Solar Forcing of Electron and Ion Auroral Inputs
|
|
|
- Melissa Thompson
- 10 years ago
- Views:
Transcription
1 Solar Forcing of Electron and Ion Auroral Inputs Barbara A. Emery (NCAR), Ian G. Richardson (GSFC), David S. Evans (NOAA), Frederick J. Rich (LL/MIT), Gordon Wilson (AFRL), Sarah Gibson (NCAR), Giuliana detoma (NCAR), Terry Onsager (NOAA), and Jiuhou Lei (U CO) HEPPA Oct 2009, Boulder
2 ABSTRACT We assess the contribution of solar forcing from the interplanetary magnetic field (IMF) B and solar wind velocity (Vsw) on the auroral inputs from intercalibrated NOAA and DMSP satellite-track in-situ particle measurements. Periodicities in Vsw and the global electron (Pe) and ion power (Pi) are calculated using Lomb-Scargle (L-S) and wavelet analyses. We examine two different solar minimum periods in a broader context, including radiation belt electrons >2 MeV. The first Whole Sun Month (WSM) interval ( ) had a strong solar magnetic dipole. Strong 'semiannual' equinoctial periodicities of ~20% variation in Vsw and 40% variation in Pe were found. In the present solar minimum, the solar magnetic field is weaker with larger quadrupole components during the Whole Heliospheric Interval (WHI, ). Strong 9-d amplitudes of ~30% variation in Vsw and ~40% variation in Pe and Pi were found. This 9-d periodicity was also found in the IMF B, in the CHAMP neutral density at 400 km, and in the outer radiation belt electrons >2 MeV. Solar periodicities are also examined using the available parameters during previous solar minima in and in
3 Estimates of the electron hemispheric power (HPe) into the auroral regions from particle detectors on NOAA and DMSP satellites were inter-calibrated over 31 years and 24 satellites.
4 The electron hemispheric power (HPe) is found in both hemispheres on an hourly basis. The sum of the Northern and Southern hemispheres is the auroral electron power (Pe). Uncalibrated HPe Calibrated HPe
5 The ion hemispheric power (HPi) is found from 5 NOAA SEM-2 satellites as HPi=Hpt-Hpe (<20keV) Arrows show high voltage gain increases for N16. Baseline is set to N12 or ~2x too high. old new real values; baseline increased to agree with DMSP ions <20 kev
6 Contributions of Solar Wind Structures to Auroral Power
7 Average hourly Vsw attributed to solar wind structure as 27-day averages
8 Average hourly IMF attributed to solar wind structure as 27-day averages
9 Average hourly Pe attributed to solar wind structure as 27-day averages
10 Correlation of Pe with Vsw B Transient fit higher than HSS+slow for Bz<0, lower for Bz>0, so an increase in B (or Bz) is more,less effective for Bz<0,>0.
11 Solar Rotational Periodicities in the total Vsw, Pe, and Pi Largest amplitudes in Descending (D) and Minimum (N) phases of the solar cycle.
12 Two Solar Minimum Comparisons
13 1996 WSM and 2008 WHI Minima SOHO/EIT images (a-d) show coronal holes as dark regions in extreme-ultraviolet emission. Radiation belt electrons >2 MeV (i-j) initially decrease with pressure pulses at the leading edges of HSS, and then are high until the next leading edge pressure pulse. [Gibson et al., JGR, 2009]
14 WSM and WHI in Context Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt electrons in (d) increases, possibly because of lower loss rates (Dsw less).
15 Magnetic field (-15%) & Solar wind speed (+8%) -15% Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt electrons in (d) increases, possibly because of lower loss rates (Dsw less).
16 Solar wind density (-35%) & Solar wind speed (+8%) -35% Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt electrons in (d) increases, possibly because of lower loss rates (Dsw less).
17 Auroral Power (-5%) & Solar wind speed (+8%) -5% Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt electrons in (d) increases, possibly because of lower loss rates (Dsw less).
18 Radiation belt (x3.4) & Solar wind speed (+8%) X3.4 Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt electrons in (d) increases, possibly because of lower loss rates (Dsw less).
19
20
21 WSM in 9 Carrington Rotations sa
22 WHI in 9 Carrington Rotations sa
23 Wavelet Analyses
24 Wavelet analysis %
25 Solar Minima are Similar Whole Sun Month ( ) Monthly SS#=0.9 4% CME, 47% HSS, 49% slow speed wind Pe ~23.3 GW Whole Heliospheric Interval ( ) monthly SS#=0.5 4% CME, 46% HSS, 50% slow speed wind Pe ~22.1 GW (-5%)
26 Solar Minima are Different SC Strong dipole solar magnetic field Big Coronal Holes, weak low-latitude extensions Vsw periodicities: 27, 13, 9-d ~45, 21, 16 km/s IMF B ~4.7nT; Vsw ~415 km/s; Dsw ~8 #/cm 3 Outer radiation belt depressed in magnitude SC Weaker dipolar solar magnetic field (-35% polar magnetic flux) Small Coronal Holes, large low-latitude extensions Vsw bimodal with periodicities: 27, 13, 9-d ~51, 45 (x2), 48 (x3) km/s IMF B ~4.0nT (-15%); Vsw ~448 km/s (+8%); Dsw ~5 #/cm 3 (-35%) Outer radiation belt pumped up (~3.4x, +75% log)
27 Solar Forcing Transients contribute ~40% and ~6% to Pe in solar maximum and minimum, respectively. Transients represent the largest B values, and are more effective in producing Pe during Bz negative conditions, and less effective in producing Pe during Bz positive conditions than HSS and slow-speed wind. HSS contribute ~57% and ~32% to Pe in descending and solar maximum phases. HSS determine the structure of the total Vsw or Pe, and contribute the most to periodicities. Solar minima in 1996 and 2008 are different in solar magnetic fields, coronal hole distributions, Vsw distributions and periodicities, and solar wind densities which lead to profound effects in the Earth s radiation belts, aurora, magnetic activity, and upper atmosphere. The semi-annual amplitudes from Lomb analyses were large ~ for Vsw and Pe. In ~1996 (WSM), the Vsw sa periods peaked in the equinoxes, enhancing the normal equinoctial peaks in Pe from Russell- McPherron mechanisms, etc. The semi-annual amplitudes were absent or weak ~ (WHI). The 9-day periodicities in Vsw (especially in HSS), Pe and Pi seen after 2003 were strong in 2005 and 2008 (WHI), and were absent or weak ~ (WSM). They are also present in Kp, the neutral thermosphere density in WHI, TEC (Lei et al., GRL, 2008), and infrared [NO] and [CO2] cooling (Mlynczak et al., GRL, 2008), and are absent or weak in SEE flux, and 10.7 cm solar flux (Lei et al., JGR, 2008). 9-day periods also in 1976 and 1983.
28 References Emery et al. (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion aurora hemispheric power, J. Geophys. Res., 113, A06311, doi: /2007ja Emery, Richardson, Evans, and Rich (2009), Solar wind structure sources and periodicities of auroral electron power over three solar cycles, J. Atmos. Terr. Phys., HSS Special Issue, doi: /j.jastp Gibson, S. E., Kozyra, J. U., de Toma, G., Emery, B. A., Onsager, T., Thompson, B. J., 2009, If the sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals. J. Geophys. Res., accepted June Lei, J., Thayer, J. P. Forbes, J. M., Sutton, E. K., Nerem, R. S., Temmer, M., Veronig, A. M., 2008, Global thermospheric density variations caused by high-speed solar wind streams during the declining phase of solar cycle 23. J. Geophys. Res., 113, A11303, doi: /2008ja
Unusual declining phase of solar cycle 23: Weak semi-annual variations of auroral hemispheric power and geomagnetic activity
Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L22102, doi:10.1029/2009gl040825, 2009 Unusual declining phase of solar cycle 23: Weak semi-annual variations of auroral hemispheric power
SPACE WEATHER INTERPRETING THE WIND. Petra Vanlommel & Luciano Rodriguez
SPACE WEATHER INTERPRETING THE WIND Petra Vanlommel & Luciano Rodriguez THE SUN LOSES ENERGY Radiation Mass Particles THE SUN LOSES ENERGY PHYSICAL REPHRASING Total Solar Irradiance Solar Wind Fast Particles
Studies on the ionospheric region during low solar activity in Brazil
Studies on the ionospheric region during low solar activity in Brazil Claudia M. N. Candido National Institute for Space Research - INPE Brazil 1 Plasma Bubbles-Spread-F OI 630.0-nm Peak at 250 km - F-layer
EMİNE CEREN KALAFATOĞLU EYİGÜLER
EMİNE CEREN KALAFATOĞLU EYİGÜLER SPACE ENVIRONMENT UZB411E 2015-2016 FALL ROOM: 322 / THIRD FLOOR UPPER ATMOSPHERE AND SPACE WEATHER LAB OFFICE HOURS: EVERY TUESDAY AND WEDNESDAY BETWEEN 15-17 FOR OTHER
Space Weather Prediction Research and Services for China Manned Space Mission
Space Weather Prediction Research and Services for China Manned Space Mission Siqing Liu National Space Science Center, CAS Center for Space Science and Applied Research, CAS Outline I. General information
Keywords: Geomagnetic storms Dst index Space Weather Recovery phase.
MAGNETOSPHERE BEHAVIOUR DURING THE RECOVERY PHASE OF GEOMAGNETIC STORMS JESÚS AGUADO, CONSUELO CID, YOLANDA CERRATO, ELENA SAIZ Departamento de Física. Universidad de Alcalá, E-28871 Alcalá de Henares,
Met Office Space Weather Operations and R&D
Met Office Space Weather Operations and R&D David Jackson Mark Gibbs, Suzy Bingham, Francois Bocquet, Edmund Henley, Sophie Murray WMO / ISES Meeting, August 9-10 2014, Moscow, Russia Met Office Motivation?
The Effect of Space Weather Phenomena on Precise GNSS Applications
FUGRO SATELLITE POSITIONING Doc. Ref.: A12321850TCBRC1 The Effect of Space Weather Phenomena on Precise GNSS Applications December 2014 PUBLIC Table of contents The Effect of Space Weather Phenomena on
SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS
SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS Kalevi Mursula, Ville Maliniemi, Timo Asikainen ReSoLVE Centre of Excellence Department of
Space Weather: An Introduction C. L. Waters. Centre for Space Physics University of Newcastle, Australia
Space Weather: An Introduction C. L. Waters Centre for Space Physics University of Newcastle, Australia 1 Outline Space weather: Conditions on the Sun and in the solar wind, magnetosphere, ionosphere and
Using spacecraft measurements ahead of Earth in the Parker spiral to improve terrestrial space weather forecasts
SPACE WEATHER, VOL. 9,, doi:10.1029/2010sw000627, 2011 Using spacecraft measurements ahead of Earth in the Parker spiral to improve terrestrial space weather forecasts D. L. Turner 1,2 and X. Li 1,2 Received
Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations
Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013631, 2009 Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured
Solar Storms and Northern lights - how to predict Space Weather and the Aurora
Solar Storms and Northern lights - how to predict Space Weather and the Aurora Pål Brekke Norwegian Space Centre/UNIS Pål Brekke torsdag 12. mars 15 Fleet of satellites watching the Sun Stereo SDO SOHO
SINP SPACE MONITORING DATA CENTER PORTAL
SINP SPACE MONITORING DATA CENTER PORTAL Parunakian D.A. 1, Kalegaev V.V. 2, Bobrovnikov S.Yu. 2, Barinova W.O. 2 1 Moscow State University Skobeltsyn Institute of Nuclear Physics 119991, Russia, e-mail:
Solar Irradiance Variability Observed During Solar Cycle 23
Solar Irradiance Variability Observed During Solar Cycle 23 Introduction Solar Cycle Results for Climate Change Solar Cycle Results for Space Weather Tom Woods LASP / University
Simultaneous Heliospheric Imager and Interplanetary Scintillation observations of CMEs and CIRs
Simultaneous Heliospheric Imager and Interplanetary Scintillation observations of CMEs and CIRs Gareth D. Dorrian ([email protected]) 1, Andy R. Breen 1, Jackie A. Davies 2, Alexis P. Rouillard 3, Mario
The solar wind (in 90 minutes) Mathew Owens
The solar wind (in 90 minutes) Mathew Owens 5 th Sept 2013 STFC Advanced Summer School [email protected] Overview There s simply too much to cover in 90 minutes Hope to touch on: Formation of the
Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity
Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure
Ionospheric Research with the LOFAR Telescope
Ionospheric Research with the LOFAR Telescope Leszek P. Błaszkiewicz Faculty of Mathematics and Computer Science, UWM Olsztyn LOFAR - The LOw Frequency ARray The LOFAR interferometer consist of a large
WELCOME to Aurorae In the Solar System. J.E. Klemaszewski
WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets
Solar Activity and Earth's Climate
Rasmus E. Benestad Solar Activity and Earth's Climate Second Edition Published in association with Springer Praxis ids Publishing Publisl PRAXI Chichester, UK Contents Preface to the second edition Preface
Solar Wind: Theory. Parker s solar wind theory
Solar Wind: Theory The supersonic outflow of electrically charged particles, mainly electrons and protons from the solar CORONA, is called the SOLAR WIND. The solar wind was described theoretically by
Space Weather Measurements. Mary Kicza Assistant Administrator NOAA Satellite & Info. Service (NESDIS) Space Weather Enterprise Forum
Continuity of Critical Space Weather Measurements Mary Kicza Assistant Administrator NOAA Satellite & Info. Service (NESDIS) Space Weather Enterprise Forum May 19, 2009 NOAA Space Weather Requirements
A Beginner s Guide to Space Weather and GPS Professor Paul M. Kintner, Jr. with acknowledgements to
A Beginner s Guide to Space Weather and GPS Professor Paul M. Kintner, Jr. with acknowledgements to M. Psiaki, T. Humphreys, A. Cerruti, B. Ledvina, A. Mannucci, and E. R. de Paula I. Introduction This
Coronal expansion and solar wind
Coronal expansion and solar wind The solar corona over the solar cycle Coronal and interplanetary temperatures Coronal expansion and solar wind acceleration Origin of solar wind in magnetic network Multi-fluid
Satellite Measurements of Solar Spectral Irradiance
Satellite Measurements of Solar Spectral Irradiance LASP University of Colorado [email protected] March 2006 1 Talk Outline Motivation for Solar Spectral Irradiance solar energy input climate
Coronal Heating Problem
Mani Chandra Arnab Dhabal Raziman T V PHY690C Course Project Indian Institute of Technology Kanpur Outline 1 2 3 Source of the energy Mechanism of energy dissipation Proposed mechanisms Regions of the
Relationship between F2 layer critical frequency and solar activity indices during different solar epochs
Indian Journal of Radio & Space Physics Vol 42, April 2013, pp 73-81 Relationship between F2 layer critical frequency and solar activity indices during different solar epochs S O Ikubanni 1,$,*, B O Adebesin
Improved polar HF propagation using nowcast and forecast space weather parameters
in 10 th International Ionospheric Effects Symposium, May 7-9, 2002, ed. J.M. Goodman, 364-371 1 Improved polar HF propagation using nowcast and forecast space weather parameters W. Kent Tobiska, Space
How To Understand Space Weather
GOES Data and Products in the Space Weather Prediction Center and National Geophysical Data Center Mary Shouldis Satellite Data Product Development Team Lead NGDC/University of Colorado/CIRES Putting Science
Anomalous variations of NmF2 over the Argentine Islands: a statistical study
Ann. Geophys., 27, 1363 1375, 29 www.ann-geophys.net/27/1363/29/ Author(s) 29. This work is distributed under the Creative Commons Attribution 3. License. Annales Geophysicae Anomalous variations of NmF2
Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction
Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.
Correlation of GEO Communications Satellite Anomalies and Space Weather Phenomena: Improved Satellite Performance and Risk Mitigation
Correlation of GEO Communications Satellite Anomalies and Space Weather Phenomena: Improved Satellite Performance and Risk Mitigation Whitney Q. Lohmeyer 1 and Kerri Cahoy 2 MIT, Cambridge, MA, 02139 and
The Sun: Our nearest star
The Sun: Our nearest star Property Surface T Central T Luminosity Mass Lifetime (ms) Value 5500K 15x10 6 K 2 x 10 33 ergs 4 x 10 33 grams 10 billion years Solar Structure Build a model and find the central
Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI)
Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L01101, doi:10.1029/2008gl036373, 2009 Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI) Thomas
Space Weather: Forecasting & Impacts on Critical Infrastructure
Space Weather: Forecasting & Impacts on Critical Infrastructure Dr. Genene Fisher Senior Advisor for Space Weather National Weather Service AMS Washington Forum 12 April 2012 Outline Solar Activity Update
Activities of the Japanese Space Weather Forecast Center at Communications Research Laboratory
J. RADIAT. RES., 43: SUPPL., S53 S57 (2002) Activities of the Japanese Space Weather Forecast Center at Communications Research Laboratory SHINICHI WATARI 1 * and FUMIHIKO TOMITA 1 Space weather / ISES/SEP
INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION. Lewis Thompson W5IFQ September 27, 2011
INTRODUCTION TO SOLAR WEATHER & HF PROPAGATION Lewis Thompson W5IFQ September 27, 2011 PRESENTATION Ionospheric propagation NVIS Long-Range Frequency Selection (Critical Frequency & MUF) Propagation modeling
Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth
Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)
Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission
Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP
JPL ANOMALY ISSUES. Henry B. Garrett Jet Propulsion Laboratory California Institute of Technology Pasadena, CA, 91109
JPL ANOMALY ISSUES Henry B. Garrett Pasadena, CA, 91109 Space Weather Anomaly Concerns for JPL Robotic Mission AGENDA Overview of Space Weather Anomalies on JPL Missions Space Weather Products used by
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
The following words and their definitions should be addressed before completion of the reading:
Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center
Solar Irradiance Variability
Solar Radiative Output and its Variability Claus Frölich and Judith Lean Preethi Ganapathy November 22, 2005 Solar Irradiance Variability Historical Investigations Contemporary Investigations Limitations
Online Solar Databases at NGDC RSTN Solar Radio Databases
Abstract for LWS (Living with a Star) Science Workshop Connecting our Dynamic Sun to the Heliosphere and Geospace, Boulder, Colorado March 23-26, 2004 Online Solar Databases at NGDC RSTN Solar Radio Databases
U.S. DEPARTMENT OF COMMERCE
Space Weather Space Weather Storms from the Sun Storms from the Sun U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service U.S. Department of Commerce National
Solar Energetic Protons
Solar Energetic Protons The Sun is an effective particle accelerator. Solar Energetic Particles (SEPs) are an important hazard to spacecraft systems and constrain human activities in space. Primary radiation
The Extreme Solar Storms of October to November 2003
S.P. Plunkett S.P. Plunkett Space Science Division The Extreme Solar Storms of October to November 2003 AN OVERVIEW OF SOLAR ACTIVITY AND SPACE WEATHER In recent decades, humans have come to rely on space
CSSAR Space Science Cooperation
CSSAR Space Science Cooperation WANG Shuzhi Center for Space Science and Applied Research Chinese Academy of Science(CSSAR) Table of Contents Brief History of CSSAR International Cooperation CAS Strategic
Space Weather Research and Forecasting in CRL, Japan
Space Weather Research and Forecasting in CRL, Japan Maki Akioka Hiraiso Solar Observatory Communications Research Laboratory Contact [email protected] 1 Contents of Presentation 1.Space Weather Observation
Interannual Variability of the Solar Constant
ISSN 38-946, Solar System Research, 212, Vol. 46, No. 2, pp. 17 176. Pleiades Publishing, Inc., 212. Original Russian Text V.M. Fedorov, 212, published in Astronomicheskii Vestnik, 212, Vol. 46, No. 2,
Solar Wind Control of Density and Temperature in the Near-Earth Plasma Sheet: WIND-GEOTAIL Collaboration. Abstract
1 Geophys. Res. Letters, 24, 935-938, 1997. Solar Wind Control of Density and Temperature in the Near-Earth Plasma Sheet: WIND-GEOTAIL Collaboration T. Terasawa 1, M. Fujimoto 2, T. Mukai 3, I. Shinohara
Seeing the Northern Lights Top 5 Tips to Your Success. 01793 752 532
Seeing the Northern Lights Top 5 Tips to Your Success Tip 1: To see the northern lights or aurora borealis it s best to be in the arctic. In the Northern Hemisphere, the auroral zone runs along the northern
APPENDIX D: SOLAR RADIATION
APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working
2. Orbits. FER-Zagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
The heliosphere-interstellar medium interaction: One shock or two?
1 The heliosphere-interstellar medium interaction: One shock or two? John D. Richardson M.I.T. Abstract. The issue of whether a shock forms in the interstellar medium as it approaches the heliopause has
Proton temperature and Plasma Volatility
The microstate of the solar wind Radial gradients of kinetic temperatures Velocity distribution functions Ion composition and suprathermal electrons Coulomb collisions in the solar wind Waves and plasma
Solar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
PIXIE/Polar A Success Story! PIXIE (Polar Ionospheric X-ray Imaging Experiment)
PIXIE/Polar A Success Story! PIXIE (Polar Ionospheric X-ray Imaging Experiment) Norsk Romsenter 8 mai 2008 Polars siste runddans Professor Johan Stadsnes ved Universitet i Bergen er vemodig, men mest stolt
Data Sets of Climate Science
The 5 Most Important Data Sets of Climate Science Photo: S. Rahmstorf This presentation was prepared on the occasion of the Arctic Expedition for Climate Action, July 2008. Author: Stefan Rahmstorf, Professor
A slow mode wave as a possible source of Pi 2 and associated particle precipitation: a case study
Ann. Geophysicae 17, 674±681 (1999) Ó EGS ± Springer-Verlag 1999 A slow mode wave as a possible source of Pi 2 and associated particle precipitation: a case study O. Saka 1; 2, O. Watanabe 2, K. Okada
A study of long-term climatology of ionospheric irregularities by using GPS phase fluctuations at the Brazilian longitudes
Advances in Space Research xxx (2007) xxx xxx www.elsevier.com/locate/asr A study of long-term climatology of ionospheric irregularities by using GPS phase fluctuations at the Brazilian longitudes F.D.
Measurement of Dust Environment around Mercury by MDM (Mercury Dust Monitor) on Board MMO Bepi Colombo
Measurement of Dust Environment around Mercury by MDM (Mercury Dust Monitor) on Board MMO Bepi Colombo SHO SASAKI (NAOJ) Joint MESSENGER BepiColombo Workshop, Boulder 2010-11-03 BepiColombo Mercury Dust
8.1 Radio Emission from Solar System objects
8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio
Earth in the Solar System
Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with
The sun and the solar corona
The sun and the solar corona Introduction The Sun of our solar system is a typical star of intermediate size and luminosity. Its radius is about 696000 km, and it rotates with a period that increases with
Kinetic physics of the solar wind
"What science do we need to do in the next six years to prepare for Solar Orbiter and Solar Probe Plus?" Kinetic physics of the solar wind Eckart Marsch Max-Planck-Institut für Sonnensystemforschung Complementary
SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview
SPACE WEATHER SUPPORT FOR COMMUNICATIONS Overview Ionospheric variability (space weather) significantly impacts ground and space-based communications. In essence, the electrically charged particles of
Real-time space weather forecasts based on neural networks
Real-time space weather forecasts based on neural networks Henrik Lundstedt and Peter Wintoft Swedish Institute of Space Physics, Lund, Sweden Yurdanur Tulunay and Ersin Tulunay Middle East Technical University,
- 1 - Jennifer McClure. To: [email protected]. From: Jennifer McClure ([email protected])
To: [email protected] Jennifer McClure From: Jennifer McClure ([email protected]) 1 st year Physics (F300), Department of Physics, University of Liverpool. - 1 - The Northern Lights;
Solar Wind and Interplanetary Magnetic Field: A Tutorial. C. T. Russell
Solar Wind and Interplanetary Magnetic Field: A Tutorial C. T. Russell Institute of Geophysics and Planetary Physics and Department of Earth and Space Sciences University of California, Los Angles California
REPORT SPACE WEATHER OBSERVING SYSTEMS: CURRENT CAPABILITIES AND REQUIREMENTS FOR THE NEXT DECADE
REPORT ON SPACE WEATHER OBSERVING SYSTEMS: CURRENT CAPABILITIES AND REQUIREMENTS FOR THE NEXT DECADE April 2013 Prepared by the Office of the Federal Coordinator for Meteorological Services and Supporting
Solar wind - atmospheric electricity - cloud microphysics connections to weather
ISSI, Bern, Switzerland January 2015 Solar wind - atmospheric electricity - cloud microphysics connections to weather Mai Mai Lam (BAS) Brian A. Tinsley (University of Texas at Dallas) Outline Aerosols,
WHI Working Group 2A: Quantifying the Quiet Sun / Irradiance for Solar Cycle Minimum (Version 2)
WHI Working Group 2A: Quantifying the Quiet Sun / Irradiance for Solar Cycle Minimum (Version 2) Tom Woods, Phil Chamberlin, Jerry Harder, Rachel Hock, Erik Richard, Marty Snow LASP / University of Colorado
Total radiative heating/cooling rates.
Lecture. Total radiative heating/cooling rates. Objectives:. Solar heating rates.. Total radiative heating/cooling rates in a cloudy atmosphere.. Total radiative heating/cooling rates in different aerosol-laden
CHAPTER 6 THE TERRESTRIAL PLANETS
CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.
Towards an Enhanced Telluric Compensation Methodology
Towards an Enhanced Telluric Compensation Methodology Chijioke Ukiwe & Shamus M c Donnell Hunter M c Donnell Pipelines Services Inc. Presented at AUCSC 2011 by Gord Parker, C.E.T., CP2 Edmonton, Alberta,
