Comparison of atmospheric inoziation models
|
|
|
- David Dickerson
- 10 years ago
- Views:
Transcription
1 Comparison of atmospheric inoziation models
2 Models: basic information Responsible person: Dr. Laurent Desorgher Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-312 Bern, Switzerland Also: Prof. Erwin Flückiger Dr. Fan Lei, QinetiQ, ESA/ESTEC Program basis: GEANT 4 application Physics behind: Monte-Carlo, all included (cascade + thin target) Particles: protons (factor 1.31 to account for α-particles). Energy range: max. energy (currently 1 GeV/nucleon, potentially higher) Claimed validity: the whole range Responsible person: Dr. Ilya Usoskin Sodankylä Geophysical Observatory (Oulu unit), P.O.Box 3, FIN-914 University of Oulu, Finland Also: Dr. Gennady Kovaltsov Ioffe Phys-Tech. Institute, St. Petersburg, Russia Program basis: CORSIKA package Physics behind: Monte- Carlo, the program starts only in the first interaction. Particles: protons and α- particles explicitly Energy range: from 1 MeV - 5 GeV/nucleon Claimed validity: g/cm 2 (-1 km) Responsible person: Dr. Lachezar Mateev, Marussia Bucharova Space Res. Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria Also: Prof. Peter Velinov Program basis: Theoretical model, spherical atmosphere Physics behind: Direct ionization (Thin target), no cascade Particles: protons, α, L, M, H, VH Energy range: 1 MeV 1 GeV Claimed validity: > 16 km (<1 g/cm 2 ) - minimum > 12 km (<18 g/cm 2 ) - maximum
3 Comparison: Polar regions (Pc<1.5 GV) 35 Solar maximum 6 Solar minimum 3 5 Ion. rate (cm 3 sec) Oulu, 1 MV Bern, 1 MV Sofia (max) Ermakov,97 Yu, 22 Neher, 1971 Rosen,85 Ion. rate (cm 3 sec) Bern, 3 MV Oulu, 3 MV Sofia (min) Rosen, 1985 Neher, h (g/cm2) h (g/cm2) Comparison of Bern, Oulu and Sofia models with observations (fragmentary, short balloon flights). Similar for low atmosphere (h>5 g/cm 2 ); Oulu model seems to underestimate ionization, while Bern model seems to overestimate; Sofia model is consistent with observations above 1 g/cm 2
4 Comparison: Equatorial regions (Pc=14-15 GV) Ion. rate (cm 3 sec) Bern, 3 MV Oulu, 3 MV Sofia (min) Neher, 1967 Neher, h (g/cm2) Comparison of Bern, Oulu and Sofia models with balloon-borne observations. Oulu model seems to overestimate with respect to the Bern model; Sofia model underestimates the ionization;
5 Comparison: Ionization at 3 g/cm 2 4 Ionization at 3 g/cm 2 (cm 3 sec) MV 3 MV Neher, 1971 Bern oulu Measur. Neher (1971) Bern model Oulu model max min ratio Measurements were done in Thule (polar region) Oulu model systematically underestimate the ionization and the cycle variation; Bern model seems to overestimate the cycle variation;
6 Comparison: Q-vs-Φ (Pc=7 GV) 25 2 Bern Oulu Ion. rate (cm 3 sec) (MV) The models agree for 7 g/cm 2, more or less agree for 5 g/cm 2, and disagree for 3 g/cm 2
7 Atmospheric profile 25 2 h (km) h (g/cm 2 )
8 Summary Polar Equator Solar max. Bern (whole range) Oulu (>3 g/cm2) Bern (whole range, but > 3 g/cm2) Oulu (>3 g/cm2) Solar min Bern (>5 g/cm2) Oulu (>3 g/cm2) Sofia (< 5 g/cm2) Sofia underestimate Conservative validity range (models agree with each other and with observations): > 5 g/cm 2 (< 7 km) Acceptable validity range : Bern model: the whole range (some questions for polar regions around solar minima) Oulu model: > 3 g/cm 2 (< 1 km) for all conditions Sofia model: < 1 g/cm 2 (> 16 km) (questions for equatorial regions) < 15 g/cm 2 (>12 km) for solar maximum
9 Questions and solutions Questions Oulu model: The program starts only after the first interaction neglect direct ionization (thin target) This leads to underestimate ionization at high altitude (< 3 g/cm 2 ) and underestimate of the Φ-dependence; Bern model: Does the model account for CR (>1 GeV)? can be essential contribution; Indirect account for α-particles (by a constant factor of 1.31) This may lead to overestimate of the Φ-dependence and underestimate of the flux at the equator. Sofia model: Contribution of CR (>1 GeV); heavier species. Recommendations: Oulu: ionization during the first nuclear path length; Bern: Direct account for α-paticles and increase the max energy. Sofia: Increase the energy range and account for heavier species
10 α-particles Flux (GeV/nucleon m 2 sr s) AMS, June E (Gev/nucleon).2.15 AMS, June, CAPRICE, August E (Gev/nucleon) CAPRICE, August 1994 He/p Ratio E (GeV/nucleon) E (GeV/nucleon)
Establishing and Using the real-time Neutron Monitor Database (NMDB)
**FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Establishing and Using the real-time Neutron Monitor Database (NMDB) H. Mavromichalaki, A. Papaioannou,
Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron
Interstellar Cosmic-Ray Spectrum from Gamma Rays and Synchrotron Chuck Naval Research Laboratory, Washington, DC [email protected] Andy Strong Max-Planck-Institut für extraterrestrische Physik,
The World Neutron Monitor Network as a tool for the study of solar neutrons
Ann. Geophysicae 15, 375 386 (1997) EGS Springer-Verlag 1997 The World Neutron Monitor Network as a tool for the study of solar neutrons I. G. Usoskin 1, G. A. Kovaltsov 1, H. Kananen 2, P. Tanskanen 2
Monte Carlo Simulations in Proton Dosimetry with Geant4
Monte Carlo Simulations in Proton Dosimetry with Geant4 Zdenek Moravek, Ludwig Bogner Klinik und Poliklinik für Strahlentherapie Universität Regensburg Objectives of the Study what particles and how much
Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration
Cosmic Ray Astrophysics with AMS-02 Daniel Haas - Université de Genève on behalf of the AMS collaboration Overview of AMS-02 Cosmic ray studies p/he, Z>2, p/e +, γ-rays Comparison AMS vs. GLAST AMS vs.
Aviation Route Dose Calculation and its Numerical Basis
Aviation Route Dose Calculation and its Numerical Basis H.Schraube 1, W.Heinrich 2, G.Leuthold 1, V.Mares 3 and S.Roesler 4 1 GSF - National Research Center for Environment and Health, D-85758 Neuherberg,
Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission
Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP
............... [2] At the time of purchase of a Strontium-90 source, the activity is 3.7 10 6 Bq.
1 Strontium-90 decays with the emission of a β-particle to form Yttrium-90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,
ACCELERATORS AND MEDICAL PHYSICS 2
ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.
SINP SPACE MONITORING DATA CENTER PORTAL
SINP SPACE MONITORING DATA CENTER PORTAL Parunakian D.A. 1, Kalegaev V.V. 2, Bobrovnikov S.Yu. 2, Barinova W.O. 2 1 Moscow State University Skobeltsyn Institute of Nuclear Physics 119991, Russia, e-mail:
Space Users: Status, Requirements and Open Issues
Space Users: Status, Requirements and Open Issues Despite asking a number of key people, I only received 1.5 responses of user requirements... Are space users too busy or just simply happy? :-) I will
Solar Energetic Protons
Solar Energetic Protons The Sun is an effective particle accelerator. Solar Energetic Particles (SEPs) are an important hazard to spacecraft systems and constrain human activities in space. Primary radiation
Cross section, Flux, Luminosity, Scattering Rates
Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...
The Radiation Environment in Space
The Radiation Environment in Space My God, space is radioactive! 1958. A quote attributed to Ernie Ray, a protégé of van Allen, discoverer of the radiation belts surrounding the earth. The problem is serious.
JCAT Project: Monte Carlo Internal Charging Tool(MCICT) status report. Fan Lei (RadMod) & David Rodgers (ESA)
JCAT Project: Monte Carlo Internal Charging Tool(MCICT) status report Fan Lei (RadMod) & David Rodgers (ESA) 1 JUICE Charging Analysis Tools (JCAT) Involving: Kallisto Consultancy (UK) PM: Pete Truscott
UNIVERSITA DEGLI STUDI DI MILANO FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI DOTTORATO DI RICERCA IN FISICA, ASTROFISICA E FISICA APPLICATA
UNIVERSITA DEGLI STUDI DI MILANO FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI DOTTORATO DI RICERCA IN FISICA, ASTROFISICA E FISICA APPLICATA THE CALCULATION OF ATMOSPHERIC MUON FLUX USING THE FLUKA
Titan: The Solar System s Abiotic Petroleum Factory
Titan: The Solar System s Abiotic Petroleum Factory J. Hunter Waite, Ph.D. Institute Scientist Space Science & Engineering Division Southwest Research Institute Titan: The Solar System s Abiotic Petroleum
Testing thermo-acoustic sound generation in water with proton and laser beams
International ARENA Workshop DESY, Zeuthen 17th 19th of May 25 Testing thermo-acoustic sound generation in water with proton and laser beams Kay Graf Universität Erlangen-Nürnberg Physikalisches Institut
Introduction to the Monte Carlo method
Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw
The accurate calibration of all detectors is crucial for the subsequent data
Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved
Solar Forcing of Electron and Ion Auroral Inputs
Solar Forcing of Electron and Ion Auroral Inputs Barbara A. Emery (NCAR), Ian G. Richardson (GSFC), David S. Evans (NOAA), Frederick J. Rich (LL/MIT), Gordon Wilson (AFRL), Sarah Gibson (NCAR), Giuliana
Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.
Chapter 23 Electric Potential 23-1 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy is
Special Theory of Relativity
Special Theory of Relativity In ~1895, used simple Galilean Transformations x = x - vt t = t But observed that the speed of light, c, is always measured to travel at the same speed even if seen from different,
AMS DAQ, TRD DSP Software
AMS DAQ, TRD DSP Software and other Topics Overview Arbeitstreffen, Aachen, Jul. 2011 Andreas Sabellek IEKP - KIT Campus South Supported by the Carl-Zeiss-Foundation AMS on ISS Realtime position: e.g.
2. Orbits. FER-Zagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
Nuclear Physics. Nuclear Physics comprises the study of:
Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions
Chapter 6: Cloud Development and Forms
Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.
SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET
SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET WWW.NAKKA-ROCKETRY.NET February 007 Rev.1 March 007 1 Introduction As part of the design process for a hobby rocket, it is very
On the first Townsend coefficient at high electric field
1 On the first Townsend coefficient at high electric field Yu.I. Davydov Joint Institute for Nuclear Research, 141980, Dubna, Russia arxiv:physics/0409156v2 [physics.ins-det] 18 Sep 2006 Abstract Based
Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions
Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Student Book page 831 Concept Check Since neutrons have no charge, they do not create ions when passing through the liquid in a bubble
GEO protected region: ISON capabilities to provide informational support for tasks of spacecraft flight safety and space debris removal
Russian Academy of Sciences Keldysh Institute of Applied Mathematics GEO protected region: ISON capabilities to provide informational support for tasks of spacecraft flight safety and space debris removal
A radiation weighting factor is an estimate of the effectiveness per unit dose of the given radiation relative a to low-let standard.
Radiological Protection For practical purposes of assessing and regulating the hazards of ionizing radiation to workers and the general population, weighting factors are used. A radiation weighting factor
Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems
WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,
Let s consider a homogeneous medium characterized by the extinction coefficient β ext, single scattering albedo ω 0 and phase function P(µ, µ').
Lecture 22. Methods for solving the radiative transfer equation with multiple scattering. Part 4: Monte Carlo method. Radiative transfer methods for inhomogeneous ouds. Objectives: 1. Monte Carlo method.
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
Satellite Orbital Decay Calculations
IPS RADIO AND SPACE SERVICES Level 15, Tower C 300 Elizabeth Street Sydney, NSW 2000 PO Box 1386 Haymarket, NSW 1240 Australia Tel: +61 2 92138000 Faz: +61 2 92138060 [email protected] www.ips.gov.au Satellite
Diffusion and Fluid Flow
Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass
Charged Particle in a Magnetic Field
Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular
History of the Atom & Atomic Theory
Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations
CSSAR Space Science Cooperation
CSSAR Space Science Cooperation WANG Shuzhi Center for Space Science and Applied Research Chinese Academy of Science(CSSAR) Table of Contents Brief History of CSSAR International Cooperation CAS Strategic
High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions
High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p
Vacuum Evaporation Recap
Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.
Development of on line monitor detectors used for clinical routine in proton and ion therapy
Development of on line monitor detectors used for clinical routine in proton and ion therapy A. Ansarinejad Torino, february 8 th, 2010 Overview Hadrontherapy CNAO Project Monitor system: Part1:preliminary
Uniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons
SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,
Temperature anisotropy in the solar wind
Introduction Observations Simulations Summary in the solar wind Petr Hellinger Institute of Atmospheric Physics & Astronomical Institute AS CR, Prague, Czech Republic Kinetic Instabilities, Plasma Turbulence
Coordinate generators
SPENVIS Upgrades Coordinate generators Merge orbit generator and grid generator: Simplification of model implementation Simplification of model presentation and navigation Orbit generator: Add NORAD Two
On Es-spread effects in the ionosphere connected to earthquakes
Universität Potsdam E. V. Liperovskaya, Claudia-Veronika Meister, M. Parrot, V. V. Bogdanov, N. E. Vasil eva On Es-spread effects in the ionosphere connected to earthquakes NLD Preprints ; 65 On Es-spread
NEW TYPES OF GROUND-BASED AND AIRBORNE MEASURING TOOLS FOR ATMOSPHERIC ELECTRICITY
NEW TYPES OF GROUND-BASED AND AIRBORNE MEASURING TOOLS FOR ATMOSPHERIC ELECTRICITY I.B.Popov, L.G.Sokolenko Voeikov Main Geophysical Observatory, Karbysheva st. 7, Saint-Petersburg, Russia Tel/fax +7 (812)
Studies on the ionospheric region during low solar activity in Brazil
Studies on the ionospheric region during low solar activity in Brazil Claudia M. N. Candido National Institute for Space Research - INPE Brazil 1 Plasma Bubbles-Spread-F OI 630.0-nm Peak at 250 km - F-layer
arxiv:astro-ph/0509450 v1 15 Sep 2005
arxiv:astro-ph/0509450 v1 15 Sep 2005 TESTING THERMO-ACOUSTIC SOUND GENERATION IN WATER WITH PROTON AND LASER BEAMS K. GRAF, G. ANTON, J. HÖSSL, A. KAPPES, T. KARG, U. KATZ, R. LAHMANN, C. NAUMANN, K.
Monday 11 June 2012 Afternoon
Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships
How To Find The Higgs Boson
Dezső Horváth: Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 p. 1/25 Search for Higgs bosons Balaton Summer School, Balatongyörök, 07.07.2009 Dezső Horváth MTA KFKI Research
F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom
Atomic Structure F32 TE STRUCTURE OF ATOMS ATOMS Atoms consist of a number of fundamental particles, the most important are... Mass / kg Charge / C Relative mass Relative Charge PROTON NEUTRON ELECTRON
Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry
Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry John Keightley NSUF 18 May 2010 Acknowledgement: Several discussions with Stefaan Pommé, IRMM, EC-JRC, Geel Some diagrams
Atomic and Nuclear Physics Laboratory (Physics 4780)
Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *
Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris
Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays Stefano Gabici APC, Paris The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single power law -> CR knee at few
Presentation of problem T1 (9 points): The Maribo Meteorite
Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground
Study of electron cloud at MI and slip stacking process simulation
Study of electron cloud at MI and slip stacking process simulation Alexandr S. Valkovich Purpose 1.Understand the slip stacking process which happens in the Main Injector. 2. Calculation of bunch distortion
ASTEROID IMPACT MISSION: DIDYMOS REFERENCE MODEL
headquarters 8-1o rue Mario Nikis 75738 Cedex 15 Paris France www.esa.int ASTEROID IMPACT MISSION: DIDYMOS REFERENCE MODEL Issue 1 Revision Date of Issue 5 05/03/15 Status Released Document Type AD Table
Olga Botner, Uppsala. Photo: Sven Lidström. Inspirationsdagar, 2015-03-17
Olga Botner, Uppsala Photo: Sven Lidström Inspirationsdagar, 2015-03-17 OUTLINE OUTLINE WHY NEUTRINO ASTRONOMY? WHAT ARE NEUTRINOS? A CUBIC KILOMETER DETECTOR EXTRATERRESTRIAL NEUTRINOS WHAT NEXT? CONCLUSIONS
Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions
Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions Ram Tripathi NASA Langley Research Center NIAC 2012 Spring Symposium,
CHM1 Review Exam 12. Topics REDOX
CHM1 Review Exam 12 Topics REDOX REDOX Reactions Oxidation Reduction Oxidizing agent Reducing agent Galvanic (Voltaic) Cells Anode Cathode Salt bridge Electrolyte Half-reactions Voltage o Positive voltages
Swiss Energy Strategy 2050: Research on Photovoltaic Electricity Production. Paper No. 227
Swiss Energy Strategy 2050: Research on Photovoltaic Electricity Production Paper No. 227 PD Dr. Eva Schuepbach, Prof. Urs Muntwyler, Thomas Schott, Monika Jost, Christian Renken, Manuel Lanz Berner Department
AMS COLLABORATION. First Results from the Alpha Magnetic Spectrometer (AMS) Experiment
AMS COLLABORATION Press Release April 3 rd, 2013, Geneva, Switzerland First Results from the Alpha Magnetic Spectrometer (AMS) Experiment The Alpha Magnetic Spectrometer (AMS) Collaboration announces the
Section 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
The Wilson Chamber. Karlsruhe, Fall 2002
The Wilson Chamber Paolo Franzini Università di Roma, La Sapienza Karlsruhe University Karlsruhe, Fall 2002 1. A Dclaimer 2. The Wilson Chamber 3. Cosmic Rays (a) The Positron (b) The Muon (c) V-particles
MATHEMATICAL MODELS Vol. II - Mathematical Models of Nuclear Energy - Yu. A. Svistunov MATHEMATICAL MODELS OF NUCLEAR ENERGY
MATHEMATICAL MODELS OF NUCLEAR ENERGY Yu. A. Svistunov Department of Applied Mathematics and Control Processes, State University of St- Petersburg, Russia Keywords: Nucleus, neutron, nuclear reactor, transfer
Lecture L14 - Variable Mass Systems: The Rocket Equation
J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L14 - Variable Mass Systems: The Rocket Equation In this lecture, we consider the problem in which the mass of the body changes during
Solid State Detectors = Semi-Conductor based Detectors
Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection
Use of Neural Networks for Monitoring Beam Spectrum of Industrial Electron Accelerators
Use of Neural Networks for Monitoring Beam Spectrum of Industrial Electron Accelerators Oleksandr Baiev, Valentine Lazurik and Ievgen Didenko School of Computer Science, V. N. Karazin Kharkiv National
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS
SPATIAL DISTRIBUTION OF NORTHERN HEMISPHERE WINTER TEMPERATURES OVER THE SOLAR CYCLE DURING THE LAST 130 YEARS Kalevi Mursula, Ville Maliniemi, Timo Asikainen ReSoLVE Centre of Excellence Department of
Sintermann discussion measurement of ammonia emission from field-applied manure
Sintermann discussion measurement of ammonia emission from field-applied manure Jan Huijsmans, Julio Mosquera and Arjan Hensen 9 April 2013 During the1990 s the measurement methods for ammonia (NH 3 )
CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign
Name: Period: Due Date: Lab Partners: CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Purpose: Use the CP program from Vernier to simulate the motion of charged particles in Magnetic and Electric Fields
Radiation Hardness Assurance for Space Systems
Radiation Hardness Assurance for Space Systems Christian Poivey SGT-Inc. NASA GSFC 1.0 Introduction... 2 2.0 Radiation Hardness Assurance Overview... 2 3.0 Define the Space Radiation Environment... 4 3.1
Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.
Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation
Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in Real Time
IEEE for Plasma Science, 32, 4, part, 478-488, 2004. Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in Real Time Dorman, L.I., L.A.Pustil nik, A. Sternlieb, I.G.
Physics 30 Worksheet #10 : Magnetism From Electricity
Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron
Ay 122 - Fall 2004. The Sun. And The Birth of Neutrino Astronomy. This printout: Many pictures missing, in order to keep the file size reasonable
Ay 122 - Fall 2004 The Sun And The Birth of Neutrino Astronomy This printout: Many pictures missing, in order to keep the file size reasonable Why Study the Sun? The nearest star - can study it in a greater
AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)
30/4/13 AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG) TENTH MEETING Montréal, 17 to 19 June 2013 Agenda Item 5: Aerodrome observations INCONSISTENCY BETWEEN VISIBILITY AND CMV,
The Extreme Solar Storms of October to November 2003
S.P. Plunkett S.P. Plunkett Space Science Division The Extreme Solar Storms of October to November 2003 AN OVERVIEW OF SOLAR ACTIVITY AND SPACE WEATHER In recent decades, humans have come to rely on space
Hadro-Production Experiments: Impact on T2K and LBNE
Hadro-Production Experiments: Impact on T2K and LBNE Alysia Marino University of Colorado Boulder LBNE Scientific Workshop, Santa Fe, NM April 25-26, 24 2 Outline T2K Datasets used Flux prediction Flux
Aircraft Trajectory Optimization. Aircraft Trajectory Optimization. Motivation. Motivation
Universidad Rey Juan Carlos Departamento de Estadística e Investigación Operativa October 13, 29 Outline Motivation Aircraft equations of motion a Optimal control Acknowledgments References a See references
Proton temperature and Plasma Volatility
The microstate of the solar wind Radial gradients of kinetic temperatures Velocity distribution functions Ion composition and suprathermal electrons Coulomb collisions in the solar wind Waves and plasma
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
Clinical Photon Beams
Dosimetric Characteristics of Clinical Photon Beams Jatinder R Palta PhD University of Florida Department of Radiation Oncology Gainesville, Florida Disclosures Research development grants from Philips
Electron-Muon Ranger (EMR)
Electron-Muon Ranger (EMR) Digitization and Reconstruction François Drielsma Ruslan Asfandiyarov University of Geneva On Behalf of the EMR Group 38 th MICE Collaboration Meeting February 23, 2014 Electron-Muon
