The Cell Cycle. Chapter 12. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Similar documents
If and when cancer cells stop dividing, they do so at random points, not at the normal checkpoints in the cell cycle.

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle

Lecture 11 The Cell Cycle and Mitosis

Lecture 7 Mitosis & Meiosis

Cellular Reproduction

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

Cell Division Mitosis and the Cell Cycle

Cell Growth and Reproduction Module B, Anchor 1

The cell cycle, mitosis and meiosis

PSI Biology Mitosis & Meiosis

List, describe, diagram, and identify the stages of meiosis.

CHAPTER 9 CELLULAR REPRODUCTION P

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

Biology 3A Laboratory MITOSIS Asexual Reproduction

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

Cell Division CELL DIVISION. Mitosis. Designation of Number of Chromosomes. Homologous Chromosomes. Meiosis

CHAPTER 10 CELL CYCLE AND CELL DIVISION

The Somatic Cell Cycle

From DNA to Protein

Appendix C DNA Replication & Mitosis

CCR Biology - Chapter 5 Practice Test - Summer 2012

LAB 09 Cell Division

The Huntington Library, Art Collections, and Botanical Gardens

Sample Questions for Exam 3

Chapter 3. Cell Division. Laboratory Activities Activity 3.1: Mock Mitosis Activity 3.2: Mitosis in Onion Cells Activity 3.

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

Mitosis in Onion Root Tip Cells

Guided Notes: Chapter 9 Cellular Reproduction

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

Chapter 13: Meiosis and Sexual Life Cycles

Cell Cycle in Onion Root Tip Cells (IB)

The illustrations below reflect other scientists results in identifying and counting the stages of the onion root tip and the whitefish blastula.

Meiosis is a special form of cell division.

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY

Chapter 13: Meiosis and Sexual Life Cycles

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

Germ cell formation / gametogenesis And Fertilisation

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Classify chromosomes in a karyotype according to size and centromere position. Identify metacentric, submetacentric and acrocentric chromosomes

Cell Division Simulation: Bacteria Activity One

CELL DIVISION. STAGES OF MITOTIC DIVISION (Diag. C1)

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

The chromosomes are structures in living cells that contain

Lecture 4 Cell Membranes & Organelles

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

How Cancer Begins???????? Chithra Manikandan Nov 2009

Workshop: Cellular Reproduction via Mitosis & Meiosis

Sexual Reproduction and Meiosis

Lecture 2: Mitosis and meiosis

1. Identify each phase of mitosis on the onion root tip and the whitefish blastula. 3. Explain differences in mitosis between plant and animal cells.

AP Biology 2011 Scoring Guidelines Form B

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside

The Cell Cycle: A series of modeling activities

Use of the Microscope and Cytology

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells.

Test Two Study Guide

Teacher s Guide. Mitosis. Grades 5-9 MTTV

the plant & animal cell

LABORATORY 2 THE CELL CYCLE AND THE STAGES OF MITOSIS LEARNING OBJECTIVES AFTER COMPLETING THIS LABORATORY, YOU SHOULD BE ABLE TO:

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Sexual Reproduction. and Meiosis. Sexual Reproduction

1 Mutation and Genetic Change

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope

Objective: On a team of no more than (2). Build to illustrate a 3D model of a PLANT or ANIMAL cell. 10 pts.

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Look for these related items from Learning Resources :

Biology Chapter 7 Practice Test

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

The Cell: Organelle Diagrams

Cell Biology Questions and Learning Objectives

1.1 Introduction. 1.2 Cells CHAPTER Prokaryotic Cells Eukaryotic Cells

Cell Structure and Function

Cell Division and Mitosis DNA. Sexual Reproduction and Meiosis. 2. Meiosis occurs in the reproductive organs, producing four haploid sex cells.

02-SciProbe9-Chap02 2/8/07 12:12 PM Page NEL

BME Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction

How Well Do You Know Your Cells?

Cells & Cell Organelles

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

Lab 3: Testing Hypotheses about Mitosis

Plasma Membrane hydrophilic polar heads

Respiration occurs in the mitochondria in cells.

Genetic material of all living organisms. Biology - 100

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

Basic Biological Principles Module A Anchor 1

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic

The Cell Interior and Function

An Overview of Cells and Cell Research

Contains chromatin that makes chromosomes (DNA and protein)

Organelles and Their Functions

Lesson Aim To explain the human body at a microscopic level, including the structure and function of cells, tissues and membranes.

Cell Structure and Function. Eukaryotic Cell: Neuron

Cell Structure & Function!

UNIT 1 - CHAPTER 3: CELLS. 2. Describe the general characteristics of a composite cell.

GENE REGULATION. Teacher Packet

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, b.patel@griffith.edu.

Transcription:

Chapter 12 The Cell Cycle PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of life is based on the reproduction of cells, or cell division Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-1

In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for: Development from a fertilized cell Growth Repair Cell division is an integral part of the cell cycle, the life of a cell from formation to its own division Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-2 100 µm 200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal

Fig. 12-2a 100 µm (a) Reproduction

Fig. 12-2b 200 µm (b) Growth and development

Fig. 12-2c 20 µm (c) Tissue renewal

Concept 12.1: Cell division results in genetically identical daughter cells Most cell division results in daughter cells with identical genetic information, DNA A special type of division produces nonidentical daughter cells (gametes, or sperm and egg cells) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cellular Organization of the Genetic Material All the DNA in a cell constitutes the cell s genome A genome can consist of a single DNA molecule (common in prokaryotic cells) or a number of DNA molecules (common in eukaryotic cells) DNA molecules in a cell are packaged into chromosomes Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-3 20 µm

Every eukaryotic species has a characteristic number of chromosomes in each cell nucleus Somatic cells (nonreproductive cells) have two sets of chromosomes Gametes (reproductive cells: sperm and eggs) have half as many chromosomes as somatic cells Eukaryotic chromosomes consist of chromatin, a complex of DNA and protein that condenses during cell division Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Distribution of Chromosomes During Eukaryotic Cell Division In preparation for cell division, DNA is replicated and the chromosomes condense Each duplicated chromosome has two sister chromatids, which separate during cell division The centromere is the narrow waist of the duplicated chromosome, where the two chromatids are most closely attached Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-4 0.5 µm Chromosomes DNA molecules Chromosome arm Centromere Chromosome duplication (including DNA synthesis) Sister chromatids Separation of sister chromatids Centromere Sister chromatids

Eukaryotic cell division consists of: Mitosis, the division of the nucleus Cytokinesis, the division of the cytoplasm Gametes are produced by a variation of cell division called meiosis Meiosis yields nonidentical daughter cells that have only one set of chromosomes, half as many as the parent cell Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 12.2: The mitotic phase alternates with interphase in the cell cycle In 1882, the German anatomist Walther Flemming developed dyes to observe chromosomes during mitosis and cytokinesis Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Phases of the Cell Cycle The cell cycle consists of Mitotic (M) phase (mitosis and cytokinesis) Interphase (cell growth and copying of chromosomes in preparation for cell division) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Interphase (about 90% of the cell cycle) can be divided into subphases: G 1 phase ( first gap ) S phase ( synthesis ) G 2 phase ( second gap ) The cell grows during all three phases, but chromosomes are duplicated only during the S phase Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-5 G 1 S (DNA synthesis) G 2

Mitosis is conventionally divided into five phases: Prophase Prometaphase Metaphase Anaphase Telophase Cytokinesis is well underway by late telophase BioFlix: Mitosis Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-6 G 2 of Interphase Prophase Prometaphase Metaphase Anaphase Telophase and Cytokinesis Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Metaphase plate Cleavage furrow Nucleolus forming Nucleolus Nuclear Plasma envelope membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule Spindle Centrosome at one spindle pole Daughter chromosomes Nuclear envelope forming

Fig. 12-6a G 2 of Interphase Prophase Prometaphase

Fig. 12-6b G 2 of Interphase Prophase Prometaphase Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule

Fig. 12-6c Metaphase Anaphase Telophase and Cytokinesis

Fig. 12-6d Metaphase Anaphase Telophase and Cytokinesis Metaphase plate Cleavage furrow Nucleolus forming Spindle Centrosome at one spindle pole Daughter chromosomes Nuclear envelope forming

The Mitotic Spindle: A Closer Look The mitotic spindle is an apparatus of microtubules that controls chromosome movement during mitosis During prophase, assembly of spindle microtubules begins in the centrosome, the microtubule organizing center The centrosome replicates, forming two centrosomes that migrate to opposite ends of the cell, as spindle microtubules grow out from them Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

An aster (a radial array of short microtubules) extends from each centrosome The spindle includes the centrosomes, the spindle microtubules, and the asters Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

During prometaphase, some spindle microtubules attach to the kinetochores of chromosomes and begin to move the chromosomes At metaphase, the chromosomes are all lined up at the metaphase plate, the midway point between the spindle s two poles Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-7 Aster Centrosome Microtubules Chromosomes Sister chromatids Metaphase plate Kinetochores Centrosome 1 µm Overlapping nonkinetochore microtubules Kinetochore microtubules 0.5 µm

In anaphase, sister chromatids separate and move along the kinetochore microtubules toward opposite ends of the cell The microtubules shorten by depolymerizing at their kinetochore ends Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-8 EXPERIMENT Kinetochore Spindle pole Mark RESULTS CONCLUSION Microtubule Chromosome movement Motor protein Chromosome Kinetochore Tubulin subunits

Fig. 12-8a EXPERIMENT Kinetochore Spindle pole Mark RESULTS

Fig. 12-8b CONCLUSION Chromosome movement Kinetochore Microtubule Motor protein Chromosome Tubulin Subunits

Nonkinetochore microtubules from opposite poles overlap and push against each other, elongating the cell In telophase, genetically identical daughter nuclei form at opposite ends of the cell Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cytokinesis: A Closer Look In animal cells, cytokinesis occurs by a process known as cleavage, forming a cleavage furrow In plant cells, a cell plate forms during cytokinesis Cytokinesis Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Video: Animal Mitosis Video: Sea Urchin (Time Lapse) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-9 Cleavage furrow 100 µm Vesicles forming cell plate Wall of parent cell Cell plate 1 µm New cell wall Contractile ring of microfilaments (a) Cleavage of an animal cell (SEM) Daughter cells (b) Cell plate formation in a plant cell (TEM) Daughter cells

Fig. 12-9a Cleavage furrow 100 µm Contractile ring of microfilaments Daughter cells (a) Cleavage of an animal cell (SEM)

Fig. 12-9b Vesicles forming cell plate Wall of parent cell Cell plate 1 µm New cell wall Daughter cells (b) Cell plate formation in a plant cell (TEM)

Fig. 12-10 Nucleus Chromatin Nucleolus condensing Chromosomes Cell plate 10 µm 1 Prophase 2 Prometaphase 3 Metaphase 4 Anaphase 5 Telophase

Fig. 12-10a Nucleus Nucleolus Chromatin condensing 1 Prophase

Fig. 12-10b Chromosomes 2 Prometaphase

Fig. 12-10c 3 Metaphase

Fig. 12-10d 4 Anaphase

Fig. 12-10e Cell plate 10 µm 5 Telophase

Binary Fission Prokaryotes (bacteria and archaea) reproduce by a type of cell division called binary fission In binary fission, the chromosome replicates (beginning at the origin of replication), and the two daughter chromosomes actively move apart Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-11-1 Origin of replication E. coli cell Two copies of origin Cell wall Plasma membrane Bacterial chromosome

Fig. 12-11-2 Origin of replication E. coli cell Two copies of origin Cell wall Plasma membrane Bacterial chromosome Origin Origin

Fig. 12-11-3 Origin of replication E. coli cell Two copies of origin Cell wall Plasma membrane Bacterial chromosome Origin Origin

Fig. 12-11-4 Origin of replication E. coli cell Two copies of origin Cell wall Plasma membrane Bacterial chromosome Origin Origin

The Evolution of Mitosis Since prokaryotes evolved before eukaryotes, mitosis probably evolved from binary fission Certain protists exhibit types of cell division that seem intermediate between binary fission and mitosis Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-12 Bacterial chromosome (a) Bacteria Chromosomes Microtubules (b) Dinoflagellates Intact nuclear envelope Kinetochore microtubule Intact nuclear envelope (c) Diatoms and yeasts Kinetochore microtubule (d) Most eukaryotes Fragments of nuclear envelope

Fig. 12-12ab Bacterial chromosome (a) Bacteria Chromosomes Microtubules (b) Dinoflagellates Intact nuclear envelope

Fig. 12-12cd Kinetochore microtubule Intact nuclear envelope (c) Diatoms and yeasts Kinetochore microtubule (d) Most eukaryotes Fragments of nuclear envelope

Concept 12.3: The eukaryotic cell cycle is regulated by a molecular control system The frequency of cell division varies with the type of cell These cell cycle differences result from regulation at the molecular level Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Evidence for Cytoplasmic Signals The cell cycle appears to be driven by specific chemical signals present in the cytoplasm Some evidence for this hypothesis comes from experiments in which cultured mammalian cells at different phases of the cell cycle were fused to form a single cell with two nuclei Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-13 EXPERIMENT Experiment 1 Experiment 2 S G 1 M G 1 RESULTS S S M M When a cell in the S phase was fused with a cell in G 1, the G 1 nucleus immediately entered the S phase DNA was synthesized. When a cell in the M phase was fused with a cell in G 1, the G 1 nucleus immediately began mitosis a spindle formed and chromatin condensed, even though the chromosome had not been duplicated.

The Cell Cycle Control System The sequential events of the cell cycle are directed by a distinct cell cycle control system, which is similar to a clock The cell cycle control system is regulated by both internal and external controls The clock has specific checkpoints where the cell cycle stops until a go-ahead signal is received Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-14 G 1 checkpoint G 1 Control system S M G 2 M checkpoint G 2 checkpoint

For many cells, the G 1 checkpoint seems to be the most important one If a cell receives a go-ahead signal at the G 1 checkpoint, it will usually complete the S, G 2, and M phases and divide If the cell does not receive the go-ahead signal, it will exit the cycle, switching into a nondividing state called the G 0 phase Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-15 G 0 G 1 checkpoint G 1 G 1 (a) Cell receives a go-ahead signal (b) Cell does not receive a go-ahead signal

The Cell Cycle Clock: Cyclins and Cyclin-Dependent Kinases Two types of regulatory proteins are involved in cell cycle control: cyclins and cyclindependent kinases (Cdks) The activity of cyclins and Cdks fluctuates during the cell cycle MPF (maturation-promoting factor) is a cyclin- Cdk complex that triggers a cell s passage past the G 2 checkpoint into the M phase Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-16 RESULTS 5 30 4 3 20 2 10 1 0 100 200 300 400 Time (min) 500 0

Fig. 12-17 M G 1 S G 2 M G 1 S G 2 M G 1 MPF activity Cyclin concentration Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle Degraded cyclin Cyclin is degraded Cdk G 2 checkpoint Cdk Cyclin accumulation MPF Cyclin (b) Molecular mechanisms that help regulate the cell cycle

Fig. 12-17a M G 1 S G 2 M G 1 S G 2 M G 1 MPF activity Cyclin concentration Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle

Fig. 12-17b Degraded cyclin Cdk Cyclin is degraded G 2 checkpoint Cdk Cyclin accumulation MPF Cyclin (b) Molecular mechanisms that help regulate the cell cycle

Stop and Go Signs: Internal and External Signals at the Checkpoints An example of an internal signal is that kinetochores not attached to spindle microtubules send a molecular signal that delays anaphase Some external signals are growth factors, proteins released by certain cells that stimulate other cells to divide For example, platelet-derived growth factor (PDGF) stimulates the division of human fibroblast cells in culture Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-18 Scalpels Petri plate Without PDGF cells fail to divide With PDGF cells proliferate Cultured fibroblasts 10 µm

Another example of external signals is densitydependent inhibition, in which crowded cells stop dividing Most animal cells also exhibit anchorage dependence, in which they must be attached to a substratum in order to divide Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-19 Anchorage dependence Density-dependent inhibition Density-dependent inhibition (a) Normal mammalian cells 25 µm (b) Cancer cells 25 µm

Cancer cells exhibit neither density-dependent inhibition nor anchorage dependence Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Loss of Cell Cycle Controls in Cancer Cells Cancer cells do not respond normally to the body s control mechanisms Cancer cells may not need growth factors to grow and divide: They may make their own growth factor They may convey a growth factor s signal without the presence of the growth factor They may have an abnormal cell cycle control system Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A normal cell is converted to a cancerous cell by a process called transformation Cancer cells form tumors, masses of abnormal cells within otherwise normal tissue If abnormal cells remain at the original site, the lump is called a benign tumor Malignant tumors invade surrounding tissues and can metastasize, exporting cancer cells to other parts of the body, where they may form secondary tumors Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 12-20 Tumor Lymph vessel Blood vessel Glandular tissue Cancer cell Metastatic tumor 1 A tumor grows 2 Cancer cells 3 Cancer cells spread 4 from a single invade neighboring tissue. the to other parts of cancer cell. body. Cancer cells may survive and establish a new tumor in another part of the body.

Fig. 12-UN1 G 1 S Cytokinesis Mitosis G 2 MITOTIC (M) PHASE Prophase Telophase and Cytokinesis Anaphase Metaphase Prometaphase

Fig. 12-UN2

Fig. 12-UN3

Fig. 12-UN4

Fig. 12-UN5

Fig. 12-UN6

You should now be able to: 1. Describe the structural organization of the prokaryotic genome and the eukaryotic genome 2. List the phases of the cell cycle; describe the sequence of events during each phase 3. List the phases of mitosis and describe the events characteristic of each phase 4. Draw or describe the mitotic spindle, including centrosomes, kinetochore microtubules, nonkinetochore microtubules, and asters Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

5. Compare cytokinesis in animals and plants 6. Describe the process of binary fission in bacteria and explain how eukaryotic mitosis may have evolved from binary fission 7. Explain how the abnormal cell division of cancerous cells escapes normal cell cycle controls 8. Distinguish between benign, malignant, and metastatic tumors Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings