10 Gigabit ethernet structured cabling

Similar documents
The Evolution of Copper Cabling Systems from Cat5 to Cat5e to Cat6 Copper Cabling Standards and Technical Aspects

White Paper: 10 Gigabit Ethernet over Twisted Pair Copper Systems

with Component Rating A Simple Perspective

White Paper: What Component Compliance Means for CAT6A System Performance

An Engineer s Guide to Full Compliance for CAT 6A Connecting Hardware

HIGHSPEED ETHERNET THE NEED FOR SPEED. Jim Duran, Product Manager - Americas WHITE PAPER. Molex Premise Networks

Testing 10 Gb/s Performance of Category 6 and 6A Structured Copper Cabling Systems within the Unified Physical Infrastructure SM (UPI)

10 Gigabit Ethernet over copper: Unshielded, unprotected?

Data Communications Competence Center

Mixed High-Speed Ethernet Operations over Different Categories of Bundled UTP Cable

Planning for 10Gbps Ethernet over UTP Questions to Ask When Planning the Cabling Plant WHITE PAPER

The Permanent Link in Field Certification Reasons, Advantages, Testing Challenges

New Technology Developments and How They Impact Your Structured Wiring Choices

Evolution of Cabling Standards TIA/EIA ISO/IEC CENELEC. by Paul Kish NORDX/CDT Chair TIA TR 41.8

Cabling for 10GBASE-T and Beyond - A Tangled Web

IT Cabling Solutions

White Paper. Cat. 6A vs. Cat. 6 A. What s the Difference and Why Should I Care?

Running 1000BASE-T Gigabit Ethernet over Copper Cabling 30 March 1999 Colin Mick/The Mick Group with Bruce Tolley/3Com and Willem Wery/Intel

Network Design. Yiannos Mylonas

R&Mfreenet Advanced Cat 6 A Unshielded Connection Module

Session 2; Cabling Technology in the Data Centre Media Choices; Copper Twisted Pair

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Next Generation of Cable Technology. A technology primer from NORDX/CDT By, Eric d Allmen

The effect of temperature on the bandwidth of telecommunications cabling in commercial buildings. Focus on the IBDN System 4800LX from NORDX/CDT

How to Choose the Right Cable Category

Performance Verification of GigaSPEED X10D Installations with Fluke Networks DTX 1800 CableAnalyzer

Method for improving Return Loss in order to reduce PHY power Ron Nordin Panduit Bob Wagner Panduit Paul Vanderlaan Berk-Tek

Category 6 Solutions. 4. Category 6 Solutions. 09/ IN TrueNet Structured Cabling. Introduction Cable Patch Panels... 4.

Accelerating Light. Copper Cabling Solutions. Category 6A

How To Get 40G Over Copper (Wired) And 40G On Coaxian (Wireless) Cable (Wired Coaxian) (Wired Cable) (Wireline) (Powerline) And 50G Over Coaxian Cable (Wire Coaxian

ANSI/TIA/EIA A, Commercial Building Telecommunications Cabling Standard.

Implementing Fast Ethernet

Requirements for Modular Patch Cords (e.g. RJ45 patch cords for Cat5 and Cat6 cabling systems)

Gigabit Ethernet on Copper Cabling Infrastructures

Category 6 UTP - Cabling System

PANDUIT TX6 10GIG SHIELDED COPPER CABLING SYSTEM. Innovative Connectivity Solution for Maximum Performance and Security

Total Solutions Verification

Enhanced Category 5 Cabling System Engineering for Performance

The High Cost of a Low-Cost Cable Certification Tester

Physical Infrastructure trends and evolving certification requirements for Datacenters Ravi Doddavaram

Copper Closet. Copper Closet

Innovative Connectivity Solution for Maximum Performance and Security

Discussion Paper Category 6 vs Category 5e Cabling Systems and Implications for Voice over IP Networks

Category 8 Cabling Standards Update

Broadband Video over Twisted Pair Cabling. By Paul Kish Director, IBDN Systems & Standards NORDX/CDT

Copper Pre-terminated Assemblies

Network Engineers Everywhere:

Category-6 / Class-E Cabling

Data Center. Pre-terminated. Patch Panel System. Cabling Systems Simplified. Patch Panels. 10G + Gigabit. Patch Cords. Plug & Play Installation

Installation Effects Upon Alien Crosstalk and Equal Level Far End Crosstalk

Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements

Future Proofing with Category 7 and 7A Cabling for 25 and 40GBASE-T Carries High Levels of Risk

CATEGORY 8: UNDERSTANDING THE NEW CATEGORY OF PERFORMANCE FOR BALANCED TWISTED PAIR CABLE

SYSTIMAX Copper Solutions Designed for the Digital Generation

Model CFA-24 Transparent Cable Farm Automation Switch

Structured Cabling, Earthing & Equipotential Bonding

Ethernet and UTP Cabling from 10BASE-T to 10GBASE-T

Networks. The two main network types are: Peer networks

Things You Must Know About Gigabit Ethernet 1. Understanding Gigabit Ethernet

Understanding the Electrical Performance of Category Cables

AMP CO Plus Insert for Cat. 6 A Applications

GigaSPEED X10D Solution How

Presenters Brett Weiss, Gabe Martinez, Brian Kroeger.

Cable Sharing in Commercial Building Environments

Cabling Standards Update 2014

How To Get A Better Signal From A Fiber To A Coax Cable

This paper will explain some of the more important factors on how UTP wires work; specifically it will cover the following:

Ethernet Patch Cord Wiring

MDI/MDIX) FEP-32008T-3

SYSTIMAX Solutions. GigaSPEED X10D Shielded (F/UTP, S/FTP) Solution Guide Europe, Middle East and Africa Regions.

Networking 101 (Networking Basics) Presentation to UCHUG - 1/03/07 G. Skalka

Abstract: This document examines the alien NEXT performance of various bundled cables and measures the impact upon various networks performance.

Data Centers Re-Enforce Best Practices To Assure Optimal Installation Quality and Maximize Margins For 10GBASE-T"

Cat 5, 6 or 7? Standards. Background. A University Standard for Structured Wiring. Network Points Installed. British Standards.

DIVISION 26 - ELECTRICAL SECTION CABLES FOR INSTRUMENTATION

palm Switch Port 10/100 Base-TX Switch with Auto MDI/MDI-X User Guide

16-Port and 24-Port 10/100 Switches

LevelOne IFE Port PoE + 1-Port TP Industrial Fast Ethernet Switch User Manual

Data Centre & Enterprise Solutions. RapidNet

How To Plan A Data Center Network

802.3bp Baseline Optional Link segment

Advantages of 4 th Generation CAT 6A UTP Cables. Antonio Cartagena Business Development - Caribbean Leviton Network Solutions

Data Centre Cabling. 20 August 2015 Stefan Naude RCDD The SIEMON Company

A Simple Model of Relative Power vs. Reach

Chapter 4 Connecting to the Internet through an ISP

USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices

This application note is written for a reader that is familiar with Ethernet hardware design.

SMARTen 24 UTP Patch Panels

Nexus Technology Review -- Exhibit A

10GBASE-T Objectives

White Paper: DC Resistance Unbalance Testing: Easy, Low-Cost Insurance for Your PoE Systems

Security & Surveillance Cabling Systems

Structured and Point to Point Network Cabling for Industrial Automation

What are the requirements for a Home Network?

INTERNATIONAL STANDARD

Feasibility Study on High Speed Transmission over UTP Cables

1000BASE-T: Gigabit Ethernet. over Category. 5 copper. cabling. Acronyms and abbreviations

Physical Infrastructure trends and certification requirements for Datacenters. Psiber s Global Village

KVM Cable Length Best Practices Guide

Copper Cabling Troubleshooting Handbook

Transcription:

The next generation of high performance copper connectivity is 10Gbit/s Ethernet. With an increasing number of shielded and un-shielded solutions being introduced into the structured cabling market, OCC is offering new high performance products for 10Gbit/s throughput, as well as compliant to the latest standards by IEEE, TIA, and ISO. Figure 1: Slimline Shielded KMJ Cat 6A jack. (a) Design model (b) Prototype during testing The new OCC Slimline product line utilizes a common small sized form factor for widespread applications. The Slimline product set includes: The UTP KMJA6 Cat 6 Jack The Shielded KMJA6 Cat 6 Jack The UTP KMJA6 Cat 6a Jack The Shielded KMJA6 Cat 6a Jack The above parts use common and interchangeable internals to achieve production economy and flexibility. Performance enhancements to comply and exceed Cat6a requirements are achieved through contact and PCB design improvements. All KMJA6 products (shielded and UTP) achieve 24 ports in one rack space (1U). For UTP connectors, the 1U density is reduced to 16 ports to comply with Augmented Cat6 Alien crosstalk requirements. We recommend and supply Augmented Cat6 compliant shielded patch cords utilizing Cat7 compliant stranded patch cord and patented Shielded Cat6/6a plugs. These cords are the perfect compliment to the shielded KMJA6 connectors and are also compatible with Cat6a UTP systems. We recommend that Cat6a patch cables be used with shielded connectivity at least on one end of the cord, either as an equipment cord, or with shielded connectivity in the cross-connect.

Figure 2. Cable Types Figure 2, available cable types are: 1. Category 5e, 5.6mm (.220 ) dia. (For reference, not specified for 10GBASE-T) 2. Category 6 UTP, 6.5mm (.256 ) dia. 3. Category 6 500 MHz U/FTP, 6.8mm (.268 ) dia. 4. Category 6a U/FTP, 7.4mm (.292 ) dia. 5. Category 6a UTP, 8.89mm (.350 ) dia. 6. Category 6a UTP, 8.89mm (.350 ) dia. 7. Category 6a UTP, 8.89mm (.350 ) dia. 8. Category 7 S/FTP, 8.3mm (.327 ) dia. Performance of cabling systems for 10GBASE-T The primary performance metric for 10GBASE-T cabling is Alien crosstalk coupling. The so-called primary parameters of the cabling channel, NEXT, FEXT Return Loss, and to a small extent Insertion Loss, are equalized through high resolution DSP techniques at both transmitter and receiver. NEXT couplings are reduced by up to 50 db across the frequency range from 10 MHz to 400 MHz, FEXT couplings are similarly reduced and RL reflections are cancelled up to 40 db. Thus, the primary parameters, however important as they have been for cable qualification, are not limiting factors for 10GBASE-T transmission. For example, the sensitivity of the signal to noise ration (SNR) to changes in NEXT coupling is 1 in 12 db. To put it another way, to reduce the SNR by 1 db, you would need to reduce the Power sum NEXT by 12 db, across the entire frequency band (10 400 MHz) of the 10GBASE-T application.

On the other hand, there may be little or no DSP applied to alien crosstalk couplings. Thus changes of PSANEXT levels (integrated across the frequency band) will have a direct 1-1 effect on 10GBASE-T SNR. Figure 3. Shielded 4 connector 100 meter channel PSANEXT Figure 4. Shielded 4 connector 100 meter PSAACR-F (Power Sum Alien Attentuation to Crosstalk Ratio, Far End) The above graphs show how OCC Cat6 shielded connectivity (and Cat6a when it is available) will support 10GBASE-T with margin for full 100 meter and shorter channel configurations. With perforamnce margin as shown above, the channel alien crosstalk performance is assured by design, completely obviating the need for field test verification of alien crosstalk performance.

OCC UTP channel alien crosstalk performance Figure 5. Augmented Cat 6 UTP 4-connector channel 100 meter PSANEXT Figure 6. Augmented Cat6 UTP 4-connector channel 100 meter PSAACR-F The alien crosstalk of UTP systems is assured given a suitable Augmented Cat6 cable is chosen. The charts show performance for 4-connector 100 meter channels with the highest quality (5 figure 2) Augmented Cat6 cable available. This channel performance yields and Alien crosstalk SNR (IEEE 802.3an clause 55.7.3.3) of greater than 22 db (where 0 db is the pass/fail limit). This is despite the peaks crossing the limit lines at high frequencies. (No measurement data was excluded from the Power sum calculation).

Connector performance Augmented Cat6a connector performance for NEXT and return loss is a challenge to the design engineer. In addition, ISO channel requirements seem to require even better performance than the Augmented Cat6 channel requirements. To comply with TIA Cat6a NEXT requirements requires performance better than the limit line shown in Figure 7. The connector requirements to meet the proposed ISO 11801 requirements have not as yet been determined, but approach an extrapolated 20 db slope to 500 MHz. Figure 7. Slimline Cat 6a NEXT performance Figure 7 shows performance of a prototype OCC Cat6a outlet jack for NEXT with required TIA test plugs. Note that the performance at high frequencies is very good due to the use of state-of-the-art design methods. Figure 8. (a) Slimline Cat6 NEXT (b) Return Loss Measurements Figure 8 shows representative performance for OCC Cat6 connectivity for NEXT and Return Loss. The availability of OCC Slimline components are as follows: Shielded slimline KMJA6 Cat6 Jack Shielded slimline KMJA6 Cat 6a Jack UTP KMJA6 Cat6a Jack

Relevant Standards for 10GBASE-T applications: Currently, the relevant 10Gbit/s Ethernet performance standards are under development by three independent committee groups. These three bodies and their respective documents include: 1. IEEE - 10GBASE-T 802.3an clause 55.7 2. TIA - TSB-155 3. ISO - TR-24750 The 10GBASE-T Ethernet standard is currently under development in IEEE 802.3an Task Force. This standard is due to publish in July 2006. This standard includes the link segment definition, clause 55.7 which specifies all of the relevant performance requirements for the cabling channel. The relevant cabling types and distances are specified in Table 55-12 of clause 55.7.2. Note that Class E/Cat 6 is specified up to 100 meters depending on the level of alien crosstalk, and that Cat6 screened is specified to 100 meters. Figure 9. Table 55-12 IEEE 802.3an clause 55.7.2 The TIA TSB-155 document is essentially identical to clause 55.7 with the addition of testing and suggested mitigation techniques to improve the performance of existing category 6 installations if necessary. The TIA 42.7, formulating committee is also developing the addendum 568-B.2-10 Augmented Category 6 which specifies channel, permanent link, and component (cable, connector and patch cord) requirements to support 10GBASE-T and other applications. The Augmented Cat6 requirements are an improvement over the requirements of 10GBASE-T in the areas of connector near end crosstalk from 250 MHz to 500 MHz and cable insertion loss. The Augmented Cat6 cable insertion loss is equal to the existing ISO Category 7 cable insertion loss. There are two levels of insertion loss in 10GBASE-T, one for exisiting Cat6, and the second for Augmented Cat6 cabling. The improved insertion loss of Augmented Cat6 allows for a 2 db (100m) relaxation of the power sum alien near end crosstalk requirements, (fromn 62 db to 60 db at 100 MHz). Thus, for 100 meter channels, Category 6 alien crosstalk requirements are tighter than for Augmented Category 6, an apparent contradiction. The reason is apparent when we consider the overall signal to noise ratio (SNR) of the application (10G) and realize that we are trading insertion loss for crosstalk to end up with the same SNR for both cabling channel specifications.

ISO WG3-SC25 is developing the cable channel requirements to support 10GBASE-T for the international standards. These standards are similar to TIA and IEEE requirements except for the parameter of channel NEXT, where ISO has adopted an extrapolated limit which has the only effect of requiring tighter limits for connector NEXT at frequencies above 250 MHz. Since some connector manufacturers have drawn a line in the sand regarding Cat6a connector performance, this has caused a delay in implementation of connector performance requirements that will assure ISO Class Ea channel performance. The ISO standards also specify coupling attenuation as a metric for channel and cable EMI performance. In addition, the Class F channel and Cat7 cable insertion loss have been improved over the existing Cat7/Class F to stay ahead of the Augmented Cat6 insertion loss requirements. These standards specify both shielded and unshielded cabling systems as options to meet the IEEE requirements. As an overview, the relevant documents and their titles are listed below: 1. IEEE 802.3an draft Draft Amendment of: IEEE Standard for Information Technology - Telecommunications and information exchange between systems - Local and metropolitan area networks Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Amendment: Physical Layer and Management Parameters for 10Gbit/s Operation, Type 10GBASE-T 2. TIA TSB-155 Guidelines for the assessment and mitigation of installed category 6 cabling to support 10GBASE-T 3. ISO-TR 24750 Assessment and mitigation of installed balanced cabling channels in order to support 10GBASE-T 4. TIA 568-B.2-10 Transmission Performance Specifications for 4-pair 100 ohm Augmented Category 6 Cabling 5. ISO/IEC AM1.1 to ISO/IEC 11801:2002 FPDAM 1.1 to ISO/IEC 11801:2002, Generic cabling for customer premises TIA and Augmented Category 6 (Cat6a) Performance: As the standards have evolved, the TIA Augmented Category 6 (Cat6a) specification has designated key areas of performance improvement in the following component and channel attributes when compared to previous generations of products: 1. Return Loss (RL) for connecting hardware is improved, meaning less data signal reflection in the channel resulting from the connectors. 2. The overall channel return loss is also improved 3. Insertion loss (Attenuation) of the data signal is improved in Cat6a over the Cat6 channel, producing a better SNR (Signal to Noise Ratio) for the channel However, the most obvious difference in the Cat6a specification compared to Cat6 for the installer and field tester is the extension of the frequency band from 250 MHz to 500 MHz.

Specification, Standards, and Confusion with ISO to achieve 10GBit/s Performance: Confusion and specific problems have resulted within the industry in regards to differences between the three relevant committees and their respective proposed standards. ISO, for example, first completed a required channel specification based on an extrapolated Cat6 limit to 500 MHz. From this channel requirement component level performance specifications are to be extracted. The problem resulting from this approach is that firstly, the ISO component level performance specifications exceed the already established TIA Cat6a standards and secondly, some speculate whether or not component performance as specified by the ISO standard is necessary or even physically possible. Participating heavily in the TIA committee process, OCC has already developed high performance products that can be sold in various channel configurations to meet 10GBit/s standards. OCC 10GBASE-T specification IEEE 802.3an clause 55.7 and TIA TSB-155 compliant channel configurations include all OCC Cat6 connecting hardware combined with: 1. UTP Category 6 cabling up to lengths of 37m. 2. STP Category 6 cabling up to lenghts of 100m. 3. Augmentedc Category 6 cabling of lengths up to 100m. Patch Cord Shielding and Radiated Emissions: 10GBit/s channel performance has resulted in the debate of the effects of utilizing a shielded product in structured cabling, and what effects these shields have upon the installed system. Figure 10. Category 6 shielded patch cord OCC patch cords have terminated shields on both ends. This provides electromagnetic interference (EMI) protection for the end user, by providing screen connectivity through the structured cabling system. Screen connectivity through the structured cabling system is the ideal configuration. Tabs on the inside of the shielded RJ45 jacks provide connectivity between the patch cord shield and the patch panel and active network components. Using a shield patch cord is not detrimental to system performance when combined with UTP horizontal cabling system, as the termination on one end of the patch cord is still connected to the active component on the network, such as a switch, workstation or server. The active component provides a termination of the system to ground, and thus does not induce a floating ground shield, or the antenna effect.

Figure 11: Ideal method of terminating shields for a structured cabling system Simple Rules of Thumb Installing Shielded Cabling Systems: Terminate the shield at both ends of the cable Use plastic backboxes to avoid contact with aluminum studs and other metal infrastructure The patch panel itself is tied to the grounding bus bar Simple rule of thumb - provide shielding connectivity out from the panel through all cable to the active network hardware