Magnetic Materials for Energy

Similar documents
Rare Earths - a Bottleneck for future Wind Turbine Technologies?

A Low-cost Rare Earth Elements Recovery Technology

Permanent Magnet Economics. Robert Wolf Alliance LLC

FOI MEMO. A95422 FoT-område. Handläggare/Our reference Datum/Date Memo nummer/number

TIG torches to 3-5 Tungsten electrodes to 3-7 TIG consumables Miscellaneous

Study on Rare Earths and Their Recycling

DEREK HAMILL Research & Communications Zimtu Capital Corp. dhamill@zimtu.com. Summary: RESEARCH & OPINION RESEARCH 1 & OPINION

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

Section 1: Arranging the Elements Pages

QUARTERLY REPORT FOR THE PERIOD ENDING 31 MARCH 2013

Permanent Magnets: the Demand for Rare Earths

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

EXAMPLE EXERCISE 4.1 Change of Physical State

Material risks to sustainable low carbon infrastructure transitions

Crystal Structure of Aluminum, Zinc, and their Alloys By: Omar Fajardo Sebastian Henao Devin Baines ENGR45, F2014, SRJC

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Chemistry Worksheet: Matter #1

All answers must use the correct number of significant figures, and must show units!

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Pantone Matching System Color Chart PMS Colors Used For Printing

Ch6&7 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Environmental Review of Coal Ash as a Resource for Rare Earth and Strategic Elements

Raw materials critical to the Scottish economy: Non-technical summary

Cambridge International Examinations Cambridge Secondary 1 Checkpoint

How To Color Print

The Roesky Working Group: Facilities, Collaborations, and Science

North American Stainless

7. Chemical Waste Disposal Procedures

North American Stainless

KS3 Science: Chemistry Contents

PANTONE Solid to Process

NEWS RELEASE April 14, 2009 No

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chapter 5 TEST: The Periodic Table name

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

Quality Assurance for the Analysis of Steel by Gas Component Analysis

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Statements contained in this presentation which are not historical facts are forward-looking statements that involve risks, uncertainties and other

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Europe s Rare Earth Deposits, Mineralogy and Beneficiation

Rare Earth Elements: The Global Supply Chain

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence

Metals are located on the left side of the periodic table and are generally shiny, malleable, ductile, and good conductors.

Atomic Theory: History of the Atom

Supply Chain Modeling: Downstream Risk Assessment Methodology (DRAM) Demonstration of Capability

Iron and Steel Manufacturing

Chapter 2: Forms of Energy

Coal Gasification & Fischer-Tropsch

HOW IT WORKS ELECTRICITY GENERATION

Unit 5 Photosynthesis and Cellular Respiration

Year project completed or estimated year of completion: October 2014

DIN 2403 Identification of pipelines according to the fluid conveyed. Marking of pipes according to fluid transported

CALIFORNIA INSTITUTE OF TECHNOLOGY. Critical Materials For Sustainable Energy Applications

UNDERSTANDING PERMANENT MAGNET MATERIALS; AN ATTEMPT AT UNIVERSAL MAGNETIC LITERACY. S. R. Trout Molycorp Magnequench

TiO 2. : Manufacture of Titanium Dioxide. Registered charity number

Lesson 4. Temperature change

Energy: 4.C.1 Introduction to Energy

Radiographic Image Production. Radiographic Image Production. Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes

China s Rare Earth Elements Industry: What Can the West Learn? By Cindy Hurst. March 2010 Institute for the Analysis of Global Security (IAGS)

Chapter 3: Separating Mixtures (pg )

hij GCSE Science / Chemistry Higher Tier Unit 1 Chemistry SPECIMEN MARK SCHEME Version 1.0

WATER CHEMISTRY AND POOL WATER BALANCE

Materials Scarcity. From global challenge to a company's perpsective. Ton Bastein / Niels van Loon

Objectives: Vocabulary: Materials: Students will: Safety: Element Mineral Streak. Absolute Hardness

Electricity. Electricity: The Mysterious Force. 32 Intermediate Energy Infobook CARBON ATOM SEVERAL COMMON ELEMENTS

Printed Circuit Board Recycling Methods

FIRST GRADE CHEMISTRY

The Periodic Table: Periodic trends

Return to Lab Menu. Acids and Bases in Your House

Macromolecules in my food!!

RECOVERY AND ENERGY SAVINGS OF ALUMINUM CAN BEVERAGE CONSUMED IN GENERAL AND VOCATIONAL TECHNICAL HIGH SCHOOLS

PERIODIC TABLE / STATIONS LAB

THE ELEMENT C. Introduction graphite and carbon Lattice Classification of grain size. Properties of graphite and carbon

Layers of the Earth s Interior

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

Biogas. Biology Teams of 2 or 3. Grade LEARNING OUTCOMES DESCRIPTION MATERIALS READINESS ACTIVITIES. Science

Critical thinking. Serious threat in the next 100 years. Limited availability, future risk to supply

Recycling critical raw materials from waste electronic equipment

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

Mark Scheme (Results) January International GCSE Chemistry (4CH0) Paper 2C

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Student Exploration: Electron Configuration

Specimen Paper. Chemistry 1F. Time allowed! 60 minutes

Physical and Chemical Properties and Changes

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Specimen Paper. Time allowed! 60 minutes

Physics 1230: Light and Color

22.1 Nuclear Reactions

High-tech recycling of critical metals: Opportunities and challenges

97 MW of Cat coal seam methane power in New South Wales, Australia

Lecture 3 September 14, 2009 Atomic Models: Rutherford & Bohr

Progressive Performance Audi on the way to the leading premium brand

1 Exploring Earth s Interior

Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France

20 Global Market Activity 22 Directors Report 30 Corporate Governance Statement 39 Remuneration Report Audited. What are Rare Earths?

UNIT (2) ATOMS AND ELEMENTS

GENERAL PROPERTIES //////////////////////////////////////////////////////

Geçici ihracat vergi iadesi oran ı

Transcription:

Magnetic Materials for Energy ISC-IWKS Resources and distribution Criticality Prices Value chain Applications Material cycles Reduction Substitution Recycling Oliver Gutfleisch Technical University of Darmstadt, Material Science, Germany and Fraunhofer IWKS Hanau Materials Recycling and Resource Strategy TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 1

DAY - NIGHT CYCLE Renewable Energy is intermittent in nature CONVERSION of WWS RESIDENTIAL Heat / Cool / Light I DAY STORAGE I I SEASONAL CYCLE YEAR Geographical ENERGY DISTRIBUTION of WWS TRANSPORT CONVERSION into I MOBILITY Work DAY/WEEK INDUSTRY Heat / Work / Light LATITUDE (adapted from A. Züttel, EMPA) TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 2

The EFFICIENCY PARADOX Thomas Savary (1698) Thomas Newcomen (1712) James Watt (1769) Ref.: Jeff Rubin and Benjamin Tal, "Does Energy Efficiency Save Energy?" CIBC World Markets, InC. StrategEcon - November 27, 2007 TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 3

Demand in resources increases dramatically more products europarl.europa.eu more people more elements per product - COMPLEXITY TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 4 ISC-IWKS

ABUNDANCE OF ELEMENTS IN THE EARTH CRUST PER MILLION OF SI ATOMS http://pubs.usgs.gov/fs/2002/fs087-02/ Abundance of the chemical elements in Earth s upper continental crust. (1) Rock-forming elements (major elements in green field and minor elements in light green field); (2) Rare earth elements (lanthanides, La Lu, and Y; labelled in blue); (3) Major industrial metals (global production > 3 10 7 kg/year; labelled in red); (4) Precious metals (purple); (5) The nine rarest metals the six platinum group elements plus Au, Re, and Te (a metalloid). TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 5

CRUSTAL ABUNDANCES OF IRON AND OTHER MAGNETIC ELEMENTS, SHOWN ON A LOG-SCALE J.M.D. Coey, Magnetism and Magnetic Materials Cambridge, 2009 TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 6

Critical Metals (UNEP 2009) united nations environment programme TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 7

TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 8 New Scientist

Criticality Matrix TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 9

Rare earth metals Science News, August 27, 2011 TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 10

World wide production of rare earth oxides TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 11 ISC-IWKS

RE metal life cycle Du and Graedel, Rare Earth Stocks in NdFeB Magnets, Journal of Industrial Ecology, 2011 TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 12

Global estimates of end-of-life recycling rates for 60 metals and metalloids (2008) T. E. Graedel et al., J. Ind. Ecol. 15, 355 (2011). TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 13

Permanent Magnet Growth World production of sintered NdFeB in 2011: ~100.000 t (estimated 80% China, ~18% Japan, 2% Europe) The motor/generator in a hybrid electric vehicle contains 2 kg of NdFeB. Set to grow to between 10 million and 20 million vehicles by 2018. New designs of wind generators use NdFeB magnets at a rate of ~600 kg per mega-watt. This application alone has potential to increase RE demand by 25% per year above current production. Hard disc drives cannot function without RE permanent magnets. Formerly 70% of the NdFeB market this is now diluted by the other major applications. Solid state energy efficient cooling: Magnetocalorics 1kg MCE and 4 kg NdFeB per kilo-watt cooling power Adv. Mat. (Review) 23 (2011) 821 TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 14

Wind power World Wind Energy Association, http://www.wwindea.org, report from March 2010. TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 15

Percentages of NdFeB magnets production per region Du and Graedel, Rare Earth Stocks in NdFeB Magnets, Journal of Industrial Ecology, 2011 TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 16

WHICH ARE THE 17 RARE EARTHS? TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 17

THE RE INDUSTRY FOCUSES ON 15 ELEMENTS TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 18

TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 19

Rare Earth applications TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 20

Rare Earths in the car Science News, August 27, 2011 TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 21

APPLICATIONS OF RES TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 22

MAIN USAGES Sc Y La Ce Pr Light aluminium-scandium alloy for aerospace components, additive in Mercury-vapor lamps Yttrium-aluminium garnet (YAG) laser, yttrium vanadate (YVO4) as host for europium in TV red phosphor, YBCO high-temperature superconductors, yttrium iron garnet (YIG) microwave filters, energyefficient light bulbs High refractive index glass, flint, hydrogen storage, battery-electrodes, camera lenses, fluid catalytic cracking catalyst for oil refineries Chemical oxidizing agent, polishing powder, yellow colors in glass and ceramics, catalyst for self-cleaning ovens, fluid catalytic cracking catalyst for oil refineries, ferrocerium flints for lighters Rare-earth magnets, lasers, core material for carbon arc lighting, colorant in glasses and enamels, additive in didymium glass used in welding goggles, ferrocerium firesteel (flint) products. TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 23

MAIN USAGES Nd Sm Gd Tb Rare-earth magnets, lasers, violet colors in glass and ceramics, ceramic capacitors Rare-earth magnets, lasers, neutron capture, masers Rare-earth magnets, high refractive index glass or garnets, lasers, X-ray tubes, computer memories, neutron capture, MRI contrast agent, NMR relaxation agent Green phosphors, lasers, fluorescent lamps Dy Rare-earth magnets, lasers Lu PET Scan detectors, high refractive index glass TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 24

THE RES CAN BE DIVIDED IN SUBGROUPS TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 25

THE ALPHABET SOUP OF RES TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 26

RARE-EARTH ELEMENTS: DISCOVERY AND EARLY HISTORY Y -1794, Er -1842, Tb -1842, Yb -1878 Ytterby quarry Rare earth elements became known with the discovery of the black mineral "ytterbite" by Lieutenant Carl Axel Arrhenius in 1787, Oxides of: Gd Sm Pr Nd La Ce Memorial plaque of the ASM International society at the entrance of Ytterby mine TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 27

THE DISCOVERY OF EACH REE TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 28

ORIGIN OF EACH NAME TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 29

Carl Auer von Welsbach was not only the discoverer of neodymium and praseodymium, but was also the inventor of the light-mantle (using thorium), and of the rare earth industry. He built a factory to manufacture his mantles, and had discovered that the necessary thorium was available from monazite sand. But after the 6-10% thorium content had been extracted from the monazite, he had a lot of lanthanides left over, for which there was no commercial use. Thus, he began exploration for applications to which the rare earths might be put. Among his first discoveries/inventions to bear practical fruit turned out to be Mischmetal and the lighter flint, both of which continue in use a century later. Wikipedia TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 30

MISCH METAL misch metal, alloy consisting of about 50 percent cerium, 25 percent lanthanum, 15 percent neodymium, and 10 percent other rare-earth metals and iron. Misch metal has been produced on a relatively large scale since the early 1900s as the primary commercial form of mixed rare-earth metals. Misch metal alloyed with iron is the flint (spark-producing agent) in cigarette lighters and similar devices. Misch metal is also used as a deoxidizer in various alloys and to remove oxygen in vacuum tubes. As an alloying agent in magnesium, it contributes to high strength and creep resistance. TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 31

WHERE DOES THE DEMAND FOR RES ORIGINATE FROM? TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 32

WHERE DOES THE DEMAND FOR RES ORIGINATE FROM? TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 33

WHERE DOES THE DEMAND FOR RES ORIGINATE FROM? TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 34

FROM WHERE DOES THE SUPPLY FOR RES ORIGINATE? TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 35

China s approach 1992: Deng Xiaoping there is oil in the Middle East; there is rare earth in China. 1999 Jiang Zemin : Improve the development and applications of rare earth, and change the resource advantage into economic superiority. China s White Paper on rare earths 20-06-2012: http://news.xinhuanet.com/english/business/2012-06/20/c_131665123.htm TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 36

RARE EARTH MINING MADE IN CHINA TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 37

Rare earth production Cost vs environmental and safety standards Chinese Society of Rare Earths: One ton of RE elements creates 2,000 tons of mine tailings. Tailings are the ground up materials left behind once the RE has been extracted from the ore. Often, these tailings can contain thorium, which is radioactive. One ton of RE produced generates 8.5 kg of fluorine and 13 kg of dust; and using concentrated sulfuric acid high temperature calcination to produce one ton of calcined RE ore generates ~10,000 m 3 of waste gas containing dust concentrate, hydrofluoric acid, sulfur dioxide, and sulfuric acid, 75 m 3 of acidic wastewater plus about one ton of radioactive waste residue (containing water). Processing Rare Earth Oxides in China TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 38

Ranking of raw materials - reports Minerals, Critical Minerals and the US Economy (National Academics 2008) Critical Metals for Future Sustainable Technologies and their Recycling Potential (Öko-Institut für UNEP, 2009) Rohstoffe für Zukunftstechnologien (Fraunhofer ISI und IZT für BMWi, 2009) Critical raw materials for the EU - Report of the Ad-hoc Working Group on defining critical raw materials (EC 2010) TU Darmstadt Materialwissenschaften Funktionale Materialien Prof. O. Gutfleisch ESM 2013 39