 22) 26 ESTIMATED ANNUAL PRODUCTION PIECES 27 ESTIMATED ANNUAL COST (26 x 25) 28 ESTIMATED ANNUAL SAVINGS 63

KENNA PERFECT Inserts Steel Stainless Steel Cast Iron Non-Ferrous Metals High-Temperature Alloys Hardened Materials 64

Table of Contents page Insert Identification System............ 66 Kenloc Negative Inserts................ 68 Screw-On Inserts....................... 81 Top Notch Turning Inserts................. 91 Kendex Inserts........................... 94 65

Turning and Boring Insert Identification System 1 Shape symbol shape insert shape nose angle (degree) S square 90 T triangular 60 C 80 D 55 E rhombic 75 F (diamond) 50 M 86 V 35 W trigon 80 H hexagonal 120 O octagonal 135 P pentagonal 108 L rectangular 90 A parallelogram- 85 B shaped 82 N/K 55 3 Tolerance tolerances: apply prior to edge prep and coating IC : theoretical diameter of the insert inscribed circle T : thickness B : See figures below. tolerance class tolerance on IC inch mm tolerance on B inch tolerance on T inch mm C ±.0010 ±0,025 ±.0005 ±0,013 ±.001 ±0,025 H ±.0005 ±0,013 ±.0005 ±0,013 ±.001 ±0,025 E ±.0010 ±0,025 ±.0010 ±0,025 ±.001 ±0,025 G ±.0010 ±0,025 ±.0010 ±0,025 ±.005 ±0,13 M See tables at right. See tables at right. ±.005 ±0,13 U See tables at right. See tables at right. ±.005 ±0,13 mm R round 2 Relief Angle N 0 A 3 B 5 C 7 P 11 D 15 E 20 F 25 G 30 C N M G METRIC INSERTS INCH INSERTS 12 04 08 4 3 2 4 Insert Type symbol hole shape of hole chipbreaker *Inch system only. 66 alternate symbols shape of insert s ordinary IC less section system than 1/4"* N without N R without single sided R E F double sided F A without A M, P, S cylindrical hole single sided M G, P, Z double sided G W partly cylindrical without A hole, 40-60 T countersink single sided M Q with partly cylindrical without A D hole, 40-60 U double countersink double sided G B partly cylindrical without A hole, 70-90 H countersink single sided M C partly cylindrical without A hole, 70-90 J double countersink double sided G X special X X 5 Size inch IC metric cutting edge length in mm C D R S T V W 1.2 (5) 5/32 3,97 S4 04 03 03 06 1.5 (6) 3/16 4,76 04 05 04 04 08 08 S3 1.8 (7) 7/32 5,56 05 06 05 05 09 09 03.236 6,00 06 2 1/4 6,35 06 07 06 06 11 11 04 2.5 5/16 7,94 08 09 07 07 13 13 05.315 8,00 08 3 3/8 9,52 09 11 09 09 16 16 06.394 10,00 10 3.5 7/16 11,11 11 13 11 11 19 19 07.472 12,00 12 4 1/2 12,70 12 15 12 12 22 22 08 4.5 9/16 14,29 14 17 14 14 24 24 09 5 5/8 15,88 16 19 15 15 27 27 10.630 16,00 16 5.5 11/16 17,46 17 21 17 17 30 30 11 6 3/4 19,05 19 23 19 19 33 33 13.787 20,00 20 7 7/8 22,22 22 27 22 22 38 38 15.984 25,00 25 8 1 25,40 25 31 25 25 44 44 17 10 1 1/4 31,75 32 38 31 31 54 54 21 1.260 32,00 32 NOTE: Inch sizes in parenthesis for alternate symbols D or E (under 1/4 inch IC).

Turning and Boring Insert Identification System symbol thickness inch metric inch mm NOTE: Inch sizes in parenthesis for alternate symbols D or E (under 1/4 inch IC). ± tolerance on IC 5/32 3,97 3/16 4,76 7/32 5,56.002 0,05 1/4 6,35.002 0,05.002 0,05.003 0,06 5/16 7,94 3/8 9,52 7/16 11,11 1/2 12,70.003 0,06.003 0,06.003 0,06.005 0,13 9/16 14,29 5/8 15,88 11/16 17,46.004 0,10.004 0,10.004 0,10.007 0,18 3/4 19,05 7/8 22,22.005 0,13 1 25,40.010 0,25 1 1/4 31,75.006 0,15 symbol corner radius inch metric inch mm X0 X0.0015.04 0 01.004 0,1.5 02.008 0,2 1 04 1/64 0,4 2 08 1/32 0,8 3 12 3/64 1,2 4 16 1/16 1,6 5 20 5/64 2,0 6 24 3/32 2,4 7 28 7/64 2,8 8 32 1/8 3,2 00 round insert (inch) M0 round insert (metric) F FF FN MN RN UN FP MP RP RM RH FW MW RW sharp fine finishing finishing medium machining negative roughing negative universal negative finishing positive medium positive roughing positive roughing medium roughing heavy finishing wiper medium wiper roughing wiper ± tolerance on B class M tolerance class U tolerance IC class M tolerance class U tolerance IC shapes S, T, C, R & W shape D shapes shape V shapes S, T & C S, T, C, R & W shape D shape V shapes S, T & C inch metric inch mm inch mm inch mm inch mm inch metric inch mm inch mm inch mm inch mm 6 Thickness.5 (1) 1/32 0,79.6 T0.040 1,00 1 (2) 01 1/16 1,59 1.2 T1 5.64 1,98 1.5 (3) 02 3/32 2,38 2 03 1/8 3,18 2.5 T3 5/32 3,97 3 04 3/16 4,76 3.5 05 7/32 5,56 4 06 1/4 6,35 5 07 5/16 7,94 6 09 3/8 9,52 7 11 7/16 11,11 8 12 1/2 12,70 8 hand of insert (optional) 7 Corner Radius 5/32 3,97 3/16 4,76 7/32 5,56.003 0,06 1/4 6,35.004 0,11.005 0,13 5/16 7,94 3/8 9,52.007 0,18 7/16 11,11 1/2 12,70.005 0,13.006 0,15.010 0,25.008 0,20 9/16 14,29 5/8 15,88 11/16 17,46.006 0,15.007 0,18.011 0,27 3/4 19,05 7/8 22,22 1 25,40.007 0,18.015 0,38 1 1/4 31,75.008 0,20 16 Tip Style (optional) symbol D M MT symbol 14 & 15 T-Land angle (optional) symbol 10 10 15 15 20 20 25 25 30 30 usage two-sided mini tip mini tip multi tip 11,12 & 13 T-Land Width (optional) size inch metric inch mm 04 010.004 0,01 08 020.008 0,02 9 & 10 Cutting Edge Condition or Chip Control Features (optional) size FS finsihing sharp MS medium sharp HP high positive -11 fine finishing K light-feed chip control UF ultra-fine finishing LF light finishing MF medium finishing D duo-tip hone only E hone only T negative land S negative land plus hone M mini tip (brazed PCBN) EFW honed, finishing wiper 67

Kenloc Lock Pin Inserts CNGA-T insert ISO IC nose radius Rε inch mm inch mm CNGA432T0820 CNGA120408T02020 1/2 12,70 1/32 0,8 CNGA433T0820 CNGA120412T02020 1/2 12,70 3/64 1,2 CNGA434T0820 CNGA120416T02020 1/2 12,70 1/16 1,6 CNGA542T0820 CNGA160608T02020 5/8 15,88 1/32 0,8 CNGA543T0820 CNGA160612T02020 5/8 15,88 3/64 1,2 CNGA544T0820 CNGA160616T02020 5/8 15,88 1/16 1,6 CNGA643T0820 CNGA190612T02020 3/4 19,05 3/64 1,2 CNGA644T0820 CNGA190616T02020 3/4 19,05 1/16 1,6 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 CNGA-TFW CNGA432T0420FW CNGA120408T01020FW 1/2 12,70 1/32 0,8 CNGA433T0420FW CNGA120412T01020FW 1/2 12,70 3/64 1,2 CNGA433T0820FW CNGA120412T02020FW 1/2 12,70 3/64 1,2 CNGA434T0420FW CNGA120416T01020FW 1/2 12,70 1/16 1,6 CNMA CNMA431 CNMA120404 1/2 12,70 1/64 0,4 CNMA432 CNMA120408 1/2 12,70 1/32 0,8 CNMA433 CNMA120412 1/2 12,70 3/64 1,2 CNMA434 CNMA120416 1/2 12,70 1/16 1,6 CNMA542 CNMA160608 5/8 15,88 1/32 0,8 CNMA543 CNMA160612 5/8 15,88 3/64 1,2 CNMA544 CNMA160616 5/8 15,88 1/16 1,6 CNMA642 CNMA190608 3/4 19,05 1/32 0,8 CNMA643 CNMA190612 3/4 19,05 3/64 1,2 CNMA644 CNMA190616 3/4 19,05 1/16 1,6 CNMA-T CNMA432T0820 CNMA120408T02020 1/2 12,70 1/32 0,8 CNMA433T0820 CNMA120412T02020 1/2 12,70 3/64 1,2 CNMA434T0820 CNMA120416T02020 1/2 12,70 1/16 1,6 CNMA543T0820 CNMA160612T02020 5/8 15,88 3/64 1,2 CNMA544T0820 CNMA160616T02020 5/8 15,88 1/16 1,6 CNMG-FN CNMG321FN CNMG090304FN 3/8 9,53 1/64 0,4 CNMG322FN CNMG090308FN 3/8 9,53 1/32 0,8 CNMG431FN CNMG120404FN 1/2 12,70 1/64 0,4 CNMG432FN CNMG120408FN 1/2 12,70 1/32 0,8 CNMG433FN CNMG120412FN 1/2 12,70 3/64 1,2 CNMG434FN CNMG120416FN 1/2 12,70 1/16 1,6 68 *KY1310 available January 2004.

Kenloc Lock Pin Inserts CNMG-FW insert ISO IC nose radius Rε inch mm inch mm CNMG431FW CNMG120404FW 1/2 12,70 1/64 0,4 CNMG432FW CNMG120408FW 1/2 12,70 1/32 0,8 CNMG433FW CNMG120412FW 1/2 12,70 3/64 1,2 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 CNMG-MW CNMG432MW CNMG120408MW 1/2 12,70 1/32 0,8 CNMG433MW CNMG120412MW 1/2 12,70 3/64 1,2 CNMG-RN CNMG432RN CNMG120408RN 1/2 12,70 1/32 0,8 CNMG433RN CNMG120412RN 1/2 12,70 3/64 1,2 CNMG434RN CNMG120416RN 1/2 12,70 1/16 1,6 CNMG542RN CNMG160608RN 5/8 15,88 1/32 0,8 CNMG543RN CNMG160612RN 5/8 15,88 3/64 1,2 CNMG544RN CNMG160616RN 5/8 15,88 1/16 1,6 CNMG642RN CNMG190608RN 3/4 19,05 1/32 0,8 CNMG643RN CNMG190612RN 3/4 19,05 3/64 1,2 CNMG644RN CNMG190616RN 3/4 19,05 1/16 1,6 CNMG646RN CNMG190624RN 3/4 19,05 3/32 2,4 CNMG-RP CNMG432RP CNMG120408RP 1/2 12,70 1/32 0,8 CNMG433RP CNMG120412RP 1/2 12,70 3/64 1,2 CNMG434RP CNMG120416RP 1/2 12,70 1/16 1,6 CNMG542RP CNMG160608RP 5/8 15,88 1/32 0,8 CNMG543RP CNMG160612RP 5/8 15,88 3/64 1,2 CNMG544RP CNMG160616RP 5/8 15,88 1/16 1,6 CNMG643RP CNMG190612RP 3/4 19,05 3/64 1,2 CNMG644RP CNMG190616RP 3/4 19,05 1/16 1,6 CNMG-UN CNMG431UN CNMG120404UN 1/2 12,70 1/64 0,4 CNMG432UN CNMG120408UN 1/2 12,70 1/32 0,8 CNMG433UN CNMG120412UN 1/2 12,70 3/64 1,2 CNMG434UN CNMG120416UN 1/2 12,70 1/16 1,6 CNMG542UN CNMG160608UN 5/8 15,88 1/32 0,8 CNMG543UN CNMG160612UN 5/8 15,88 3/64 1,2 CNMG544UN CNMG160616UN 5/8 15,88 1/16 1,6 CNMG642UN CNMG190608UN 3/4 19,05 1/32 0,8 CNMG643UN CNMG190612UN 3/4 19,05 3/64 1,2 CNMG644UN CNMG190616UN 3/4 19,05 1/16 1,6 *KY1310 available January 2004. 69

Kenloc Lock Pin Inserts CNMM-RH insert ISO IC nose radius Rε inch mm inch mm CNMM643RH CNMM190612RH 3/4 19,05 3/64 1,2 CNMM644RH CNMM190616RH 3/4 19,05 1/16 1,6 CNMM646RH CNMM190624RH 3/4 19,05 3/32 2,4 CNMM866RH CNMM250924RH 1 25,40 3/32 2,4 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 CNMM-RM CNMM432RM CNMM120408RM 1/2 12,70 1/32 0,8 CNMM433RM CNMM120412RM 1/2 12,70 3/64 1,2 CNMM434RM CNMM120416RM 1/2 12,70 1/16 1,6 CNMM543RM CNMM160612RM 5/8 15,88 3/64 1,2 CNMM544RM CNMM160616RM 5/8 15,88 1/16 1,6 CNMM546RM CNMM160624RM 5/8 15,88 3/32 2,4 CNMM643RM CNMM190612RM 3/4 19,05 3/64 1,2 CNMM644RM CNMM190616RM 3/4 19,05 1/16 1,6 CNMM646RM CNMM190624RM 3/4 19,05 3/32 2,4 CNMM866RM CNMM250924RM 1 25,40 3/32 2,4 CNMM-RW CNMM646RW CNMM190624RW 3/4 19,05 3/32 2,4 CNMM866RW CNMM250924RW 1 25,40 3/32 2,4 DNGA-T DNGA432T0820 DNGA150408T02020 1/2 12,70 1/32 0,8 DNGA433T0820 DNGA150412T02020 1/2 12,70 3/64 1,2 DNGA434T0820 DNGA150416T02020 1/2 12,70 1/16 1,6 DNGA442T0820 DNGA150608T02020 1/2 12,70 1/32 0,8 DNGA443T0820 DNGA150612T02020 1/2 12,70 3/64 1,2 DNGA444T0820 DNGA150616T02020 1/2 12,70 1/16 1,6 DNMA DNMA332 DNMA110408 3/8 9,53 1/32 0,8 DNMA333 DNMA110412 3/8 9,53 3/64 1,2 DNMA432 DNMA150408 1/2 12,70 1/32 0,8 DNMA433 DNMA150412 1/2 12,70 3/64 1,2 DNMA434 DNMA150416 1/2 12,70 1/16 1,6 DNMA442 DNMA150608 1/2 12,70 1/32 0,8 DNMA443 DNMA150612 1/2 12,70 3/64 1,2 DNMA444 DNMA150616 1/2 12,70 1/16 1,6 70 *KY1310 available January 2004.

Kenloc Lock Pin Inserts DNMA-T insert ISO IC nose radius Rε inch mm inch mm DNMA432T0820 DNMA150408T02020 1/2 12,70 1/32 0,8 DNMA433T0820 DNMA150412T02020 1/2 12,70 3/64 1,2 DNMA443T0820 DNMA150612T02020 1/2 12,70 3/64 1,2 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 DNMG-FN DNMG331FN DNMG110404FN 3/8 9,53 1/64 0,4 DNMG332FN DNMG110408FN 3/8 9,53 1/32 0,8 DNMG333FN DNMG110412FN 3/8 9,53 3/64 1,2 DNMG431FN DNMG150404FN 1/2 12,70 1/64 0,4 DNMG432FN DNMG150408FN 1/2 12,70 1/32 0,8 DNMG433FN DNMG150412FN 1/2 12,70 3/64 1,2 DNMG441FN DNMG150604FN 1/2 12,70 1/64 0,4 DNMG442FN DNMG150608FN 1/2 12,70 1/32 0,8 DNMG443FN DNMG150612FN 1/2 12,70 3/64 1,2 DNMG-FW DNMG331FW DNMG110404FW 3/8 9,53 1/64 0,4 DNMG332FW DNMG110408FW 3/8 9,53 1/32 0,8 DNMG431FW DNMG150404FW 1/2 12,70 1/64 0,4 DNMG432FW DNMG150408FW 1/2 12,70 1/32 0,8 DNMG441FW DNMG150604FW 1/2 12,70 1/64 0,4 DNMG442FW DNMG150608FW 1/2 12,70 1/32 0,8 DNMG-MW DNMG432MW DNMG150408MW 1/2 12,70 1/32 0,8 DNMG433MW DNMG150412MW 1/2 12,70 3/64 1,2 DNMG442MW DNMG150608MW 1/2 12,70 1/32 0,8 DNMG443MW DNMG150612MW 1/2 12,70 3/64 1,2 DNMG-RN DNMG432RN DNMG150408RN 1/2 12,70 1/32 0,8 DNMG433RN DNMG150412RN 1/2 12,70 3/64 1,2 DNMG434RN DNMG150416RN 1/2 12,70 1/16 1,6 DNMG442RN DNMG150608RN 1/2 12,70 1/32 0,8 DNMG443RN DNMG150612RN 1/2 12,70 3/64 1,2 DNMG444RN DNMG150616RN 1/2 12,70 1/16 1,6 DNMG542RN DNMG190608RN 5/8 15,88 1/32 0,8 DNMG543RN DNMG190612RN 5/8 15,88 3/64 1,2 *KY1310 available January 2004. 71

Kenloc Lock Pin Inserts DNMG-RP insert ISO IC nose radius Rε inch mm inch mm DNMG332RP DNMG110408RP 3/8 9,53 1/32 0,8 DNMG333RP DNMG110412RP 3/8 9,53 3/64 1,2 DNMG432RP DNMG150408RP 1/2 12,70 1/32 0,8 DNMG433RP DNMG150412RP 1/2 12,70 3/64 1,2 DNMG434RP DNMG150416RP 1/2 12,70 1/16 1,6 DNMG442RP DNMG150608RP 1/2 12,70 1/32 0,8 DNMG443RP DNMG150612RP 1/2 12,70 3/64 1,2 DNMG444RP DNMG150616RP 1/2 12,70 1/16 1,6 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 DNMG-UN DNMG332UN DNMG110408UN 3/8 9,53 1/32 0,8 DNMG333UN DNMG110412UN 3/8 9,53 3/64 1,2 DNMG432UN DNMG150408UN 1/2 12,70 1/32 0,8 DNMG433UN DNMG150412UN 1/2 12,70 3/64 1,2 DNMG434UN DNMG150416UN 1/2 12,70 1/16 1,6 DNMG442UN DNMG150608UN 1/2 12,70 1/32 0,8 DNMG443UN DNMG150612UN 1/2 12,70 3/64 1,2 DNMG444UN DNMG150616UN 1/2 12,70 1/16 1,6 DNMM-RM DNMM432RM DNMM150408RM 1/2 12,70 1/32 0,8 DNMM433RM DNMM150412RM 1/2 12,70 3/64 1,2 DNMM434RM DNMM150416RM 1/2 12,70 1/16 1,6 DNMM442RM DNMM150608RM 1/2 12,70 1/32 0,8 DNMM443RM DNMM150612RM 1/2 12,70 3/64 1,2 DNMM444RM DNMM150616RM 1/2 12,70 1/16 1,6 RNMA RNMA43 RNMA120400 1/2 12,70 RNMG-RN RNMG32RN RNMG090300RN 3/8 9,53 RNMG43RN RNMG120400RN 1/2 12,70 RNMG54RN RNMG150600RN 5/8 15,88 RNMG64RN RNMG190600RN 3/4 19,05 RNMG86RN RNMG250900RN 1 25,40 72 *KY1310 available January 2004.

Kenloc Lock Pin Inserts RNMG-UN insert ISO IC nose radius Rε inch mm inch mm RNMG43UN RNMG120400UN 1/2 12,70 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 SNGA-T SNGA432T0820 SNGA120408T02020 1/2 12,70 1/32 0,8 SNGA433T0820 SNGA120412T02020 1/2 12,70 3/64 1,2 SNGA434T0820 SNGA120416T02020 1/2 12,70 1/16 1,6 SNGA543T0820 SNGA190612T02020 5/8 15,88 3/64 1,2 SNGA544T0820 SNGA190616T02020 5/8 15,88 1/16 1,6 SNGA643T0820 SNGA190612T02020 3/4 19,05 3/64 1,2 SNGA644T0820 SNGA190616T02020 3/4 19,05 1/16 1,6 SNMA SNMA432 SNMA120408 1/2 12,70 1/32 0,8 SNMA433 SNMA120412 1/2 12,70 3/64 1,2 SNMA434 SNMA120416 1/2 12,70 1/16 1,6 SNMA542 SNMA150608 5/8 15,88 1/32 0,8 SNMA543 SNMA150612 5/8 15,88 3/64 1,2 SNMA544 SNMA150616 5/8 15,88 1/16 1,6 SNMA643 SNMA190612 3/4 19,05 3/64 1,2 SNMA644 SNMA190616 3/4 19,05 1/16 1,6 SNMA-T SNMA432T0820 SNMA120408T02020 1/2 12,70 1/32 0,8 SNMA433T0820 SNMA120412T02020 1/2 12,70 3/64 1,2 SNMA434T0820 SNMA120416T02020 1/2 12,70 1/16 1,6 SNMA543T0820 SNMA150612T02020 5/8 15,88 3/64 1,2 SNMA544T0820 SNMA150616T02020 5/8 15,88 1/16 1,6 SNMG-FN SNMG321FN SNMG090304FN 3/8 9,53 1/64 0,4 SNMG322FN SNMG090308FN 3/8 9,53 1/32 0,8 SNMG431FN SNMG120404FN 1/2 12,70 1/64 0,4 SNMG432FN SNMG120408FN 1/2 12,70 1/32 0,8 SNMG433FN SNMG120412FN 1/2 12,70 3/64 1,2 SNMG434FN SNMG120416FN 1/2 12,70 1/16 1,6 *KY1310 available January 2004. 73

Kenloc Lock Pin Inserts SNMG-FW insert ISO IC nose radius Rε inch mm inch mm SNMG432FW SNMG120408FW 1/2 12,70 1/32 0,8 SNMG433FW SNMG120412FW 1/2 12,70 3/64 1,2 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 SNMG-MW SNMG432MW SNMG120408MW 1/2 12,70 1/32 0,8 SNMG433MW SNMG120412MW 1/2 12,70 3/64 1,2 SNMG-RN SNMG333RN SNMG090412RN 3/8 9,53 3/64 1,2 SNMG432RN SNMG120408RN 1/2 12,70 1/32 0,8 SNMG433RN SNMG120412RN 1/2 12,70 3/64 1,2 SNMG434RN SNMG120416RN 1/2 12,70 1/16 1,6 SNMG542RN SNMG150608RN 5/8 15,88 1/32 0,8 SNMG543RN SNMG150612RN 5/8 15,88 3/64 1,2 SNMG544RN SNMG150616RN 5/8 15,88 1/16 1,6 SNMG642RN SNMG190608RN 3/4 19,05 1/32 0,8 SNMG643RN SNMG190612RN 3/4 19,05 3/64 1,2 SNMG644RN SNMG190616RN 3/4 19,05 1/16 1,6 SNMG646RN SNMG190624RN 3/4 19,05 3/32 2,4 SNMG-RP SNMG432RP SNMG120408RP 1/2 12,70 1/32 0,8 SNMG433RP SNMG120412RP 1/2 12,70 3/64 1,2 SNMG434RP SNMG120416RP 1/2 12,70 1/16 1,6 SNMG543RP SNMG150612RP 5/8 15,88 3/64 1,2 SNMG544RP SNMG150616RP 5/8 15,88 1/16 1,6 SNMG643RP SNMG190612RP 3/4 19,05 3/64 1,2 SNMG644RP SNMG190616RP 3/4 19,05 1/16 1,6 SNMG-UN SNMG432UN SNMG120408UN 1/2 12,70 1/32 0,8 SNMG433UN SNMG120412UN 1/2 12,70 3/64 1,2 SNMG434UN SNMG120416UN 1/2 12,70 1/16 1,6 SNMG542UN SNMG150608UN 5/8 15,88 1/32 0,8 SNMG543UN SNMG150612UN 5/8 15,88 3/64 1,2 SNMG544UN SNMG150616UN 5/8 15,88 1/16 1,6 SNMG643UN SNMG190612UN 3/4 19,05 3/64 1,2 SNMG644UN SNMG190616UN 3/4 19,05 1/16 1,6 74 *KY1310 available January 2004.

Kenloc Lock Pin Inserts SNMM-RH insert ISO IC nose radius Rε inch mm inch mm SNMM643RH SNMM190612RH 3/4 19,05 3/64 1,2 SNMM644RH SNMM190616RH 3/4 19,05 1/16 1,6 SNMM646RH SNMM190624RH 3/4 19,05 3/32 2,4 SNMM856RH SNMM250724RH 1 25,40 3/32 2,4 SNMM858RH SNMM250732RH 1 25,40 1/8 3,2 SNMM866RH SNMM250924RH 1 25,40 3/32 2,4 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 SNMM-RM SNMM432RM SNMM120408RM 1/2 12,70 1/32 0,8 SNMM433RM SNMM120412RM 1/2 12,70 3/64 1,2 SNMM434RM SNMM120416RM 1/2 12,70 1/16 1,6 SNMM543RM SNMM150612RM 5/8 15,88 3/64 1,2 SNMM544RM SNMM150616RM 5/8 15,88 1/16 1,6 SNMM643RM SNMM190612RM 3/4 19,05 3/64 1,2 SNMM644RM SNMM190616RM 3/4 19,05 1/16 1,6 SNMM646RM SNMM190624RM 3/4 19,05 3/32 2,4 SNMM856RM SNMM250724RM 1 25,40 3/32 2,4 SNMM-RW SNMM646RW SNMM190624RW 3/4 19,05 3/32 2,4 SNMM856RW SNMM250724RW 1 25,40 3/32 2,4 TNGA-T TNGA332T0820 TNGA160408T02020 3/8 9,53 1/32 0,8 TNGA333T0820 TNGA160412T02020 3/8 9,53 3/64 1,2 TNGA334T0820 TNGA160416T02020 3/8 9,53 1/16 1,6 TNGA432T0820 TNGA220408T02020 1/2 12,70 1/32 0,8 TNGA433T0820 TNGA220412T02020 1/2 12,70 3/64 1,2 TNGA434T0820 TNGA220416T02020 1/2 12,70 1/16 1,6 TNMA TNMA332 TNMA160408 3/8 9,53 1/32 0,8 TNMA333 TNMA160412 3/8 9,53 3/64 1,2 TNMA334 TNMA160416 3/8 9,53 1/16 1,6 TNMA432 TNMA220408 1/2 12,70 1/32 0,8 TNMA433 TNMA220412 1/2 12,70 3/64 1,2 TNMA434 TNMA220416 1/2 12,70 1/16 1,6 TNMA544 TNMA270616 5/8 15,88 1/16 1,6 *KY1310 available January 2004. 75

Kenloc Lock Pin Inserts TNMA-T insert ISO IC nose radius Rε inch mm inch mm TNMA433T0820 TNMA220412T02020 1/2 12,70 3/64 1,2 TNMA434T0820 TNMA220416T02020 1/2 12,70 1/16 1,6 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 TNMG-FN TNMG221FN TNMG110304FN 1/4 6,35 1/64 0,4 TNMG222FN TNMG110308FN 1/4 6,35 1/32 0,8 TNMG331FN TNMG160404FN 3/8 9,53 1/64 0,4 TNMG332FN TNMG160408FN 3/8 9,53 1/32 0,8 TNMG333FN TNMG160412FN 3/8 9,53 3/64 1,2 TNMG431FN TNMG220404FN 1/2 12,70 1/64 0,4 TNMG432FN TNMG220408FN 1/2 12,70 1/32 0,8 TNMG433FN TNMG220412FN 1/2 12,70 3/64 1,2 TNMG-FW TNMG331FW TNMG160404FW 3/8 9,53 1/64 0,4 TNMG332FW TNMG160408FW 3/8 9,53 1/32 0,8 TNMG333FW TNMG160412FW 3/8 9,53 3/64 1,2 TNMG-MW TNMG332MW TNMG160408MW 3/8 9,53 1/32 0,8 TNMG333MW TNMG160412MW 3/8 9,53 3/64 1,2 TNMG-RN TNMG332RN TNMG160408RN 3/8 9,53 1/32 0,8 TNMG333RN TNMG160412RN 3/8 9,53 3/64 1,2 TNMG432RN TNMG220408RN 1/2 12,70 1/32 0,8 TNMG433RN TNMG220412RN 1/2 12,70 3/64 1,2 TNMG434RN TNMG220416RN 1/2 12,70 1/16 1,6 TNMG542RN TNMG270608RN 5/8 15,88 1/32 0,8 TNMG543RN TNMG270612RN 5/8 15,88 3/64 1,2 TNMG544RN TNMG270616RN 5/8 15,88 1/16 1,6 TNMG666RN TNMG330924RN 3/4 19,05 3/32 2,4 76 *KY1310 available January 2004.

Kenloc Lock Pin Inserts TNMG-RP insert ISO IC nose radius Rε inch mm inch mm TNMG332RP TNMG160408RP 3/8 9,53 1/32 0,8 TNMG333RP TNMG160412RP 3/8 9,53 3/64 1,2 TNMG432RP TNMG220408RP 1/2 12,70 1/32 0,8 TNMG433RP TNMG220412RP 1/2 12,70 3/64 1,2 TNMG434RP TNMG220416RP 1/2 12,70 1/16 1,6 TNMG438RP TNMG220432RP 1/2 12,70 1/8 3,2 TNMG543RP TNMG270612RP 5/8 15,88 3/64 1,2 TNMG544RP TNMG270616RP 5/8 15,88 1/16 1,6 TNMG666RP TNMG330924RP 3/4 19,05 3/32 2,4 TNMG-UN TNMG332UN TNMG160408UN 3/8 9,53 1/32 0,8 TNMG333UN TNMG160412UN 3/8 9,53 3/64 1,2 TNMG334UN TNMG160416UN 3/8 9,53 1/16 1,6 TNMG432UN TNMG220408UN 1/2 12,70 1/32 0,8 TNMG433UN TNMG220412UN 1/2 12,70 3/64 1,2 TNMG434UN TNMG220416UN 1/2 12,70 1/16 1,6 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 TNMM-RM TNMM332RM TNMM160408RM 3/8 9,53 1/32 0,8 TNMM333RM TNMM160412RM 3/8 9,53 3/64 1,2 TNMM432RM TNMM220408RM 1/2 12,70 1/32 0,8 TNMM433RM TNMM220412RM 1/2 12,70 3/64 1,2 TNMM434RM TNMM220416RM 1/2 12,70 1/16 1,6 TNMM543RM TNMM270612RM 5/8 15,88 3/64 1,2 TNMM544RM TNMM270616RM 5/8 15,88 1/16 1,6 VNGA-T VNGA332T0820 VNGA160408T02020 3/8 9,53 1/32 0,8 VNGA432T0820 VNGA220408T02020 1/2 12,70 1/32 0,8 VNGA433T0820 VNGA220412T02020 1/2 12,70 3/64 1,2 VNGA434T0820 VNGA220416T02020 1/2 12,70 1/16 1,6 VNMA VNMA332 VNMA160408 3/8 9,53 1/32 0,8 *KY1310 available January 2004. 77

Kenloc Lock Pin Inserts VNMG-FN insert ISO IC nose radius Rε inch mm inch mm VNMG331FN VNMG160404FN 3/8 9,53 1/64 0,4 VNMG332FN VNMG160408FN 3/8 9,53 1/32 0,8 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 VNMG-RN VNMG332RN VNMG160408RN 3/8 9,53 1/32 0,8 VNMG333RN VNMG160412RN 3/8 9,53 3/64 1,2 VNMG432RN VNMG220408RN 1/2 12,70 1/32 0,8 VNMG433RN VNMG220412RN 1/2 12,70 3/64 1,2 VNMG-RP VNMG332RP VNMG160408RP 3/8 9,53 1/32 0,8 VNMG333RP VNMG160412RP 3/8 9,53 3/64 1,2 VNMG-UN VNMG331UN VNMG160404UN 3/8 9,53 1/64 0,4 VNMG332UN VNMG160408UN 3/8 9,53 1/32 0,8 WNGA-T WNGA432T0820 WNGA080408T02020 1/2 12,70 1/32 0,8 WNGA433T0820 WNGA080412T02020 1/2 12,70 3/64 1,2 WNGA434T0820 WNGA080416T02020 1/2 12,70 1/16 1,6 78 *KY1310 available January 2004.

Kenloc Lock Pin Inserts WNGA-TFW insert ISO IC nose radius Rε inch mm inch mm WNGA332T0420FW WNGA080408T01020FW 3/8 9,52 1/32 0,8 WNGA432T0420FW WNGA080408T01020FW 1/2 12,70 1/32 0,8 WNGA433T0420FW WNGA080412T01020FW 1/2 12,70 3/64 1,2 WNGA433T0820FW WNGA080412T02020FW 1/2 12,70 3/64 1,2 WNGA434T0420FW WNGA080416T01020FW 1/2 12,70 1/16 1,6 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 WNMA WNMA332 WNMA060408 3/8 9,53 1/32 0,8 WNMA333 WNMA060412 3/8 9,53 3/64 1,2 WNMA432 WNMA080408 1/2 12,70 1/32 0,8 WNMA433 WNMA080412 1/2 12,70 3/64 1,2 WNMA434 WNMA080416 1/2 12,70 1/16 1,6 WNMA-T WNMA433T0820 WNMA080412T02020 1/2 12,70 3/64 1,2 WNMG-FN WNMG331FN WNMG060404FN 3/8 9,53 1/64 0,4 WNMG332FN WNMG060408FN 3/8 9,53 1/32 0,8 WNMG431FN WNMG080404FN 1/2 12,70 1/64 0,4 WNMG432FN WNMG080408FN 1/2 12,70 1/32 0,8 WNMG433FN WNMG080412FN 1/2 12,70 3/64 1,2 WNMG434FN WNMG080416FN 1/2 12,70 1/16 1,6 WNMG-FW WNMG331FW WNMG060404FW 3/8 9,53 1/64 0,4 WNMG332FW WNMG060408FW 3/8 9,53 1/32 0,8 WNMG333FW WNMG060412FW 3/8 9,53 3/64 1,2 WNMG431FW WNMG080404FW 1/2 12,70 1/64 0,4 WNMG432FW WNMG080408FW 1/2 12,70 1/32 0,8 WNMG433FW WNMG080412FW 1/2 12,70 3/64 1,2 *KY1310 available January 2004. 79

Kenloc Lock Pin Inserts WNMG-MW insert ISO IC nose radius Rε inch mm inch mm WNMG332MW WNMG060408MW 3/8 9,53 1/32 0,8 WNMG333MW WNMG060412MW 3/8 9,53 3/64 1,2 WNMG432MW WNMG080408MW 1/2 12,70 1/32 0,8 WNMG433MW WNMG080412MW 1/2 12,70 3/64 1,2 KC9110 coated KC9315 KC9325 grades cermet ceramic KT315 KY1310* KY3400 KY3500 WNMG-RN WNMG332RN WNMG060408RN 3/8 9,53 1/32 0,8 WNMG333RN WNMG060412RN 3/8 9,53 3/64 1,2 WNMG432RN WNMG080408RN 1/2 12,70 1/32 0,8 WNMG433RN WNMG080412RN 1/2 12,70 3/64 1,2 WNMG434RN WNMG080416RN 1/2 12,70 1/16 1,6 WNMG-RP WNMG332RP WNMG060408RP 3/8 9,53 1/32 0,8 WNMG333RP WNMG060412RP 3/8 9,53 3/64 1,2 WNMG432RP WNMG080408RP 1/2 12,70 1/32 0,8 WNMG433RP WNMG080412RP 1/2 12,70 3/64 1,2 WNMG434RP WNMG080416RP 1/2 12,70 1/16 1,6 WNMG-UN WNMG331UN WNMG060404UN 3/8 9,53 1/64 0,4 WNMG332UN WNMG060408UN 3/8 9,53 1/32 0,8 WNMG333UN WNMG060412UN 3/8 9,53 3/64 1,2 WNMG431UN WNMG080404UN 1/2 12,70 1/64 0,4 WNMG432UN WNMG080408UN 1/2 12,70 1/32 0,8 WNMG433UN WNMG080412UN 1/2 12,70 3/64 1,2 WNMG434UN WNMG080416UN 1/2 12,70 1/16 1,6 80 *KY1310 available January 2004.

Screw-On Inserts CCGT-LF insert ISO IC nose radius Rε inch mm inch mm CCGT2150LF CCGT060201LF 1/4 6,35.004 0,1 CCGT21505LF CCGT060202LF 1/4 6,35.008 0,2 CCGT2151LF CCGT060204LF 1/4 6,35 1/64 0,4 CCGT2152LF CCGT060208LF 1/4 6,35 1/32 0,8 CCGT3250LF CCGT09T301LF 3/8 9,53.004 0,1 CCGT32505LF CCGT09T302LF 3/8 9,53.008 0,2 CCGT3251LF CCGT09T304LF 3/8 9,53 1/64 0,4 CCGT3252LF CCGT09T308LF 3/8 9,53 1/32 0,8 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 CCMT-11 CCMT215111 CCMT06020411 1/4 6,35 1/64 0,4 CCMT325111 CCMT09T30411 3/8 9,53 1/64 0,4 CCMT325211 CCMT09T30811 3/8 9,53 1/32 0,8 CCMT43111 CCMT12040411 1/2 12,70 1/64 0,4 CCMT43211 CCMT12040811 1/2 12,70 1/32 0,8 CCMT-FW CCMT21505FW CCMT060202FW 1/4 6,35.008 0,2 CCMT2151FW CCMT060204FW 1/4 6,35 1/64 0,4 CCMT2152FW CCMT060208FW 1/4 6,35 1/32 0,8 CCMT3251FW CCMT09T304FW 3/8 9,53 1/64 0,4 CCMT3252FW CCMT09T308FW 3/8 9,53 1/32 0,8 CCMT-LF CCMT21505LF CCMT060202LF 1/4 6,35.008 0,2 CCMT2151LF CCMT060204LF 1/4 6,35 1/64 0,4 CCMT2152LF CCMT060208LF 1/4 6,35 1/32 0,8 CCMT32505LF CCMT09T302LF 3/8 9,53.008 0,2 CCMT3251LF CCMT09T304LF 3/8 9,53 1/64 0,4 CCMT3252LF CCMT09T308LF 3/8 9,53 1/32 0,8 CCMT431LF CCMT120404LF 1/2 12,70 1/64 0,4 CCMT432LF CCMT120408LF 1/2 12,70 1/32 0,8 CCMT433LF CCMT120412LF 1/2 12,70 3/64 1,2 CCMT-MF CCMT2151MF CCMT060204MF 1/4 6,35 1/64 0,4 CCMT3251MF CCMT09T304MF 3/8 9,53 1/64 0,4 CCMT3252MF CCMT09T308MF 3/8 9,53 1/32 0,8 CCMT3253MF CCMT09T312MF 3/8 9,53 3/64 1,2 CCMT432MF CCMT120408MF 1/2 12,70 1/32 0,8 81

Screw-On Inserts CCMT-MW insert ISO IC nose radius Rε inch mm inch mm CCMT3251MW CCMT09T304MW 3/8 9,53 1/64 0,4 CCMT3252MW CCMT09T308MW 3/8 9,53 1/32 0,8 CCMT431MW CCMT120404MW 1/2 12,70 1/64 0,4 CCMT432MW CCMT120408MW 1/2 12,70 1/32 0,8 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 CCMT-UF CCMT2151UF CCMT060204UF 1/4 6,35 1/64 0,4 CCMT32505UF CCMT09T302UF 3/8 9,53.008 0,2 CCMT3251UF CCMT09T304UF 3/8 9,53 1/64 0,4 CCMT3252UF CCMT09T308UF 3/8 9,53 1/32 0,8 CPGT-LF CPGT2150LF CPGT060201LF 1/4 6,35.004 0,1 CPGT21505LF CPGT060202LF 1/4 6,35.008 0,2 CPGT2151LF CPGT060204LF 1/4 6,35 1/64 0,4 CPGT2152LF CPGT060208LF 1/4 6,35 1/32 0,8 CPGT32505LF CPGT09T302LF 3/8 9,53.008 0,2 CPGT3251LF CPGT09T304LF 3/8 9,53 1/64 0,4 CPGT3252LF CPGT09T308LF 3/8 9,53 1/32 0,8 CPMT-FW CPMT21505FW CPMT060202FW 1/4 6,35.008 0,2 CPMT2151FW CPMT060204FW 1/4 6,35 1/64 0,4 CPMT2152FW CPMT060208FW 1/4 6,35 1/32 0,8 CPMT3251FW CPMT09T304FW 3/8 9,53 1/64 0,4 CPMT3252FW CPMT09T308FW 3/8 9,53 1/32 0,8 CPMT-LF CPMT181505LF CPMT050202LF 7/32 5,56.008 0,2 CPMT18151LF CPMT050204LF 7/32 5,56 1/64 0,4 CPMT21505LF CPMT060202LF 1/4 6,35.008 0,2 CPMT2151LF CPMT060204LF 1/4 6,35 1/64 0,4 CPMT2152LF CPMT060208LF 1/4 6,35 1/32 0,8 CPMT32505LF CPMT09T302LF 3/8 9,53.008 0,2 CPMT3251LF CPMT09T304LF 3/8 9,53 1/64 0,4 CPMT3252LF CPMT09T308LF 3/8 9,53 1/32 0,8 82

Screw-On Inserts CPMT-MF insert ISO IC nose radius Rε inch mm inch mm CPMT2152MF CPMT060208MF 1/4 6,35 1/32 0,8 CPMT3252MF CPMT09T308MF 3/8 9,53 1/32 0,8 CPMT3253MF CPMT09T312MF 3/8 9,53 3/64 1,2 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 CPMT-MW CPMT3251MW CPMT09T304MW 3/8 9,53 1/64 0,4 CPMT3252MW CPMT09T308MW 3/8 9,53 1/32 0,8 CPMT-UF CPMT2151UF CPMT060204UF 1/4 6,35 1/64 0,4 CPMT3251UF CPMT09T304UF 3/8 9,53 1/64 0,4 DCGT-LF DCGT2150LF DCGT070201LF 1/4 6,35.004 0,1 DCGT3250LF DCGT11T301LF 3/8 9,53.004 0,1 DCGT432LF DCGT150408LF 1/2 12,70 1/32 0,8 DCMT-11 DCMT2150511 DCMT07020211 1/4 6,35.008 0,2 DCMT215111 DCMT07020411 1/4 6,35 1/64 0,4 DCMT325111 DCMT11T30411 3/8 9,53 1/64 0,4 DCMT325211 DCMT11T30811 3/8 9,53 1/32 0,8 83

Screw-On Inserts DCMT-FW insert ISO IC nose radius Rε inch mm inch mm DCMT3251FW DCMT11T304FW 3/8 9,53.007 0,2 DCMT3252FW DCMT11T308FW 3/8 9,53.016 0,4 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 DCMT-LF DCMT21505LF DCMT070202LF 1/4 6,35.008 0,2 DCMT2151LF DCMT070204LF 1/4 6,35 1/64 0,4 DCMT32505LF DCMT11T302LF 3/8 9,53.008 0,2 DCMT3251LF DCMT11T304LF 3/8 9,53 1/64 0,4 DCMT3252LF DCMT11T308LF 3/8 9,53 1/32 0,8 DCMT3253LF DCMT11T312LF 3/8 9,53 3/64 1,2 DCMT431LF DCMT150404LF 1/2 12,70 1/64 0,4 DCMT432LF DCMT150408LF 1/2 12,70 1/32 0,8 DCMT-MF DCMT3251MF DCMT11T304MF 3/8 9,53 1/64 0,4 DCMT3252MF DCMT11T308MF 3/8 9,53 1/32 0,8 DCMT3253MF DCMT11T312MF 3/8 9,53 3/64 1,2 DCMT-MW DCMT3251MW DCMT11T304MW 3/8 9,53.008 0,2 DCMT3252MW DCMT11T308MW 3/8 9,53 1/64 0,4 DCMT-UF DCMT2151UF DCMT070204UF 1/4 6,35 1/64 0,4 DCMT32505UF DCMT11T302UF 3/8 9,53.008 0,2 DCMT3251UF DCMT11T304UF 3/8 9,53 1/64 0,4 DCMT3252UF DCMT11T308UF 3/8 9,53 1/32 0,8 84

Screw-On Inserts DPGT-LF insert ISO IC nose radius Rε inch mm inch mm DPGT2150LF DPGT070201LF 1/4 6,35.004 0,1 DPGT21505LF DPGT070202LF 1/4 6,35.008 0,2 DPGT2151LF DPGT070204LF 1/4 6,35 1/64 0,4 DPGT3250LF DPGT11T301LF 3/8 9,53.004 0,1 DPGT32505LF DPGT11T302LF 3/8 9,53.008 0,2 DPGT3251LF DPGT11T304LF 3/8 9,53 1/64 0,4 DPGT3252LF DPGT11T308LF 3/8 9,53 1/32 0,8 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 DPMT-FW DPMT2151FW DPMT070204FW 1/4 6,35.008 0,2 DPMT2152FW DPMT070208FW 1/4 6,35 1/64 0,4 DPMT3251FW DPMT11T304FW 3/8 9,53.008 0,2 DPMT3252FW DPMT11T308FW 3/8 9,53 1/64 0,4 DPMT-LF DPMT21505LF DPMT070202LF 1/4 6,35.008 0,2 DPMT2151LF DPMT070204LF 1/4 6,35 1/64 0,4 DPMT32505LF DPMT11T302LF 3/8 9,53.008 0,2 DPMT3251LF DPMT11T304LF 3/8 9,53 1/64 0,4 DPMT3252LF DPMT11T308LF 3/8 9,53 1/32 0,8 DPMT-MF DPMT3252MF DPMT11T308MF 3/8 9,53 1/32 0,8 DPMT-UF DPMT2151UF DPMT070204UF 1/4 6,35 1/64 0,4 DPMT3251UF DPMT11T304UF 3/8 9,53 1/64 0,4 DPMT3252UF DPMT11T308UF 3/8 9,53 1/32 0,8 85

Screw-On Inserts SCMT-11 insert ISO IC nose radius Rε inch mm inch mm SCMT325111 SCMT09T30411 3/8 9,53 1/64 0,4 SCMT325211 SCMT09T30811 3/8 9,53 1/32 0,8 SCMT43111 SCMT12040411 1/2 12,70 1/64 0,4 SCMT43211 SCMT12040811 1/2 12,70 1/32 0,8 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 SCMT-LF SCMT3251LF SCMT09T304LF 3/8 9,53 1/64 0,4 SCMT3252LF SCMT09T308LF 3/8 9,53 1/32 0,8 SCMT431LF SCMT120404LF 1/2 12,70 1/64 0,4 SCMT432LF SCMT120408LF 1/2 12,70 1/32 0,8 SCMT433LF SCMT120412LF 1/2 12,70 3/64 1,2 SCMT-MF SCMT3252MF SCMT09T308MF 3/8 9,53 1/32 0,8 SCMT432MF SCMT120408MF 1/2 12,70 1/32 0,8 SCMT433MF SCMT120412MF 1/2 12,70 3/64 1,2 SCMT-UF SCMT3252UF SCMT09T308UF 3/8 9,53 1/32 0,8 SPGT-LF SPGT3251LF SPGT09T304LF 3/8 9,53 1/64 0,4 SPGT3252LF SPGT09T308LF 3/8 9,53 1/32 0,8 86

Screw-On Inserts SPMT-LF insert ISO IC nose radius Rε inch mm inch mm SPMT3251LF SPMT09T304LF 3/8 9,53 1/64 0,4 SPMT3252LF SPMT09T308LF 3/8 9,53 1/32 0,8 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 SPMT-MF SPMT3252MF SPMT09T308MF 3/8 9,53 1/32 0,8 SPMT432MF SPMT120408MF 1/2 12,70 1/32 0,8 SPMT-UF SPMT3251UF SPMT09T304UF 3/8 9,53 1/64 0,4 TCGT-LF TCGT2150LF TCGT110201LF 1/4 6,35.004 0,1 TCGT2151LF TCGT110204LF 1/4 6,35 1/64 0,4 TCGT3250LF TCGT16T301LF 3/8 9,53.004 0,1 TCGT32505LF TCGT16T302LF 3/8 9,53.008 0,2 TCGT3251LF TCGT16T304LF 3/8 9,53 1/64 0,4 TCGT3252LF TCGT16T308LF 3/8 9,53 1/32 0,8 TCMT-11 TCMT215111 TCMT11020411 1/4 6,35 1/64 0,4 TCMT325111 TCMT16T30411 3/8 9,53 1/64 0,4 TCMT325211 TCMT16T30811 3/8 9,53 1/32 0,8 87

Screw-On Inserts TCMT-LF insert ISO IC nose radius Rε inch mm inch mm TCMT21505LF TCMT110202LF 1/4 6,35.008 0,2 TCMT2151LF TCMT110204LF 1/4 6,35 1/64 0,4 TCMT2152LF TCMT110208LF 1/4 6,35 1/32 0,8 TCMT32505LF TCMT16T302LF 3/8 9,53.008 0,2 TCMT3251LF TCMT16T304LF 3/8 9,53 1/64 0,4 TCMT3252LF TCMT16T308LF 3/8 9,53 1/32 0,8 TCMT3253LF TCMT16T312LF 3/8 9,53 3/64 1,2 TCMT432LF TCMT220408LF 1/2 12,70 1/32 0,8 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 TCMT-MF TCMT2152MF TCMT110208MF 1/4 6,35 1/32 0,8 TCMT3252MF TCMT16T308MF 3/8 9,53 1/32 0,8 TCMT3253MF TCMT16T312MF 3/8 9,53 3/64 1,2 TCMT-UF TCMT2151UF TCMT110204UF 1/4 6,35 1/64 0,4 TCMT2152UF TCMT110208UF 1/4 6,35 1/32 0,8 TCMT3252UF TCMT16T308UF 3/8 9,53 1/32 0,8 TPGT-LF TPGT181505LF TPGT090202LF 7/32 5,56.008 0,2 TPGT18151LF TPGT090204LF 7/32 5,56 1/64 0,4 TPGT2150LF TPGT110201LF 1/4 6,35.004 0,1 TPGT21505LF TPGT110202LF 1/4 6,35.008 0,2 TPGT2151LF TPGT110204LF 1/4 6,35 1/64 0,4 TPGT2152LF TPGT110208LF 1/4 6,35 1/32 0,8 TPGT3251LF TPGT16T304LF 3/8 9,53 1/64 0,4 TPGT3252LF TPGT16T308LF 3/8 9,53 1/32 0,8 TPMT-LF TPMT181505LF TPMT090202LF 7/32 5,56.008 0,2 TPMT18151LF TPMT090204LF 7/32 5,56 1/64 0,4 TPMT21505LF TPMT110202LF 1/4 6,35.008 0,2 TPMT2151LF TPMT110204LF 1/4 6,35 1/64 0,4 TPMT2152LF TPMT110208LF 1/4 6,35 1/32 0,8 TPMT3251LF TPMT16T304LF 3/8 9,53 1/64 0,4 TPMT3252LF TPMT16T308LF 3/8 9,53 1/32 0,8 TPMT3253LF TPMT16T312LF 3/8 9,53 3/64 1,2 88 TPMT432LF TPMT220408LF 1/2 12,70 1/32 0,8

Screw-On Inserts TPMT-MF insert ISO IC nose radius Rε inch mm inch mm TPMT2152MF TPMT110208MF 1/4 6,35 1/32 0,8 TPMT3252MF TPMT16T308MF 3/8 9,53 1/32 0,8 TPMT3253MF TPMT16T312MF 3/8 9,53 3/64 1,2 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 TPMT-UF TPMT21505UF TPMT110202UF 1/4 6,35.008 0,2 TPMT2151UF TPMT110204UF 1/4 6,35 1/64 0,4 TPMT3251UF TPMT16T304UF 3/8 9,53 1/64 0,4 TPMT3252UF TPMT16T308UF 3/8 9,53 1/32 0,8 VBGT-LF VBGT220LF VBGT110301LF 1/4 6,35.004 0,1 VBGT2205LF VBGT110302LF 1/4 6,35.008 0,2 VBGT221LF VBGT110304LF 1/4 6,35 1/64 0,4 VBGT330LF VBGT160401LF 3/8 9,53.004 0,1 VBGT3305LF VBGT160402LF 3/8 9,53.008 0,2 VBGT331LF VBGT160404LF 3/8 9,53 1/64 0,4 VBMT-11 VBMT220511 VBMT11030211 1/4 6,35.008 0,2 VBMT22111 VBMT11030411 1/4 6,35 1/64 0,4 VBMT33111 VBMT16040411 3/8 9,53 1/64 0,4 VBMT33211 VBMT16040811 3/8 9,53 1/32 0,8 VBMT-LF VBMT2205LF VBMT110302LF 1/4 6,35.008 0,2 VBMT221LF VBMT110304LF 1/4 6,35 1/64 0,4 VBMT222LF VBMT110308LF 1/4 6,35 1/32 0,8 VBMT3305LF VBMT160402LF 3/8 9,53.008 0,2 VBMT331LF VBMT160404LF 3/8 9,53 1/64 0,4 VBMT332LF VBMT160408LF 3/8 9,53 1/32 0,8 89

Screw-On Inserts WCMT-LF insert ISO IC nose radius Rε inch mm inch mm WCMT2151LF WCMT040204LF 1/4 6,35 1/64 0,4 WCMT3252LF WCMT06T308LF 3/8 9,53 1/32 0,8 PVD grades coated cermet KC5010 KC9315 KC9325 KT315 WPMT-LF WPMT15121LF WPMTS3T104LF 3/16 4,76 1/64 0,4 WPMT2151LF WPMT040204LF 1/4 6,35 1/64 0,4 WPMT3251LF WPMT06T304LF 3/8 9,53 1/64 0,4 WPMT3252LF WPMT06T308LF 3/8 9,53 1/32 0,8 90

Top Notch Turning Inserts CNGX-T (1/2" I.C.) insert ISO IC nose radius Rε inch mm inch mm grades ceramic KY1310* KY3400 CNGX452T0820 CNGX120708T02020 1/2 12,70 1/32 0,8 CNGX453T0820 CNGX120712T02020 1/2 12,70 3/64 1,2 CNGX454T0820 CNGX120716T02020 1/2 12,70 1/16 1,6 KY3500 CNGX-T (5/8" I.C.) CNGX552T0820 CNGX160708T02020 5/8 15,88 1/32 0,8 CNGX553T0820 CNGX160712T02020 5/8 15,88 3/64 1,2 CNGX554T0820 CNGX160716T02020 5/8 15,88 1/16 1,6 CNGX556T0820 CNGX160724T02020 5/8 15,88.0787 2,0 CNGX-T-FW CNGX452T0420FW CNGX120708T01020FW 1/2 12,70 1/32 0,8 CNGX453T0420FW CNGX120712T01020FW 1/2 12,70 3/64 1,2 CNGX453T0820FW CNGX120712T02020FW 1/2 12,70 3/64 1,2 CNGX454T0420FW CNGX120716T01020FW 1/2 12,70 1/16 1,6 CNMX-T CNMX452T0820 CNMX120708T02020 1/2 12,70 1/32 0,8 CNMX453T0820 CNMX120712T02020 1/2 12,70 3/64 1,2 CNMX454T0820 CNMX120716T02020 1/2 12,70 1/16 1,6 DNGX-T DNGX120708T02020 DNGX120708T02020 10,00 1/32 0,8 DNGX120712T02020 DNGX120712T02020 10,00 3/64 1,2 DNGX120716T02020 DNGX120716T02020 10,00 1/16 1,6 DNGX452T0820 DNGX150708T02020 1/2 12,70 1/32 0,8 DNGX453T0820 DNGX150712T02020 1/2 12,70 3/64 1,2 DNGX454T0820 DNGX150716T02020 1/2 12,70 1/16 1,6 *KY1310 available January 2004. 91

Top Notch Turning Inserts DNMX-T insert ISO IC nose radius Rε inch mm inch mm grades ceramic KY1310* KY3400 DNMX453T0820 DNMX150712T02020 1/2 12,70 3/64 1,2 DNMX454T0820 DNMX150716T02020 1/2 12,70 1/16 1,6 KY3500 ENGX-T ENGX452T0820 ENGX130708T02020 1/2 12,70 1/32 0,8 ENGX453T0820 ENGX130712T02020 1/2 12,70 3/64 1,2 ENGX454T0820 ENGX130716T02020 1/2 12,70 1/16 1,6 ENMX-T ENMX453T0820 ENMX130712T02020 1/2 12,70 3/64 1,2 ENMX454T0820 ENMX130716T02020 1/2 12,70 1/16 1,6 SNGX-T SNGX452T0820 SNGX120708T02020 1/2 12,70 1/32 0,8 SNGX453T0820 SNGX120712T02020 1/2 12,70 3/64 1,2 SNGX454T0820 SNGX120716T02020 1/2 12,70 1/16 1,6 SNGX552T0820 SNGX150708T02020 5/8 15,88 1/32 0,8 SNGX553T0820 SNGX150712T02020 5/8 15,88 3/64 1,2 SNGX554T0820 SNGX150716T02020 5/8 15,88 1/16 1,6 SNGX556T0820 SNGX150724T02020 5/8 15,88 3/32 2,4 92 *KY1310 available January 2004.

Top Notch Turning Inserts SNGX-T-FW insert ISO IC nose radius Rε inch mm inch mm grades ceramic KY1310* KY3400 SNGX452T0420FW SNGX120708T01020FW 1/2 12,70 1/32 0,8 SNGX453T0420FW SNGX120712T01020FW 1/2 12,70 3/64 1,2 KY3500 SNMX-T SNMX453T0820 SNMX120712T02020 1/2 12,70 3/64 1,2 SNMX454T0820 SNMX120716T02020 1/2 12,70 1/16 1,6 SNMX554T0820 SNMX150716T02020 5/8 15,88 1/16 1,6 WNGX-T WNGX452T0820 WNGX080708T02020 1/2 12,70 1/32 0,8 WNGX453T0820 WNGX080712T02020 1/2 12,70 3/64 1,2 WNGX454T0820 WNGX080716T02020 1/2 12,70 1/16 1,6 WNGX-T-FW WNGX452T0420FW WNGX080708T01020FW 1/2 12,70 1/32 0,8 WNGX453T0420FW WNGX080712T01020FW 1/2 12,70 3/64 1,2 WNGX453T0820FW WNGX080712T02020FW 1/2 12,70 3/64 1,2 WNGX454T0420FW WNGX080716T01020FW 1/2 12,70 1/16 1,6 WNMX-T WNMX453T0820 WNMX080712T02020 1/2 12,70 3/64 1,2 WNMX454T0820 WNMX080716T02020 1/2 12,70 1/16 1,6 *KY1310 available January 2004. 93

Kendex Clamp-Style CNG-T insert ISO IC nose radius Rε inch mm inch mm KY1310* KY3400 grades ceramic CNG432T0820 CNGN120408T02020 1/2 12,70 1/32 0,8 CNG433T0820 CNGN120412T02020 1/2 12,70 3/64 1,2 CNG434T0820 CNGN120416T02020 1/2 12,70 1/16 1,6 CNG452T0820 CNGN120708T02020 1/2 12,70 1/32 0,8 CNG453T0820 CNGN120712T02020 1/2 12,70 3/64 1,2 CNG454T0820 CNGN120716T02020 1/2 12,70 1/16 1,6 CNG533T0820 CNGN160412T02020 5/8 15,88 3/64 1,2 CNG534T0820 CNGN160416T02020 5/8 15,88 1/16 1,6 CNG553T0820 CNGN160712T02020 5/8 15,88 3/64 1,2 CNG554T0820 CNGN160716T02020 5/8 15,88 1/16 1,6 PCBN KY3500 KB9640 CNM CNM322E CNMN090308E 3/8 9,53 1/32 0,8 CNM323E CNMN090312E 3/8 9,53 3/64 1,2 CNM423E CNMN120312E 1/2 12,70 3/64 1,2 CNM-S CNM322S0820 CNMN090308S02020 3/8 9,53 1/32 0,8 CNM323S0820 CNMN090312S02020 3/8 9,53 3/64 1,2 CNM423S0820 CNMN120312S02020 1/2 12,70 3/64 1,2 CNM424S0820 CNMN120316S02020 1/2 12,70 1/16 1,6 CNM432S0820 CNMN120408S02020 1/2 12,70 1/32 0,8 CNM433S0820 CNMN120412S02020 1/2 12,70 3/64 1,2 CNM433S1220 CNMN120412S03020 1/2 12,70 3/64 1,2 CNM434S0820 CNMN120416S02020 1/2 12,70 1/16 1,6 CNM434S1220 CNMN120416S03020 1/2 12,70 1/16 1,6 CNM-T CNM432T0820 CNMN120408T02020 1/2 12,70 1/32 0,8 CNM433T0820 CNMN120412T02020 1/2 12,70 3/64 1,2 CNM434T0820 CNMN120416T02020 1/2 12,70 1/16 1,6 CNM452T0820 CNMN120708T02020 1/2 12,70 1/32 0,8 CNM453T0820 CNMN120712T02020 1/2 12,70 3/64 1,2 CNM454T0820 CNMN120716T02020 1/2 12,70 1/16 1,6 CNM544T0820 CNMN160616T02020 5/8 15,88 1/16 1,6 DNM DNM322E DNMN110308E 3/8 9,53 1/32 0,8 DNM323E DNMN110312E 3/8 9,53 3/64 1,2 94 *KY1310 available January 2004.

Kendex Clamp-Style DNM-S insert ISO IC nose radius Rε inch mm inch mm KY1310* KY3400 grades ceramic DNM322S0820 DNMN110308S02020 3/8 9,53 1/32 0,8 DNM323S0820 DNMN110312S02020 3/8 9,53 3/64 1,2 DNM324S0820 DNMN110316S02020 3/8 9,53 1/16 1,6 PCBN KY3500 KB9640 ENG-T ENG432T0820 ENGN130408T02020 1/2 12,70 1/32 0,8 ENG433T0820 ENGN130412T02020 1/2 12,70 3/64 1,2 ENG434T0820 ENGN130416T02020 1/2 12,70 1/16 1,6 ENG452T0820 ENGN130708T02020 1/2 12,70 1/32 0,8 ENG453T0820 ENGN130712T02020 1/2 12,70 3/64 1,2 ENG454T0820 ENGN130716T02020 1/2 12,70 1/16 1,6 ENM-T ENM453T0820 ENMN130712T02020 1/2 12,70 3/64 1,2 ENM454T0820 ENMN130716T02020 1/2 12,70 1/16 1,6 RNG-T RNG43T0820 RNGN120400T02020 1/2 12,70 RNG45T0820 RNGN120700T02020 1/2 12,70 RNG55T0820 RNGN150700T02020 5/8 15,88 RNG65T0820 RNGN190700T02020 3/4 19,05 RNG85T0820 RNGN250700T02020 1 25,40 RNM RNM32E RNMN090300E 3/8 9,53 RNM42E RNMN120300E 1/2 12,70 RNM-S RNM22S0820 RNMN060300S02020 1/4 6,35 RNM32S0820 RNMN090300S02020 3/8 9,53 RNM42S0820 RNMN120300S02020 1/2 12,70 RNM43S0820 RNMN120400S02020 1/2 12,70 RNM43S1220 RNMN120400S03020 1/2 12,70 RNM82S0820 RNMN250300S02020 1 25,40 RNM82S2020 RNMN250300S05020 1 25,40 RNM83S6020 RNMN250400S15020 1 25,40 RNM84S0820 RNMN250600S02020 1 25,40 RNM84S6020 RNMN250600S15020 1 25,40 *KY1310 available January 2004. 95

Kendex Clamp-Style RNM-T insert ISO IC nose radius Rε inch mm inch mm KY1310* KY3400 grades ceramic RNM43T0820 RNMN120400T02020 1/2 12,70 RNM45T0820 RNMN120700T02020 1/2 12,70 PCBN KY3500 KB9640 SCG-FW SCG332FW SCGN090408E02FW 3/8 9,53 1/32 0,8 SCG432FW SCGN120408E02FW 1/2 12,70 3/64 1,2 SNG-T SNG322T0820 SNGN090308T02020 3/8 9,53 1/32 0,8 SNG432T0820 SNGN120408T02020 1/2 12,70 1/32 0,8 SNG433T0820 SNGN120412T02020 1/2 12,70 3/64 1,2 SNG434T0820 SNGN120416T02020 1/2 12,70 1/16 1,6 SNG436T0820 SNGN120424T02020 1/2 12,70 3/32 2,4 SNG438T0820 SNGN120432T02020 1/2 12,70 1/8 3,2 SNG453T0820 SNGN120712T02020 1/2 12,70 3/64 1,2 SNG454T0820 SNGN120716T02020 1/2 12,70 1/16 1,6 SNG534T0820 SNGN150416T02020 5/8 15,88 1/16 1,6 SNG553T0820 SNGN150712T02020 5/8 15,88 3/64 1,2 SNG554T0820 SNGN150716T02020 5/8 15,88 1/16 1,6 SNG633T0820 SNGN190412T02020 3/4 19,05 3/64 1,2 SNG634T0820 SNGN190416T02020 3/4 19,05 1/16 1,6 SNG643T0820 SNGN190612T02020 3/4 19,05 3/64 1,2 SNG644T0820 SNGN190616T02020 3/4 19,05 1/16 1,6 SNG-TFW SNG452T0420FW SNGN120708T01020FW 1/2 12,70 1/32 0,8 SNG453T0420FW SNGN120712T01020FW 1/2 12,70 3/64 1,2 SNM SNM222E SNMN060308E 1/4 6,35 1/32 0,8 SNM322E SNMN090308E 3/8 9,53 1/32 0,8 SNM323E SNMN090312E 3/8 9,53 3/64 1,2 SNM422E SNMN120308E 1/2 12,70 1/32 0,8 SNM433E SNMN120412E 1/2 12,70 3/64 1,2 SNM434E SNMN120416E 1/2 12,70 1/16 1,6 96 *KY1310 available January 2004.

Kendex Clamp-Style SNM-S insert ISO IC nose radius Rε inch mm inch mm KY1310* KY3400 grades ceramic SNM222S0820 SNMN060308S02020 1/4 6,35 1/32 0,8 SNM322S0820 SNMN090308S02020 3/8 9,53 1/32 0,8 SNM323S0820 SNMN090312S02020 3/8 9,53 3/64 1,2 SNM324S0820 SNMN090316S02020 3/8 9,53 1/16 1,6 SNM334S0820 SNMN090416S02020 3/8 9,53 1/16 1,6 SNM422S0820 SNMN120308S02020 1/2 12,70 1/32 0,8 SNM423S0820 SNMN120312S02020 1/2 12,70 3/64 1,2 SNM424S0820 SNMN120316S02020 1/2 12,70 1/16 1,6 SNM433S0820 SNMN120412S02020 1/2 12,70 3/64 1,2 SNM433S1220 SNMN120412S03020 1/2 12,70 3/64 1,2 SNM434S0820 SNMN120416S02020 1/2 12,70 1/16 1,6 SNM434S1220 SNMN120416S03020 1/2 12,70 1/16 1,6 PCBN KY3500 KB9640 SNM-T SNM433T0820 SNMN120412T02020 1/2 12,70 3/64 1,2 SNM434T0820 SNMN120416T02020 1/2 12,70 1/16 1,6 SNM453T0820 SNMN120712T02020 1/2 12,70 3/64 1,2 SNM454T0820 SNMN120716T02020 1/2 12,70 1/16 1,6 SPG-T SPG422T0820 SPGN120308T02020 1/2 12,70 1/32 0,8 SPG423T0820 SPGN120312T02020 1/2 12,70 3/64 1,2 SPG433T0820 SPGN120412T02020 1/2 12,70 3/64 1,2 SPG434T0820 SPGN120416T02020 1/2 12,70 1/16 1,6 TNG-T TNG332T0820 TNGN160408T02020 3/8 9,53 1/32 0,8 TNG333T0820 TNGN160412T02020 3/8 9,53 3/64 1,2 TNG334T0820 TNGN160416T02020 3/8 9,53 1/16 1,6 TNG432T0820 TNGN220408T02020 1/2 12,70 1/32 0,8 TNG433T0820 TNGN220412T02020 1/2 12,70 3/64 1,2 TNG434T0820 TNGN220416T02020 1/2 12,70 1/16 1,6 TNM TNM221E TNMN110304E 1/4 6,35 1/64 0,4 TNM222E TNMN110308E 1/4 6,35 1/32 0,8 TNM223E TNMN110312E 1/4 6,35 3/64 1,2 *KY1310 available January 2004. 97

Kendex Clamp-Style TNM-S insert ISO IC nose radius Rε inch mm inch mm KY1310* KY3400 grades ceramic TNM221S0820 TNMN110304S02020 1/4 6,35 1/64 0,4 TNM222S0820 TNMN110308S02020 1/4 6,35 1/32 0,8 TNM223S0820 TNMN110312S02020 1/4 6,35 3/64 1,2 TNM333S0820 TNMN160412S02020 3/8 9,53 3/64 1,2 TNM334S0820 TNMN160416S02020 3/8 9,53 1/16 1,6 PCBN KY3500 KB9640 TNM-T TNM433T0820 TNMN220412T02020 1/2 12,70 3/64 1,2 TNM434T0820 TNMN220416T02020 1/2 12,70 1/16 1,6 TPG-T TPG322T0820 TPGN160308T02020 3/8 9,53 1/32 0,8 TPG323T0820 TPGN160312T02020 3/8 9,53 3/64 1,2 TPG432T0820 TPGN220408T02020 1/2 12,70 1/32 0,8 TPG433T0820 TPGN220412T02020 1/2 12,70 3/64 1,2 98 *KY1310 available January 2004.