Connectivity. 5.1 Cut Vertices. Handout #Ch5 San Skulrattanakulchai Gustavus Adolphus College Oct 27, MCS-236: Graph Theory

Similar documents
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, Chapter 7: Digraphs

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

Connectivity and cuts

A 2-factor in which each cycle has long length in claw-free graphs

Non-Separable Detachments of Graphs

3. Eulerian and Hamiltonian Graphs

8. Matchings and Factors

Cycles and clique-minors in expanders

On end degrees and infinite cycles in locally finite graphs

Every tree contains a large induced subgraph with all degrees odd

All trees contain a large induced subgraph having all degrees 1 (mod k)

Generalized Induced Factor Problems

SOLUTIONS TO ASSIGNMENT 1 MATH 576

GRAPH THEORY LECTURE 4: TREES

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

Introduction to Graph Theory

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graph Theory Problems and Solutions

Large induced subgraphs with all degrees odd

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR

Graph theoretic techniques in the analysis of uniquely localizable sensor networks

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

Cycles in a Graph Whose Lengths Differ by One or Two

8.1 Min Degree Spanning Tree

On the independence number of graphs with maximum degree 3

INCIDENCE-BETWEENNESS GEOMETRY

Mean Ramsey-Turán numbers

6.2 Permutations continued

Labeling outerplanar graphs with maximum degree three

The chromatic spectrum of mixed hypergraphs

A Turán Type Problem Concerning the Powers of the Degrees of a Graph

Analysis of Algorithms, I

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Midterm Practice Problems

Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices

The Independence Number in Graphs of Maximum Degree Three

Determination of the normalization level of database schemas through equivalence classes of attributes

Finding and counting given length cycles

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

An inequality for the group chromatic number of a graph

On Integer Additive Set-Indexers of Graphs

A Study of Sufficient Conditions for Hamiltonian Cycles

1 Definitions. Supplementary Material for: Digraphs. Concept graphs

3. Linear Programming and Polyhedral Combinatorics

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

Balloons, Cut-Edges, Matchings, and Total Domination in Regular Graphs of Odd Degree

THE DIMENSION OF A VECTOR SPACE

Disjoint Compatible Geometric Matchings

Odd induced subgraphs in graphs of maximum degree three

Simple Graphs Degrees, Isomorphism, Paths

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

Protracted Network: Quality of Service

On the k-path cover problem for cacti

Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3

Degree Hypergroupoids Associated with Hypergraphs

Math 179: Graph Theory

MATH10040 Chapter 2: Prime and relatively prime numbers

Triangle deletion. Ernie Croot. February 3, 2010

SHORT CYCLE COVERS OF GRAPHS WITH MINIMUM DEGREE THREE

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

Cycle transversals in bounded degree graphs

Total colorings of planar graphs with small maximum degree

A Sublinear Bipartiteness Tester for Bounded Degree Graphs

Misleading Stars: What Cannot Be Measured in the Internet?

On an anti-ramsey type result

The positive minimum degree game on sparse graphs

Course on Social Network Analysis Graphs and Networks

Approximation Algorithms

Problem Set 7 Solutions

BOUNDARY EDGE DOMINATION IN GRAPHS

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

Single machine parallel batch scheduling with unbounded capacity

Removing even crossings

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

How To Understand The Theory Of Media Theory

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor

5.1 Bipartite Matching

Fundamentele Informatica II

A threshold for the Maker-Breaker clique game

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

The Goldberg Rao Algorithm for the Maximum Flow Problem

Removing Even Crossings

Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie. An Iterative Compression Algorithm for Vertex Cover

Euler Paths and Euler Circuits

Global secure sets of trees and grid-like graphs. Yiu Yu Ho

Social Media Mining. Graph Essentials

An inequality for the group chromatic number of a graph

Synthetic Projective Treatment of Cevian Nests and Graves Triangles

Minimum degree condition forcing complete graph immersion

HOLES 5.1. INTRODUCTION

c 2010 Society for Industrial and Applied Mathematics

Definition Given a graph G on n vertices, we define the following quantities:

Distributed Computing over Communication Networks: Maximal Independent Set

On three zero-sum Ramsey-type problems

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

Regular Augmentations of Planar Graphs with Low Degree

Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1

Transcription:

MCS-236: Graph Theory Handout #Ch5 San Skulrattanakulchai Gustavus Adolphus College Oct 27, 2010 Connectivity 5.1 Cut Vertices Definition 1. A vertex v in a connected graph G is a cut vertex if G v is disconnected. Definition 2. A vertex v in a graph G is a cut vertex if G v has more connected components than G. Exercise. Prove that these two definitions are equivalent. Lemma (End-Vertex Lemma). If v is an end vertex in a graph G, then v is not a cut vertex of G. Proof. Let v belong to the connected component H of G. Grow a maximal path P starting from v. Since deg v = 1, vertex v is one of the two ends of P. By the Maximal Path Theorem, H v is connected. Thus v is not a cut vertex. Theorem (CZ, Theorem 5.1). Let G be a graph containing a bridge e incident with vertex v. Vertex v is a cut vertex if and only if deg v 2. Proof. Let G be a graph containing a bridge e incident with vertex v. : Suppose deg v < 2. Since e is incident with v, we have deg v 1. Thus, deg v = 1. By the End-Vertex Lemma, v is not a cut vertex. : Suppose deg v 2 but v is not a cut vertex. Let bridge e join v to w and let H be the connected component of G that contains v. Since deg v 2, vertex v is adjacent to some vertex x that is different from v or w. Therefore, in H, vertex w is connected to vertex x via the path P : w, v, x. This says that vertices v, w, and x are all in the same component H. By assumption, vertex v is not a cut vertex of G; thus v is not a cut vertex of H, i.e., H v is connected. This says that all vertices in H v are in the same component. Hence, vertex w is connected in H v to vertex x via some path Q. Concatenating P to Q gives a cycle in H. This cycle contains edge e, contradicting the fact that e is a bridge.

2 MCS-236: Handout #Ch5 Corollary (CZ, Corollary 5.2). Let G be a connected graph of order 3 or more. If G contains a bridge, then G contains a cut-vertex. Proof. Let G be a connected graph of order at least 3 and let e = vw be a bridge in G. By the Bridge Lemma, G e consists of two components: component G v containing v and component G w containing w. Since G has at least 3 vertices, at least one of G v and G w has more than one vertex. Assume wlog that G v has more than one vertex. Thus, deg Gv v 1. Since v is adjacent in G to w but w is not in G v, we conclude that deg G v 2. By Theorem 5.1 v is a cut vertex (in G). Theorem (CZ, Corollary 5.4). A vertex v of a connected graph G is a cut vertex of G if and only if there exist vertices u and w distinct from v such that there s at least one u w path in G and v lies on every u w path in G. Proof. Suppose v is a cut vertex of a connected graph G. Then G v is disconnected, i.e., it has at least 2 connected components. Let u be any vertex in G v and let w be any other vertex in G v belonging to some component different from u s. Since G is connected, there exist some u w path in G. However, there exist no u w path in G v because u and w come from different components of G v. This implies that each u w path in G passes through v, since G v differs from G only in that G v misses vertex v and all edges incident to v. Conversely, suppose v is any vertex in a connected graph G and G contains some vertices u, w such that there s at least one u w path in G and v lies on every u w path in G. This assumption implies that any u w path in G can no longer be a u w path when vertex v and all its incident edges are deleted from G. Thus, G v is disconnected since it has vertices u and w that are not connected. Hence, v is a cut vertex of G. Theorem (CZ, Corollary 5.6). Every nontrivial connected graph contains at least two vertices that are not cut vertices. Proof. This is just Theorem 1.9 (with the phrase connected graph of order 3 or more changed to connected nontrivial graph ) restated in terms of cut vertices. See Handout #5.

MCS-236: Handout #Ch5 3 5.2 Blocks Definition. A nonseparable graph is nontrivial, connected, and has no cut vertex. Note: K 2 is the only nonseparable graph of order less than 3. Theorem (CZ, Theorem 5.7). A graph of order at least 3 is nonseparable if and only if every two vertices lie on a common cycle. Proof. Let G be a graph of order at least 3. Suppose every two vertices of G lie on a common cycle. Graph G is nontrivial since its order is at least 3. Let x, y be two vertices of G. By assumption there is a cycle C that contains both x and y. Thus there is an x y path along C. Hence G is connected. Fix a vertex v. Let u, w be any two vertices distinct from v. By assumption there is a cycle that contains both u and w. This cycle gives two internally disjoint u w paths, at least one of which does not go through v. Hence, v is not a cut vertex by Corollary 5.4. Thus, graph G contains no cut vertex. Therefore, G is nonseparable. Conversely, suppose G is nonseparable. Let u be a vertex of G. We will prove that if v is any vertex of G distinct from u, then there is a cycle that goes through both u and v, by induction on the distance d(u, v) between u and v. First suppose that d(u, v) = 1, i.e., G has an edge e joining u to v. Since G has order at least 3 and it contains no cut vertex (because G is nonseparable), we conclude by Corollary 5.2 that G contains no bridge. Therefore, e is not a bridge; and thus some cycle C contains e. Hence, cycle C contains both u and v (since e joins u to v). Next suppose that d(u, v) = k > 1 and assume inductively that for any vertex x, where 0 < d(u, x) < k, there exists some cycle that goes through both u and x. Let P : u = v 0, v 1,...,v k 1, v k = v be a u v geodesic. Since 0 < d(u, v k 1 ) = k 1 < k, there exists, by inductive assumption, a cycle C that passes through both u and v k 1. If cycle C goes through v k as well, then we are done. So assume from now on that C does not go through v k. Since G contains no cut vertex, v k 1 is not a cut vertex. This means that there exists some path in G v k 1 (and in G as well) connecting v k to some vertex x V (C) \ v k 1. Let Q be such a path of shortest possible length. Appending the x v k 1 path in C that goes through u (this path is unique if x u) to Q gives a v v k 1 path P in G that goes through u. Path P together with edge v k 1 v k gives a cycle in G that goes through both u and v. Our claim follows by induction.

4 MCS-236: Handout #Ch5 Definition. Let G be a graph of positive size. Define a relation R on E(G) as follows. For any edges e and f, declare erf iff e = f or there is a cycle in G that contains both e and f. Theorem (CZ, Theorem 5.8). The relation R is an equivalence relation. Definition 1. A block of G is a nonseparable subgraph of G that is not a proper subgraph of any other nonseparable subgraph of G. Definition 2. A block of G is a subgraph of G induced by the edges in an equivalence class defined by the relation R defined above. Theorem (CZ, Exercise 5.15). The two definitions of block are equivalent. Corollary (CZ, Corollary 5.9). Every two distinct blocks B 1 and B 2 in a nontrivial connected graph G have the following properties: (a) The blocks B 1 and B 2 are edge-disjoint. (b) The blocks B 1 and B 2 have at most one vertex in common. (c) If B 1 and B 2 have a vertex v in common, then v is a cut vertex of G. Proof. (a) By definition 2 of block, the edges E(B 1 ) of block B 1 and the edges E(B 2 ) of block B 2 belong to different equivalence classes. Therefore, E(B 1 ) E(B 2 ) =. (b) Assume for the sake of contradiction that V (B 1 ) V (B 2 ) 2. Since B 1 is connected (because it s a block), for any two vertices shared by the two blocks there exists a path in B 1 connecting them. Let P 1 be a shortest path in B 1 connecting any two shared vertices; say that P 1 connects v to w. Path P 1 is nontrivial since v w. Since B 2 is connected (because it s a block), there exists a path P 2 in B 2 connecting v to w. Path P 2 is nontrivial since v w. Concatenating P 1 to P 2 gives a cycle containing some edge e 1 in B 1 and some edge e 2 in B 2. Thus, e 1 and e 2 belong to the same block by definition 2 of block. This contradicts part (a). (c) Let v V (B 1 ) V (B 2 ). Being a block, B 1 is connected and nontrivial; thus, there exists u 1 V (B 1 ) adjacent to v. Being a block, B 2 is connected and nontrivial; thus, there exists u 2 V (B 2 ) adjacent to v.

MCS-236: Handout #Ch5 5 We ll show that every u 1 u 2 path in G contains v. Assume for the sake of contradiction that there is some u 1 u 2 path P in G not containing v. Path P together with v and edges u 1 v and vu 2 give a cycle C containing both u 1 v and vu 2. Hence, edges u 1 v and vu 2 belong to the same equivalence class, i.e., same block. This contradicts part (a). Therefore, v is a cut vertex of G. 5.3 Connectivity Definitions. Let G = (V, E) be a connected graph. A subset U of V is called a vertex cut if G U is disconnected. A minimum vertex cut of G is a vertex cut of least cardinality. The (vertex) connectivity κ(g) of G is defined as follows: for a disconnected graph G, κ(g) = 0; for a connected graph G, κ(g) equals the cardinality of a smallest vertex subset U such that G U is either disconnected or trivial. A graph G is k-connected if κ(g) k. Note that any graph G satisfies 0 κ(g) n 1. Note also that for a connected graph G of order n, κ(g) = n 1 if and only if G = K n. Let G = (V, E) be a connected graph. A subset X of E is an edge cut if G X is disconnected. An edge cut X is minimal if no proper subset of X is an edge cut. A minimum edge cut is an edge cut of minimum size. Note that a minimal edge cut is not necessarily minimum, but every minimum edge cut is necessarily minimal. (Prove!) The following lemma characterizes minimal edge cuts. Lemma (Minimal Edge Cut Lemma). If X is a minimal edge cut of a connected graph G, then G X contains exactly 2 components. Moreover, X consists of all the edges of G that join a vertex in one component to a vertex in another component. Proof. Assume G is a connected graph and X is a minimal edge cut of G. Choose any edge e X, say e joins u to v. We have G X is disconnected but G (X \ {e}) is connected. This means that e is a bridge in G (X \ {e}). By the Bridge Lemma, G (X \ {e}) e consists of exactly two components, one containing u and the other containing v. Since G (X \ {e}) e = G X, we conclude that G X consists of exactly two components, say G 1 and G 2, and every edge of X joins a vertex in G 1 to a vertex in G 2.

6 MCS-236: Handout #Ch5 Let e be any edge in G joining a vertex in G 1 to a vertex in G 2. We ll show that e X. Suppose not. Then G X contains edge e. This contradicts G 1 and G 2 are distinct components in G X. The edge connectivity λ(g) of G is defined as follows: for a disconnected graph G, λ(g) = 0; for a connected graph G, λ(g) equals the cardinality of a smallest edge subset X such that G X is either disconnected or trivial. A graph G is k-edge-connected if λ(g) k. Note that any graph G satisfies 0 λ(g) n 1. CZ, Example 5.10 Show that λ(k n ) = n 1. Theorem (CZ, Theorem 5.11). For any graph G, κ(g) λ(g) δ(g).