CONTENTS 1 SEMICONDUCTOR DEVICES AND INTEGRATED CIRCUITS 1

Similar documents
Content Map For Career & Technology

Operating Manual Ver.1.1


Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Fundamental Characteristics of Thyristors

MRF175GU MRF175GV The RF MOSFET Line 200/150W, 500MHz, 28V

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

ANALOG & DIGITAL ELECTRONICS

Op Amp Circuit Collection

Transistor Amplifiers

Analog Optical Isolators VACTROLS

Bipolar Transistor Amplifiers

LF442 Dual Low Power JFET Input Operational Amplifier

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Operational Amplifiers

Electronics Technology

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS

Current vs. Voltage Feedback Amplifiers

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM101A LM201A LM301A Operational Amplifiers

ELABOTrainingsSysteme Aus- und Weiterbildung GmbH. Electrical Engineering Electronics Digital Technology.

GenTech Practice Questions

Application Note AN-940

High-Frequency Integrated Circuits

6.101 Final Project Report Class G Audio Amplifier

MAS.836 HOW TO BIAS AN OP-AMP

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

Fundamentals of Microelectronics

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

Relationship between large subject matter areas

Chapter 12: The Operational Amplifier

Analog Signal Conditioning

LM2576R. 3.0A, 52kHz, Step-Down Switching Regulator FEATURES. Applications DESCRIPTION TO-220 PKG TO-220V PKG TO-263 PKG ORDERING INFORMATION

Study Guide for the Electronics Technician Pre-Employment Examination

11: AUDIO AMPLIFIER I. INTRODUCTION

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs

1.1 Silicon on Insulator a brief Introduction

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

Linear Optocoupler, High Gain Stability, Wide Bandwidth

(!' ) "' # "*# "!(!' +,

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Precision Diode Rectifiers

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2

Common-Emitter Amplifier

Operating Manual Ver.1.1

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

LM3900. AN-72 The LM3900: A New Current-Differencing Quad of Plus or Minus Input. Amplifiers. Literature Number: SNOA653

BJT Characteristics and Amplifiers

TDA W Hi-Fi AUDIO POWER AMPLIFIER

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

Electronics Technology

Evaluating AC Current Sensor Options for Power Delivery Systems

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Low Noise, Matched Dual PNP Transistor MAT03

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

Laboratory 4: Feedback and Compensation

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

DESIGN OF FIXED CURRENT SOURCES

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

LM139/LM239/LM339 A Quad of Independently Functioning Comparators

QUESTION BANK FOR. S. Y. B. Sc. ELECTRONICS

LM118/LM218/LM318 Operational Amplifiers

3.4 - BJT DIFFERENTIAL AMPLIFIERS

Application Note 18 March Power Gain Stages for Monolithic Amplifiers AN18-1. Jim Williams

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

APPLICATION NOTE TESTING PV MICRO INVERTERS USING A FOUR QUADRANT CAPABLE PROGRAMMABLE AC POWER SOURCE FOR GRID SIMULATION. Abstract.

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

Thyristor & Power Control Circuits

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY THERMAL SHUTDOWN STBY-GND

Dual 20W Audio Power Amplifier with Mute and Standby Modes

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Vincennes University ELEC 100- Basic Electricity & Electronics ELEC 110-Basic Component & Circuit Analysis

TS321 Low Power Single Operational Amplifier

LM134-LM234 LM334 THREE TERMINAL ADJUSTABLE CURRENT SOURCES. OPERATES from 1V to 40V

TEA1024/ TEA1124. Zero Voltage Switch with Fixed Ramp. Description. Features. Block Diagram

Amplifier Teaching Aid

1ED Compact A new high performance, cost efficient, high voltage gate driver IC family

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P

Design of op amp sine wave oscillators

A Practical Guide to Free Energy Devices

High Voltage Power Supplies for Analytical Instrumentation

Lecture 060 Push-Pull Output Stages (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Photodiode/Phototransistor Application Circuit < E V3 I P I V OUT E V2. Figure 1. Fundamental Circuit of Photodiode (Without Bias)

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Line Reactors and AC Drives

Diodes and Transistors

Bipolar Junction Transistors

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

Power Amplifiers. Introduction to Power Amplifiers. Amplifiers. Module 5

Oscillations and Regenerative Amplification using Negative Resistance Devices

Transcription:

ANALOG AND SWITCHING CIRCUIT DESIGN USING INTEGRATED AND DISCRETE DEVICES J.WATSON CONTENTS SYMBOLS xxi 1 SEMICONDUCTOR DEVICES AND INTEGRATED CIRCUITS 1 1.1 Semiconductor Devices 2 1.1.1 Diodes and Zener Diodes 2 1.1.2 The Bipolar Transistor 5 1.1.3 The Field-Effect Transistor 7 1.1.4 The Four-Layer (Shockley) Diode 8 1.1.5 The Thyristor 9 1.2 Voltage and Current Sources and Modeling 9 1.3 Summary 12 Questions 12 Problems 13 2 PHYSICAL PRINCIPLES AND De CHARACTERISTICS OF DIODES AND TRANSISTORS 15 2.1 The PN Junction 18 2.1.1 Application of a Reverse Voltage 19 2.1.2 Application of a Forward Voltage 21 2.2 The Semiconductor Diode 21 2.3 The Junction Transistor 22 2.3.1 Transistor Characteristics 26 2.3.2 The Output Characteristic 27 2.3.3 Leakage Currents 30 2.3.4 Variation of Leakage with Temperature 31 2.3.5 Transistor Fabrication 32 2.3.6 The Ebers-Moli Equations 33 2.4 Summary 36 2.4.1 Important Equations 36 References 37 Questions 37 Problems 37 3 SMALL-SIGNAL PARAMETERS AND EQUIVALENT CIRCUITS 39

3 SMALL-SIGNAL PARAMETERS AND EQUIVALENT CIRCUITS 39 3.1 The h-parameter System 40 3.1.1 The h-parameter Equivalent Circuit 44 3.1.2 Variations of h-parameters 45 3.2 The Hybrid- Equivalent Circuit 46 3.2.1 The Hybrid-7T Parameters 48 3.3 Typical Parameter Values 53 3.4 Summary 54 3.4.1 Important Equations 54 References 56 Questions 56 Problems 56 4 THE TRANSISTOR AS AN AMPLIFIER 59 4.1 Biasing of Transistors 61 4.1.1 Temperature Variations and Stability Factor 65 4.1.2 Thermal Runaway 70 4.2 Gain and Resistance Calculations (Hybrid- Parameter Method) 72 4.3 Gain and Resistance Calculations (h-parameter Method) 77 4.4 Summary 84 4.4.1 Important Equations 84 Questions 85 Problems 86 5 CIRCUIT DESIGN AND PERFORMANCE 89 5.1 Frequency Response 90 5.1.1 Low-Frequency Response 91 5.1.2 High-Frequency Response 94 5.1.3 A Simple Design Example 97 5.2 Discussion on Single-Stage CE Design 102 5.3 Feedback 104 5.3.1 Voltage-Derived Feedback 105 5.3.2 Current-Derived Feedback 112 5.3.3 Output Impedances 112 5.3.4 Current and Power Gain 113 5.3.5 The Degenerate Common-Emitter Stage 114 5.3.6 A Design Example 116 5.3.7 Compound Pairs 119 5.3.8 Stability of Feedback Amplifiers 123 5.4 DC Amplification 128 5.4.1 The Difference Amplifier 132 5.4.2 The Difference Amplifier-Dc Analysis 136 5.4.3 Simple Design Example 138 5.4.4 The "Long-Tail" Current Source 141 5.4.5 A Second Stage and CM Feedback 143 5.4.6 Level Shifting and Signal Feedback 144 5.4.7 Further Properties of the Difference Amplifier 147 5.5 The Transconductance Multiplier 150 5.6 Summary 156 References 156 Questions 157 Problems 158 6 NOISE 163 6.1 Symbols 163 6.2 Noise Sources 164 6.2.1 Noise Source Equivalents 165 6.3 Bipolar Transistor Noise Formulation 166 6.4 Flicker and High-Frequency Noise 169 6.5 The Two-Noise-Generator Equivalent 170 6.6 Noise Factor 171 6.6.1 Noise Factor Minimization 172 6.6.2 Numerical Considerations 173 6.7 The Noise Resistance Formulation 179 6.7.1 Numerical Considerations 181 6.8 Feedback Stages 183 6.9 "Pink Noise" 186 6.10 "Burst" Noise 187 6.11 Concluding Comments 187 References 190

Questions 191 Problems 191 7 OPERATIONAL AMPLIFIERS AND OTHER MICROCIRCUITS 195 7.1 Some Monolithic Design Techniques 196 7.1.1 The 741 Monolithic Operational Amplifier 211 7.2 Frequency Response 212 7.2.1 Slewing Rate and Settling Time 219 7.3 The Operational Amplifier Equivalent Circuit 220 7.3.1 The Inverting Configuration 223 7.3.2 Example 225 7.3.3 Offset, Drift, Noise and CMA for the Inverting Configuration 227 7.3.4 The Noninverting Configuration 230 7.3.5 Offset, Drift, Noise and CMA for the Noninverting Configuration 232 7.3.6 Comparison of the Inverting and Noninverting Configurations 235 7.3.7 Design Example 235 7.3.8 Basic Applications of the Inverting Configuration 238 7.3.9 Example 240 7.3.10 Basic Applications of the Noninverting Configuration 242 7.4 The Difference Amplifier 243 7.4.1 The Instrumentation Amplifier 246 7.5 Some Techniques of Low Offset, Bias and Drift Design 248 7.5.1 Chopper Amplifier Techniques 251 7.6 Supply-Insensitive Current and Voltage Sources 259 7.6.1 A Design Example 260 7.7 Current Amplifiers 264 7.8 Noise in Operational Amplifiers 271 7.8.1 Noise Calculation Example 274 References 276 Questions 277 Problems 278 8 FREQUENCY-DEPENDENT CIRCUITS 283 8.1 Frequency-Selective Amplifiers 284 8.2 Sinusoidal Oscillators 297 8.2.1 Waveform Generators 302 8.2.2 The Voltage-Controlled Oscillator 303 8.3 The Phase-Locked Loop 304 References 306 Questions 307 Problems 308 9 POWER AMPLI FIERS 309 9.1 Operating Boundaries 309 9.2 Class A Operation 312 9.2.1 Simple Design Example 322 9.3 Class B Operation 324 9.3.1 Push-Pull Operation 327 9.4 Distortion 329 9.5 Heat Dissipation 333 9.5.1 Simple Design Example 334 9.5.2 Transient Operation 335 9.6 The Output Transformer² 335 9.7 The Driver Stage 338 9.8 Servo-Motor Drives 341 9.9 Transformerless Complementary Power Amplifiers 343 9.9.1 Simple Design Example 346 9.9.2 Quasi-Complementary Power Amplifiers 348 9.10 Power Microcircuits 348 9.11 Summary of Power Amplifiers 351 References 353 Questions 353 Problems 354 10 THE BIPOLAR TRANSISTOR AS A SWITCH 357 10.1 Switching Speed 359 10.2 Transistor Choppers for De Amplifiers 365 10.3 The Pulse-Width Modulated Power Amplifier 368 10.4 Regenerative Switching 371 10.4.1 The Multivibrator 372

10.4.1 The Multivibrator 372 10.4.2 Simple Design Example 377 10.4.3 The Bistable Circuit 377 10.4.4 The Monostable Circuit 378 10.4.5 Practical Aspects of Regenerative Switches 379 10.4.6 Other Forms of Regenerative Switching Circuits 382 10.5 The Totem-Pole Power Buffer 386 10.6 The Schmitt Trigger 388 10.6.1 Comparators 390 10.7 The Type 555 Monolithic Timer Module 395 10.8 Inductively-Coupled Regenerative Circuits 398 10.8.1 Transistor Inverters 401 10.8.2 Simple Design Example 405 10.8.3 Further Notes on the Transistor Inverter 406 10.8.4 The Two- Transformer Inverter 407 10.9 Power Switching 409 10.10 Capacitive Load 413 References 417 Questions 417 Problems 418 11 THE FIELD-EFFECT TRANSISTOR-DISCRETE AND INTEGRATED 421 11.1 The Junction FET 421 11.1.1 The Equivalent Circuit 426 11.1.2 Typical FET Parameters and their Variations 427 11.1.3 Biasing the FET 428 11.1.4 Simple Bias Design Example 430 11.1.5 The Common-Source Amplifier Stage 431 11.1.6 Design Example (Continued) 434 11.1.7 The Common-Drain or Source-Follower Stage 435 11.1.8 The Degenerate cs Stage 437 11.1.9 The Source Bypass Capacitor 438 11.1.10 The Bootstrap Follower 438 11.2 Distortion in FET Stages 440 11.3 Noise in Junction FETS 442 11.4 The Junction FET Difference Amplifier 447 11.4.1 The BiFET Operational Amplifier 449 11.5 The Voltage-Controlled Resistor 452 11.6 The FET as a Chopper 454 11.7 The FET Analog Gate 456 11.8 The Current limiter 457 11.9 The Insulated Gate FET or IGFET 459 11.9.1 IGFET Models and Parameters 463 11.9.2 Application of the IGFET 465 11.9.3 The IGFET Current Mirror and Difference Amplifier 466 11.9.4 Active Loads and Complementarity 469 11.9.5 An IGFET/Bipolar Operational Amplifier 475 11.10 The Sample-and-Hold Circuit 478 11.11 Further IGFET Applications 481 11.12 Integrated Circuits 483 11.13 The Power IGFET 485 11.14 Modern IGFET Developments 492 11.14.1 Charge Control Devices 495 References 499 Questions 500 Problems 501 12 TRIGGERS, THYRISTORS AND TRIACS 507 12.1 The Unijunction Transistor 507 12.2 The Four-Layer or Shockley Diode 513 12.2.1 The Diac 515 12.2.2 The Programmable Unijunction Transistor 515 12.2.3 Other Four-Layer Switching Devices 517 12.3 The Thyristor or Silicon Control/ed Rectifier 517 12.3.1 Thyristor Firing Requirements 520 12.3.2 DC Thyristor Circuits 521 12.3.3 The dv/dt and di/dt Problems 522 12.3.4 Triggering 522 12.3.5 AC Thyristor Circuits 524 12.4 The Triac 526 12.4.1 Ful/-Wave dv/dt and di/dt Problems 530 12.4.2 Trigger Circuit Isolation 531 12.5 Gate Turn-off Devices 535

12.5 Gate Turn-off Devices 535 12.6 Summary 536 References 537 Questions 537 Problems 537 13 SEMICONDUCTOR TRANSDUCERS 541 13.1 Temperature Transducers 541 13.1.1 The Thermistor 544 13.2 Photoconductivity 546 13.2.1 The Bolometer 550 13.2.2 The Junction Photocell 550 13.2.3 The Photovoltaic Effect 552 13.2.4 Thermoelectricity 552 13.2.5 Characterization of Photoelectric Devices 553 13.2.6 Some Notes on Irradiation and Illumination 554 13.2.7 Characterization of Photoconductive Cells 557 13.2.8 Characteristics of Junction Photocells 562 13.2.9 Applications of Semiconductor Photocells 569 13.2.10 The Charge-Storage Mode of Operation 574 13.2.11 Position-Sensitive Cells 576 13.2.12 The Phototransistor 579 13.2.13 The Photo-FET 580 13.3 The Light-Emitting Diode 581 13.3.1 Characterization of Photoemitters 583 13.3.2 The Photocoupler 584 13.4 Semiconductor Pressure Transducers 586 13.5 Semiconductor Gas Sensors 587 13.6 Summary 590 References 590 Questions 591 Problems 592 14 POWER SUPPLIES 597 14.1 Linear Mode Power Supplies 598 14.2 Voltage Regulator Circuits 606 14.3 The Switch-Mode Power Supply 612 14.4 Programmable Power Supplies 615 14.5 Battery Power Sources 615 14.5.1 Primary Cells 617 14.5.2 Secondary Cells 620 14.5.3 Cell Capacity and Charging Rate 621 14.6 Summary 622 References 623 Questions 624 Problems 625 15 CAO, ASICs AND THE ANALOG-DIGITAL INTERFACE 627 15.1 Computer-Aided Design 631 15.2 Application Specific Integrated Circuits 633 15.3 The Analog-Digital Interface 641 15.3.1 The Analog-to-Digital Converter 642 15.3.2 AOC Techniques 646 15.3.3 The Digital-to-Analog Converter 649 15.4 Postscript 652 References 652 Questions 652 APPENDIX I DECIBELS AND ROLL-OFFS 653 A.I.1 Decibel Notation 653 A.I.2 The RC Circuit 655 A.I.3 The Single-Lag, Single-Lead Characteristic 657 APPENDIX Il FOUR-POLE PARAMETERS 659 APPENDIX III NOISE BANDWIDTH AND NOISE FACTOR MINIMIZATION 662 A.II1.1 Noise Bandwidth 662 A.II1.2 Noise Factor Minimization 664

ANSWERS TO PROBLEMS 667 INDEX 673 TOP