R U S S E L L L. H E R M A N

Similar documents
Mean value theorem, Taylors Theorem, Maxima and Minima.

MATHEMATICAL METHODS OF STATISTICS

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.

Complex Function Theory. Second Edition. Donald Sarason >AMS AMERICAN MATHEMATICAL SOCIETY

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

FRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

SGN-1158 Introduction to Signal Processing Test. Solutions

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

Chapter 3: Mathematical Models and Numerical Methods Involving First-Order Differential Equations

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

On Chebyshev interpolation of analytic functions

Math Course Descriptions & Student Learning Outcomes

Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)

The continuous and discrete Fourier transforms

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

Credit Number Lecture Lab / Shop Clinic / Co-op Hours. MAC 224 Advanced CNC Milling MAC 229 CNC Programming

ORDINARY DIFFERENTIAL EQUATIONS

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

Appendix 3 IB Diploma Programme Course Outlines

Option Pricing Formulae using Fourier Transform: Theory and Application

Estimated Pre Calculus Pacing Timeline

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

NOV /II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

MATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated

Introduction to the Finite Element Method

School of Mathematics, Computer Science and Engineering. Mathematics* Associate in Arts Degree COURSES, PROGRAMS AND MAJORS

Frequency Response of FIR Filters

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

The Z transform (3) 1

Matrices and Polynomials

SIGNAL PROCESSING & SIMULATION NEWSLETTER

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics

The Convolution Operation

The Quantum Harmonic Oscillator Stephen Webb

Algebra and Geometry Review (61 topics, no due date)

Numerical Analysis Introduction. Student Audience. Prerequisites. Technology.

DOKUZ EYLUL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES DIRECTORATE COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER

Sequence of Mathematics Courses

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009

Prentice Hall Mathematics: Algebra Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

1.5 / 1 -- Communication Networks II (Görg) Transforms

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Introduction to Partial Differential Equations. John Douglas Moore

Fourier Analysis. u m, a n u n = am um, u m

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS

AFM Ch.12 - Practice Test

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

COURSE SYLLABUS Pre-Calculus A/B Last Modified: April 2015

Math 1050 Khan Academy Extra Credit Algebra Assignment

04 Mathematics CO-SG-FLD Program for Licensing Assessments for Colorado Educators

TMA4213/4215 Matematikk 4M/N Vår 2013

Prentice Hall Algebra Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Derive 5: The Easiest... Just Got Better!

Higher Education Math Placement

Lecture 8 ELE 301: Signals and Systems

Analysis/resynthesis with the short time Fourier transform

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

DRAFT. Further mathematics. GCE AS and A level subject content

Basic Math Course Map through algebra and calculus

Big Ideas in Mathematics

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

PYKC Jan Lecture 1 Slide 1

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS

Univariate and Multivariate Methods PEARSON. Addison Wesley

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., July Derive 5: The Easiest... Just Got Better!

Applied Linear Algebra I Review page 1

Algebra I Credit Recovery

Pre-Calculus Semester 1 Course Syllabus

Advanced Signal Processing and Digital Noise Reduction

The Heat Equation. Lectures INF2320 p. 1/88

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

Taylor and Maclaurin Series

APPLIED MATHEMATICS ADVANCED LEVEL

PCHS ALGEBRA PLACEMENT TEST

Diablo Valley College Catalog

Inner Product Spaces

WAVES AND FIELDS IN INHOMOGENEOUS MEDIA

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

How To Understand The Nyquist Sampling Theorem

MATH 590: Meshfree Methods

Master of Arts in Mathematics

Linear Filtering Part II

SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH.

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Design of FIR Filters

Nonlinear Iterative Partial Least Squares Method

Transcription:

R U S S E L L L. H E R M A N A N I N T R O D U C T I O N T O F O U R I E R A N D C O M P L E X A N A LY S I S W I T H A P P L I C AT I O N S T O T H E S P E C T R A L A N A LY S I S O F S I G N A L S R. L. H E R M A N - V E R S I O N D AT E : J A N U A R Y 1 3, 2 0 1 6

Copyright 2005-2016 by Russell L. Herman published by r. l. herman This text has been reformatted from the original using a modification of the Tufte-book documentclass in LATEX. See tufte-latex.googlecode.com. an introduction to fourier and complex analysis with applications to the spectral analysis of signals by Russell Herman is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. These notes have resided at http://people.uncw.edu/hermanr/mat367/fcabook since Spring 2005. Sixth printing, January 2016

Contents Introduction vii 1 Review of Sequences and Infinite Series 1 1.1 Sequences of Real Numbers.................... 2 1.2 Convergence of Sequences..................... 2 1.3 Limit Theorems........................... 3 1.4 Infinite Series............................ 4 1.5 Geometric Series.......................... 5 1.6 Convergence Tests......................... 8 1.7 Sequences of Functions....................... 12 1.8 Infinite Series of Functions..................... 15 1.9 Special Series Expansions..................... 17 1.10 Power Series............................. 19 1.11 Binomial Series........................... 26 1.12 The Order of Sequences and Functions............. 31 Problems.................................. 34 2 Fourier Trigonometric Series 37 2.1 Introduction to Fourier Series................... 37 2.2 Fourier Trigonometric Series................... 40 2.3 Fourier Series over Other Intervals................ 47 2.3.1 Fourier Series on [a, b]................... 52 2.4 Sine and Cosine Series....................... 53 2.5 The Gibbs Phenomenon...................... 59 2.6 Multiple Fourier Series....................... 64 Problems.................................. 67 3 Generalized Fourier Series and Function Spaces 73 3.1 Finite Dimensional Vector Spaces................. 73 3.2 Function Spaces........................... 79 3.3 Classical Orthogonal Polynomials................ 83 3.4 Fourier-Legendre Series...................... 86 3.4.1 Properties of Legendre Polynomials........... 87 3.4.2 The Generating Function for Legendre Polynomials.. 89 3.4.3 The Differential Equation for Legendre Polynomials. 94 3.4.4 Fourier-Legendre Series Examples............ 95

iv 3.5 Gamma Function.......................... 97 3.6 Fourier-Bessel Series........................ 98 3.7 Appendix: The Least Squares Approximation......... 103 3.8 Appendix: Convergence of Trigonometric Fourier Series... 106 Problems.................................. 112 4 Complex Analysis 117 4.1 Complex Numbers......................... 118 4.2 Complex Valued Functions.................... 121 4.2.1 Complex Domain Coloring................ 124 4.3 Complex Differentiation...................... 127 4.4 Complex Integration........................ 131 4.4.1 Complex Path Integrals.................. 131 4.4.2 Cauchy s Theorem..................... 134 4.4.3 Analytic Functions and Cauchy s Integral Formula.. 138 4.4.4 Laurent Series........................ 142 4.4.5 Singularities and The Residue Theorem......... 145 4.4.6 Infinite Integrals...................... 153 4.4.7 Integration over Multivalued Functions......... 159 4.4.8 Appendix: Jordan s Lemma................ 163 Problems.................................. 164 5 Fourier and Laplace Transforms 169 5.1 Introduction............................. 169 5.2 Complex Exponential Fourier Series............... 170 5.3 Exponential Fourier Transform.................. 172 5.4 The Dirac Delta Function..................... 176 5.5 Properties of the Fourier Transform............... 179 5.5.1 Fourier Transform Examples............... 181 5.6 The Convolution Operation.................... 186 5.6.1 Convolution Theorem for Fourier Transforms..... 189 5.6.2 Application to Signal Analysis.............. 193 5.6.3 Parseval s Equality..................... 195 5.7 The Laplace Transform....................... 196 5.7.1 Properties and Examples of Laplace Transforms.... 198 5.8 Applications of Laplace Transforms............... 203 5.8.1 Series Summation Using Laplace Transforms..... 203 5.8.2 Solution of ODEs Using Laplace Transforms...... 206 5.8.3 Step and Impulse Functions................ 209 5.9 The Convolution Theorem..................... 214 5.10 The Inverse Laplace Transform.................. 217 5.11 Transforms and Partial Differential Equations......... 220 5.11.1 Fourier Transform and the Heat Equation....... 220 5.11.2 Laplace s Equation on the Half Plane.......... 222 5.11.3 Heat Equation on Infinite Interval, Revisited...... 224 5.11.4 Nonhomogeneous Heat Equation............ 226

v Problems.................................. 229 6 From Analog to Discrete Signals 235 6.1 Analog to Periodic Signals..................... 235 6.2 The Dirac Comb Function..................... 239 6.3 Discrete Signals........................... 243 6.3.1 Summary.......................... 244 6.4 The Discrete (Trigonometric) Fourier Transform........ 245 6.4.1 Discrete Trigonometric Series............... 247 6.4.2 Discrete Orthogonality................... 248 6.4.3 The Discrete Fourier Coefficients............. 250 6.5 The Discrete Exponential Transform............... 252 6.6 FFT: The Fast Fourier Transform................. 255 6.7 Applications............................. 259 6.8 MATLAB Implementation..................... 262 6.8.1 MATLAB for the Discrete Fourier Transform...... 262 6.8.2 Matrix Operations for MATLAB............. 266 6.8.3 MATLAB Implementation of FFT............ 267 Problems.................................. 270 7 Signal Analysis 277 7.1 Introduction............................. 277 7.2 Periodogram Examples....................... 278 7.3 Effects of Sampling......................... 283 7.4 Effect of Finite Record Length................... 288 7.5 Aliasing............................... 292 7.6 The Shannon Sampling Theorem................. 295 7.7 Nonstationary Signals....................... 301 7.7.1 Simple examples...................... 301 7.7.2 The Spectrogram...................... 304 7.7.3 Short-Time Fourier Transform.............. 307 7.8 Harmonic Analysis......................... 310 Problems.................................. 314 Bibliography 317 Index 319

vi Dedicated to those students who have endured the various editions of an introduction to fourier and complex analysis with applications to the spectral analysis of signals.