Energetic Charged Particle Spectrometer for the Space Environment Reliability Verification Integrated System (SERVIS-1) Satellite

Similar documents
Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

Space Weather: An Introduction C. L. Waters. Centre for Space Physics University of Newcastle, Australia

Space Weather Research and Forecasting in CRL, Japan

Radiation effects on space electronics. Jan Kenneth Bekkeng, University of Oslo - Department of Physics

JPL ANOMALY ISSUES. Henry B. Garrett Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, 91109

CSSAR Space Science Cooperation

How To Understand Space Weather

Solar Forcing of Electron and Ion Auroral Inputs

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

The accurate calibration of all detectors is crucial for the subsequent data

Charged Particle in a Magnetic Field

INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION. Lewis Thompson W5IFQ September 27, 2011

2-1-5 Space Radiation Effect on Satellites

Space Weather Prediction Research and Services for China Manned Space Mission

Atomic and Nuclear Physics Laboratory (Physics 4780)

TOF FUNDAMENTALS TUTORIAL

The Radiation Environment in Space

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

Radiation Detection and Measurement

SPACE WEATHER INTERPRETING THE WIND. Petra Vanlommel & Luciano Rodriguez

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

Activities of the Japanese Space Weather Forecast Center at Communications Research Laboratory

EASA Safety Information Bulletin

How To Make A High Energy Ion Detector

The Effect of Space Weather Phenomena on Precise GNSS Applications

Progress Towards the Solar Dynamics Observatory

Space Users: Status, Requirements and Open Issues

SINP SPACE MONITORING DATA CENTER PORTAL

Passive Remote Sensing of Clouds from Airborne Platforms

Overview of the Canadian Electric Field Instrument (CEFI) for Swarm

Development of the Extreme Ultraviolet Spectrometer: EXCEED

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

ASTEROID IMPACT MISSION: DIDYMOS REFERENCE MODEL

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione

Correlation of GEO Communications Satellite Anomalies and Space Weather Phenomena: Improved Satellite Performance and Risk Mitigation

Timepix in open space

DIRECTIONAL CAPABILITIES OF SOHO INSTRUMENTATION

Solar atmosphere. Solar activity and solar wind. Reading for this week: Chap. 6.2, 6.3, 6.5, 6.7 Homework #2 (posted on website) due Oct.

SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS

Physics 30 Worksheet #10 : Magnetism From Electricity

SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING

GAMMA-RAY SPECTRA REFERENCES

Space Environment and Satellite Systems: Removing Clutter from Ground-to-Satellite Signals. Sigrid Close

Hyperspectral Satellite Imaging Planning a Mission

Solar Energetic Protons

The Solar Science Data Center and LOFAR

Proton tracking for medical imaging and dosimetry

SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview

Introduction to Geiger Counters

Space Weather Measurements. Mary Kicza Assistant Administrator NOAA Satellite & Info. Service (NESDIS) Space Weather Enterprise Forum

Tropical Horticulture: Lecture 2

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca

CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS

Synthetic Sensing: Proximity / Distance Sensors

How Raising TRMM s Altitude to 400km Impacts PR Operation. June 1, 2001 NASDA EORC with support of PR team

Ionospheric Research with the LOFAR Telescope

The Threat of Orbital Debris and Protecting NASA Space Assets from Satellite Collisions 28 April 2009

From Nobeyama to ALMA

Tutorial 4.6 Gamma Spectrum Analysis

The Sun: Our nearest star

An Introduction to the MTG-IRS Mission

CBERS Program Update Jacie Frederico dos Santos Liporace AMS Kepler

2.3 Spatial Resolution, Pixel Size, and Scale

CubeSats for Geospace Science at Montana State University: Tailored approaches to CubeSat Mission Implementation

Allen Goldstein NIST Synchrometrology Lab Gaithersburg, MD

Quest- 1 Satellite Functional Description

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Yukikatsu Terada (Saitama Univ, Japan), on behalf of the Astro-H Software Calibration board

Met Office Space Weather Operations and R&D

Ay Fall The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable

HTRA Instrumentation I

Search for supersymmetric Dark Matter with GLAST!!

Vacuum Evaporation Recap

The solar wind (in 90 minutes) Mathew Owens

Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration

Information about the T9 beam line and experimental facilities

Comparison of atmospheric inoziation models

A science class experience that is out of this world. Robert Benkoczi, PhD Optimization Research Group University of Lethbridge

4-1-3 Space Weather Forecast Using Real-time Data


AIAA Distributed Operation of a Military Research Micro Satellite Using the Internet

How To Understand Light And Color

Artificial Satellites Earth & Sky

Neutron Detection Setups proposed for

Measurement of Dust Environment around Mercury by MDM (Mercury Dust Monitor) on Board MMO Bepi Colombo

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND:

Measurement of Muon Lifetime and Mass Using Cosmic Ray Showers

16 th IOCCG Committee annual meeting. Plymouth, UK February mission: Present status and near future

13C NMR Spectroscopy

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Simultaneous Heliospheric Imager and Interplanetary Scintillation observations of CMEs and CIRs

A remote sensing instrument collects information about an object or phenomenon within the

Integrating the Solar Spectrum

Where On Earth Will Three Different Satellites Provide Simultaneous Coverage?

Magnetic Field and Magnetic Forces

Status, Development and Application

CHROMOSPHERIC DYNAMICS FROM RHESSI AND RESIK DATA

The Extreme Solar Storms of October to November 2003

Transcription:

VG04-190 Energetic Charged Particle Spectrometer for the Space Environment Reliability Verification Integrated System (SERVIS-1) Satellite G.E. Galica, 1 B.D. Green, 1 T. Nakamura, 1 H. Hasegawa, 2 T. Itoh, 2 and Y. Sasaki, 2 H. Kanai, 3 M. Akiyama, 3 and K. Hama 3 1 Physical Sciences Inc. 2 Mitsubishi Precision Co., Ltd. 3 Institute for Unmanned Space Experiment Free Flyer IEEE Nuclear and Space Radiation Effects Conference July 2004 Physical Sciences Inc. 20 New England Business Center Andover, MA 01810

Abstract VG04-190-1 We present the design and results from a new radiation sensor, the Light Particle Detector, designed specifically to quantify the orbital environment responsible for microelectronics damage. It supports Japan s Space Environment Reliability Verification Integrated System.

SERVIS Space Environment Reliability Verification Integrated System VG04-190-2 A program with two spacecraft to validate the use of commercial electronics in orbit better performance lower cost faster delivery Environment diagnostic instrument suite LPD PSI charged particle spectrometer dosimeters SERVIS-1 launched in late 2003

SERVIS-1 Satellite Launch VG04-190-3 ROKET launcher (SS-19) Plesetsk, Russia 30 Oct 2003, 1343 UT 997 km polar orbit 99.52 deg inclination

LPD Light Particle Detector Designed for and manifested on the SERVIS-1 satellite (Japan) Built for Mitsubishi Precision Corp. Space Environment Reliability Verification Integrated System Launch Fall 2003 SERVIS-2 follow-on launch 2005 Energy Range Protons: 1-150 MeV (6 bins) Electrons: 0.3 10 MeV (4 bins) Alphas: >12 MeV (1 bin) Ions: >3 MeV/nucleon (1bin) Large G-factor/high count rate 0.2 cm 2 sr 200 kcps Physical parameters 4 kg (fully redundant) 7 W (HiRel/RadHard) VG04-190-4

LPD Spectrometer Block Diagram Energetic particles deposit energy in SSD and Scintillator as they pass through By analyzing the detector signals, LPD identifies particle type and energy LPD increments a one of 12 particle-energy bins that represent the orbital distribution Only the spectrum is downloaded to the ground (60,000-fold compression) VG04-190-5 HV HV Energy deposited in SSD & Scintillator Window p+, e-, a, h Scintillator Collimator SSD Shielding PMT PA Calibration Pulse Discriminator/ Multilevel Comparator Electronics RS422 I/F DAE +5V ±15V DAE Change-Sensitive PA Bin Counters E-3907cz

Redundancy As bus component, LPD is required to be fully redundant LPD cannot be susceptible to single point failure Redundancy approach 2 stacked SSDs 1 scintillator 2 PMTs 2 preamp pairs 2 bias supply pairs 2 processing electronics Side A and B do not have identical performance (low energy protons), but offers full redundancy Scint PMT B EMSS I/F VG04-190-6 SSD PA A Electronics EMSS I/F E-5340

GEANT Sensor Model VG04-190-7 We developed a sensor model using the GEANT code - no free parameters The model is validated with calibration data We use the model to: develop and refine the sensor and algorithm design interpolate/extrapolate sensor response to uncalibrated regimes predict on-orbit performance 2001/01/26 15.27 Servis (0.05/0.05/2.4) e/p/alpha/oxygen 2001/01/26 13.45 Servis (0.05/0.05/2.4) e/p/alpha/oxygen 10 2 Ssd > 0.025 Ssinsig < 0.025 10 2 Ssd2 > 0.025 Ssinsig < 0.025 Ssd1, MeV 10 SSD Ssd2, MeV 10 Scintillator 1 1 10-1 10-1 1 10 10 2 Epart, MeV E-8756 10-1 10-1 1 10 10 2 Epart, MeV E-8757

LPD Sensor Model Examples VG04-190-8

Bin Performance - Protons PSI uses a combination of calibration data and a validated Monte-Carlo sensor model to refine the LPD logic and to predict bin performance VG04-190-9 Low energy Servis (0.05/0.05/2.4) p 2001/01/28 15.27 High energy Servis (0.05/0.05/2.4) p 2001/01/28 15.27 Fractional Response 1 0.5 P1P2 P3 P4 SSD > 0.07 Proton Band SCINSIG > 0.025 P5 Fractional Response 1 0.5 0.7 > SSD > 0.25 Proton Band SCINSIG > 0.025 P5 P6 0 0 50 100 150 Incident Energy, MeV E-8754a 0 0 50 100 150 Incident Energy, MeV E-8755a

Bin Performance - Electrons PSI uses a combination of calibration data and a validated Monte-Carlo sensor model to refine the LPD logic and to predict bin performance Servis (0.05/0.05/2.4)e 2001/01/28 15.27 VG04-190-10 Fractional Response 1 0.5 e4 e3 e2 e1 e5 SSD > 0.025 Electron Band SCINSIG > 0.025 0 0 10 20 Incident Energy, MeV E-8753a

SERVIS-1 LPD Bins VG04-190-11 A B Energy Range (FWHM) Energy Range (FWHM) Bin Low (Mev) High (Mev) G-factor (cm 2 sr) Low (MeV) High (MeV) G-factor (cm 2 sr) E1 0.3 1.5 0.21 0.7 1.5 0.21 E2 1.7 3.4 0.17 1.7 3.4 0.17 E3 3.4 6.6 0.18 3.4 6.6 0.18 E4 6.6 >10 0.23 6.6 >10 0.23 P1 1.2 12.5 0.26 8.5 12.5 0.26 P2 12.5 24.5 0.26 12.5 24.5 0.26 P3 24.5 37 0.26 24.5 37 0.26 P4 38 53 0.26 38 53 0.26 P5 53 96 0.23 53 96 0.23 P6 96 150 0.22 96 150 0.22 A 7 640 0.26 7 640 0.26 H 2 MeV/nucl 160 MeV/nucl 0.26 2 MeV/nucl 160 MeV/nucl 0.26

Proton Calibration energy deposited (MeV) 10 8 6 4 2 0 Proton SSD-A response GEANT data 0 20 40 60 80 100 120 140 160 proton energy (MeV) VG04-190-12 Proton calibrations performed at Harvard Cyclotron Lab and at Indiana University CF HCL 30-160 MeV IUCF 50-200 MeV LPD meets its requirement to detect 150 MeV protons energy deposited (MeV) 160 120 80 40 0 GEANT data Proton Scintillator Response 0 20 40 60 80 100 120 140 160 proton energy (MeV) Linear response of SSD SSD and scintillator responses match sensor model predictions

Electron Calibration signal (volts) 0.2 0.15 0.1 0.05 0 SERVIS LPD SSDA - electron signals SSDA fit 0 0.5 1 1.5 energy deposited (MeV) VG04-190-13 Electron calibrations performed at NIST, Gaithersburg, MD Van de Graaf 0.5-2.0 MeV Cascading Rheostat 0.15-0.4 MeV LPD meets its requirement to detect 300 kev electrons 6.E+05 SERVIS LPD SSDA - 300 kev electron Linear response of SSD number/bin 4.E+05 2.E+05 SSD performance matches model predictions 0.E+00 0 0.02 0.04 0.06 0.08 0.1 signal (volts)

LPD Performance Parameters VG04-190-14 de/e (fwhm) relative response 0.15 0.05 1.2 resolution vs. angle - 55 MeV proton 0.2 0.1 1 0.8 0.6 0.4 0.2 0 0-30 -20-10 0 10 20 30 angle (degrees) SERVIS-1 LPD Acceptance Angle predicted measured -60-40 -20 0 20 40 60 angle (degrees) Large acceptance angle required to meet mission goals ±20 deg FWHM ±30 deg acceptance cone G = 0.2 cm 2 sr High count rate capability required to accommodate large acceptance angle 200 kcps Inherent energy resolution of 0.15 de/e even with large acceptance angle

SERVIS-1 Orbit and Radiation Environment 1000 km altitude into the bottom of the van Allen proton belts (650 to 6500 km) VG04-190-15 99.5 deg inclination polar orbit passes though the auroral region magnetic field lines intersect the Earth South Atlantic Anomaly (SAA) Earth's magnetic field is not aligned with geographic coordinates offset from Earth s center and tilted wrt to true north SAA is a region in the South Atlantic where the Earth s magnetic field is closer to the Earth s surface SERVIS1 travels N-S around the Earth and passes through the auroral ring and the SAA

Electron Distribution Auroral zone VG04-190-16 SAA Auroral zone

Proton Distribution Protons primary contribution in SAA Electrons contributions from SAA and Auroral zone VG04-190-17 Auroral zone SAA Auroral zone

LPD Proton Data vs AP8 Model Proton data maps out the SAA Measured flux rates are higher than model predictions (3-4x) LPD data can be used to update orbital flux models VG04-190-18 flux (cm-2 sec-1) 1.E+07 1.E+06 1.E+05 1.E+04 1.E+03 1.E+02 proton data (1 Dec 03) P1 1.5-12 MeV P2 13-25 MeV P3 25-37 MeV P4 38-53 MeV P5 53-96 MeV P6 96-150 MeV 1.E+01 7:59:20 9:16:48 10:34:12 11:51:36 13:09:00 14:26:24 15:43:47 17:01:11 18:18:35 19:36:03 20:53:27 22:10:51 23:28:15 0:45:39 2:03:02 3:20:26 4:37:50 5:55:14 UT (hh:mm:ss)

LPD Electron Data vs AE8 Model VG04-190-19 Measured flux rates are only slightly higher than model predictions LPD data can be used to update orbital flux models Level of detail (spatial structure) in the data far exceeds the model electron data (1 Dec 03) 1.E+08 1.E+07 E1 0.3-1.5 MeV E2 1.7-3.4 MeV E3 3.4-6.6 MeV E4 >6.6 MeV flux (cm-2 sec-1) 1.E+06 1.E+05 1.E+04 1.E+03 1.E+02 1.E+01 7:59:20 9:15:52 10:32:20 11:48:48 13:05:16 14:21:44 15:38:11 16:54:39 18:11:07 19:27:39 20:44:07 22:00:35 23:17:03 0:33:31 1:49:58 3:06:26 4:22:54 5:39:22 6:55:50 UT (hh:mm:ss)

SERVIS LPD - Proton Data Auroral Ring - N SAA Auroral Ring - S VG04-190-20 SAA dominates proton flux Auroral ring is small and spatially small Primarily low energy protons in Auroral zone High energy protons in SAA 1.0E+07 1.0E+06 Measured Trapped Proton Data 2 Dec 03 p 1 - - 1.5-12 M ev p2 -- 13-25 MeV p3 -- 25-37 MeV p4 -- 38-53 MeV p5 -- 53-96 MeV p6 -- 96-150 MeV Proton Flux (cm-2 s-1) 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 8:00 10:00 12:00 14:00 16:00 UT (hh:mm)

SERVIS LPD Electron Data Auroral Zone - N SAA Auroral Zone - S VG04-190-21 Auroral electrons large contribution Auroral ring large and structured High energy electrons in SAA 1.0E+08 1.0E+07 Measured Trapped Electron Data 2 Dec 03 e1 -- 0.3-1.5 M ev e2 -- 1.7-3.4 M ev e3 -- 3.4-6.6 MeV e4 -- >6.6 M ev Electron Flux (cm-2 s-1) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 8:00 10:00 12:00 14:00 16:00 UT (hh:mm)

Solar Storms Coronal Mass Ejections (CMEs) large ejections of energetic material from the sun solar wind accelerates as it approaches the Earth CMEs significantly distort the Earth's magnetic field inject high energy particles into the lower magnetosphere enhance the aurora VG04-190-22

Late Oct 03 Aurorae VG04-190-23 Very strong CMEs in Fall 2003 Strong aurorae visible very far south Boston New York Carolinas SERVIS-1 launched on 30 Oct missed the initial CME however LPD detected the follow-on activity 1 solar rotation period later

GOES Satellite Protons (26 Oct 03 13 Nov 03) VG04-190-24

SERVIS LPD 2 Dec 03 On 2 Dec 2003, SERVIS LPD detected a sudden, spatially distinct enhancement of lowenergy protons VG04-190-25 Low energy protons (1-12 MeV) enhanced first Enhancement in higher energy protons (12-25 MeV; 25-50 MeV) occurred after a delay No discernable activity in electrons SAA proton flux was also enhanced

Proton Flux Enhancement Persistent for Several Days p1 -- 1.5-12 M ev Measured Trapped Proton Data p2 -- 13-25 M ev 2 Dec 3 Dec 2 Dec 03 p3 -- 25-37 M ev 1.0E+07 1.0E+07 1.0E+06 p4 -- 38-53 MeV p5 -- 53-96 MeV p6 -- 96-150 MeV 1.0E+06 Measured Trapped Proton Data 3 Dec 03 VG04-190-26 p1 -- 1.5-12 M ev p2 -- 13-25 M ev p3 -- 25-37 M ev p4 -- 38-53 M ev p5 -- 53-96 MeV p6 -- 96-150 M ev Proton Flux (cm-2 s-1) 1.0E+05 1.0E+04 1.0E+03 1.0E+02 Proton Flux (cm-2 s-1) 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00 UT (hh:mm) 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm) 1.0E+07 1.0E+06 4 Dec Measured Trapped Proton Data 4 Dec 03 p1 -- 1.5-12 M ev p2 -- 13-25 M ev p3 -- 25-37 M ev p4 -- 38-53 MeV p5 -- 53-96 MeV p6 -- 96-150 M ev 1.0E+07 1.0E+06 5 Dec Measured Trapped Proton Data 5 Dec 03 p1 -- 1.5-12 M ev p2 -- 13-25 M ev p3 -- 25-37 M ev p4 -- 38-53 MeV p5 -- 53-96 MeV p6 -- 96-150 M ev Proton Flux (cm-2 s-1) 1.0E+05 1.0E+04 1.0E+03 1.0E+02 Proton Flux (cm-2 s-1) 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm) 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm)

GOES Proton Data 1-7 Dec 03 VG04-190-27 GOES also detected enhanced proton flux simultaneously Same delay between low and high energy proton enhancement GOES satellite in geosynchronous orbit

Proton Enhancement Time History VG04-190-28 Low-energy proton flux rose suddenly (within hours) and decayed over several days Higher energy protons exhibited quick initial decay, but longer secondary decay 1.E+05 Temporal History of Proton Storm 1.E+04 1-12 MeV 12-25 MeV 25-37 MeV Counts 1.E+03 1.E+02 1.E+01 1.E+00 0 10 20 30 40 50 60 70 80 90 100 110 Time (hrs)

Spatial Distribution of Enhancement Enhancement is occurring within the auroral ring at the north and south poles Structure is present within the polar regions VG04-190-29 1.E+07 SAA Proton Flux (cm-2 s-1) 1.E+06 1.E+05 1.E+04 1.E+03 1.E+02 auroral ring - auroral ring - north pole south pole 1.E+01 8:00 10:00 12:00 14:00 16:00 UT (hh:mm)

Electron Activity VG04-190-30 Electron activity is not as distinct Possible spatial distortions in SAA Possible enhancement and spatial structure at poles 1.0E+08 e1 -- 0.3-1.5 MeV 2 Dec Measured Trapped Electron Data e2 -- 1.7-3.4 MeV 3 Dec 2 Dec 03 e3 -- 3.4-6.6 MeV 1.0E+08 e4 -- >6.6 MeV Measured Trapped Electron Data 2 Dec 03 e1 -- 0.3-1.5 MeV e2 -- 1.7-3.4 MeV e3 -- 3.4-6.6 MeV e4 -- >6.6 MeV Electron Flux (cm-2 s-1) 1.0E+07 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 8:00 10:00 12:00 14:00 16:00 UT (hh:mm) Electron Flux (cm-2 s-1) 1.0E+07 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 16:00 18:00 20:00 22:00 0:00 UT (hh:mm)

GOES Electrons VG04-190-31 GOES electron data quiet on 2-5 Dec Electron activity observed on 5-7 Dec

SERVIS Electron Data 1/2 1.0E+08 2 Dec Measured Trapped Electron Data 2 Dec 03 e1 -- 0.3-1.5 MeV e2 -- 1.7-3.4 MeV e3 -- 3.4-6.6 MeV e4 -- >6.6 M ev 1.0E+08 3 Dec Measured Trapped Electron Data 3 Dec 03 VG04-190-32 e1 -- 0.3-1.5 MeV e2 -- 1.7-3.4 MeV e3 -- 3.4-6.6 MeV e4 -- >6.6 M ev 1.0E+07 1.0E+07 Electron Flux (cm-2 s-1) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 Electron Flux (cm-2 s-1) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00 UT (hh:mm) 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm) e1 -- 0.3-1.5 MeV Measured Trapped Electron Data e2 -- 1.7-3.4 MeV 4 Dec 5 Dec 4 Dec 03 e3 -- 3.4-6.6 MeV 1.0E+08 1.0E+08 e4 -- >6.6 M ev Measured Trapped Electron Data 5 Dec 03 e1 -- 0.3-1.5 MeV e2 -- 1.7-3.4 MeV e3 -- 3.4-6.6 MeV e4 -- >6.6 M ev 1.0E+07 1.0E+07 Electron Flux (cm-2 s-1) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 Electron Flux (cm-2 s-1) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm) 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm)

SERVIS Electron Data 2/2 VG04-190-33 e1 -- 0.3-1.5 MeV 6 Dec Measured Trapped Electron Data e2 -- 1.7-3.4 M ev 7 Dec 6 Dec 03 e3 -- 3.4-6.6 MeV 1.0E+08 1.0E+08 e4 -- >6.6 M ev Measured Trapped Electron Data 7 Dec 03 e1 -- 0.3-1.5 MeV e2 -- 1.7-3.4 MeV e3 -- 3.4-6.6 MeV e4 -- >6.6 M ev 1.0E+07 1.0E+07 Electron Flux (cm-2 s-1) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 Electron Flux (cm-2 s-1) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm) 1.0E+01 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 UT (hh:mm)

Summary and Conclusions VG04-190-34 SERVIS-1 LPD has several performance goals that have now been demonstrated on orbit: Single sensor to detect protons, electrons, alphas, heavy ions Large throughput (AΩ) results in high count rates, efficient detection of small populations of particles, good counting statistics High count rate does not saturate during solar storms Good particle discrimination misassignment of low energy electrons as low energy protons is a chronic problem with most flight sensor designs electrons outnumber protons by 10x to >100x proton channels often get hosed achieving 10-3 or 10-4 contamination High accuracy calibration and validated sensor model returning fully calibrated data from sensor turn-on PSI (LPD & SDOM) sensors are now returning the high-quality on-orbit radiation data