Solar Hydrogen Generation For Energy Storage



Similar documents
Solar Hydrogen Generation For Energy Storage. Laura Meda Istituto eni-donegani Via Fauser 4, Novara

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

HETEROGENEOUS ELECTROPHOTOCATALYSIS ON NANOSTRUCTURED TiO 2 FOR REFRACTORY POLLUTANTS AND RESISTANT PATHOGENS REMOVAL FROM WATER AND WASTEWATER

Practical Examples of Galvanic Cells

Searching New Materials for Energy Conversion and Energy Storage

SOLAR CELLS From light to electricity

Photoelectrocatalytic Treatment and By-Product Formantion

Vega Spans and NiOx-TX Spans

Artificial Photosynthesis: A Workshop in Solar Cell Design

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe

Fuel Cell as a Green Energy Generator in Aerial Industry

Spectral Characterisation of Photovoltaic Devices Technical Note

Photovoltaic and Photoelectrochemical Solar Cells

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Discovering Electrochemical Cells

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Solar power Availability of solar energy

K + Cl - Metal M. Zinc 1.0 M M(NO

First Principles Computational Modelling of Solid/Liquid Interfaces for Solar Energy and Solar Fuels

Project 2B Building a Solar Cell (2): Solar Cell Performance

1332 CHAPTER 18 Sample Questions

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Useful charge on one mole of electrons: 9.64 x 10 4 coulombs/mol e - = F F is the Faraday constant

Electrochemistry - ANSWERS

Rosalinda Inguantaa*, Emanuele Scadutoa, Patrizia Livrerib, Salvatore Piazzaa, Carmelo Sunseria

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S

2 Absorbing Solar Energy

Chem 1721 Brief Notes: Chapter 19

ASI OEM Outdoor Solar Modules

Balancing chemical reaction equations (stoichiometry)

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Name Electrochemical Cells Practice Exam Date:

The potential of Solid Hydrogen for Renewable Energy Storage & valorization

IV.H.2 New York State Hi-Way Initiative*

future flight Fuel Cell Activity BOX GRADES 5-12 Museum Aeronautics Research Mission Directorate in a Series

Chem 1A Exam 2 Review Problems

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T.

Vincenzo Esposito. Università di Roma Tor Vergata

Solar Photovoltaic (PV) Cells

5.111 Principles of Chemical Science

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions

CHM1 Review Exam 12. Topics REDOX

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

Materials for Organic Electronic. Jeremy Burroughes FRS FREng

U N. Supercapattery: A Super Battery Approach. George Z. Chen

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

POLYMER BASED PHOTOVOLTAICS

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

Electrochemistry Voltaic Cells

Chapter 7: Chemical Energy

Galvanic cell and Nernst equation

Characteristic curves of a solar cell

From Nano-Electronics and Photonics to Renewable Energy

鋰 電 池 技 術 及 產 業 發 展 趨 勢

SOLAR ENERGY USING FOR HYDROGEN PRODUCTION

Chapter Test B. Chapter: Measurements and Calculations

A bio-inspired tandem cell for solar fuel production

Molecular Engineering for Solar Energy Conversion and Lighting Materials

Exciton dissociation in solar cells:

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting Prof. E. Peled School of Chemistry Tel Aviv University, Israel

Electrophoretic Gold Nanoparticles Depostion On Carbon Nanotubes For NO 2 Sensors

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

Determining Equivalent Weight by Copper Electrolysis

Name AP CHEM / / Collected Essays Chapter 17 Answers

Light management for photovoltaics using surface nanostructures

Chemistry 122 Mines, Spring 2014

CHAPTER 21 ELECTROCHEMISTRY

Fuel Cells and Their Applications

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Fundamentals of Photovoltaic solar technology For Battery Powered applications

Redox and Electrochemistry

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

stoichiometry = the numerical relationships between chemical amounts in a reaction.

Solar Cell Parameters and Equivalent Circuit

Efficiency and Open Circuit Voltage

Training Systems for Renewable Energies. Acquiring Practical Skills and Project-oriented Expertise

Automotive Lithium-ion Batteries

Potassium ion charge would be +1, so oxidation number is +1. Chloride ion charge would be 1, so each chlorine has an ox # of -1

Celle solari di terza generazione (a fotosintesi )

High Efficiency Black Polymer Solar Cells November 2012 Annual Report

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Integrating the Solar Spectrum

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

Storage technologies/research, from physics and chemistry to engineering

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

Anwendungen mit der Fronius Energiezelle

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

SIMULATION OF THE MARS SURFACE SOLAR SPECTRA FOR OPTIMIZED PERFORMANCE OF TRIPLE- JUNCTION SOLAR CELLS

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Transcription:

Solar Hydrogen Generation For Energy Storage www.eni.it Laura Meda Istituto eni-donegani Via Fauser 4, Novara laura.meda@eni.com NANOTECHITALY- 2012

Solar Energy Conversion Strategies Light Fuels Chemicals Electricity CO 2 Sugar O 2 e H 2 e H O 2 O 2 Photosynthesis sc H2O M Semiconductor/Liquid Junctions n p Photovoltaics [N.S. Lewis, D.G. Nocera, Powering the Planet, Proc. Nat. Acad. Sci. USA 103 (43) 2006, 15729]

Water Splitting in a PEC cell SUN ENERGY CHEMICAL ENERGY Semiconductor materials can absorb sunlight; generate carriers; promote redox reactions with water O2 e - H 2 H 2 O 2 e - e - H 2 metal H 2 O h + OH - H +

Possible applications of photosplitting technology Electricity : solar H2 in fuel cell to generate electricity off-grid Energy Storage : accumulation of chemical energy in flow batteries Environment : photo-redox reactions of wastewater Fuels : reaction with CO2 to fuels Automotive : addition to CH4 in vehicles to decrease emissions 4

Glass Conductive support Pt Counter-electrode Energetic diagrams hν + semic. e - + h + 2 H 2 O + 4 h + O 2 + 4 H + + 4 e - 4 H + + 4 e - 2 H 2 -------------------------------------------------- hν + semic. + 2 H 2 O O 2 + 2 H 2 G = 237.2 kj/mol V bias e - e - e - 2H 2 O+2e - 2OH - +H 2 Light 1.23 ev h + 2OH - +2h + H 2 O+1/2O 2 Semiconductor Electrolyte 0 L b x

Semiconductor Candidates [M. Gratzel, Nature 414 (2001) 338] Low bandgap Good harvesting; Scarce stability High bandgap Scarce harvesting; Good stability ph 1 Thermodynamic request 1.23 ev Kinetic losses & overpotentials E g > 2 ev [K. Rajeshwar, J. Appl. Electrochem.37 (2007) 765]

Nanostructured Photo-electrodes WO3 solgel Xstal domains 20-80 nm Area max. 100 cm 2 Fe2O3 + Ti spray Xstal domains 20-60 nm Area max. 100 cm 2 TiO2 -anodic Xstal domains 20-80 nm Area max. 150 cm 2 WO3 -anodic Xstal domains 20-100 nm Area max. 150 cm 2

Sol-gel nanostructures AFM SEM Strato attivo TCO vetro 10 x 10 cm2 From tungstate salts to acidic solution + colloidal dispersion and gelification + blade deposition on conductive glass (FTO) + final calcination (450 C 650 C) [L. Meda, G. Tozzola, A.Tacca, G. Marra, et al, SOLMAT 94 (2010) 788]

Electro-anodized nanostructures 30 V Ti: EG + NH4F, RT + calc. 500 C W: H2O + NMF + NH4F, 40 C + calc. 500 C [A.Tacca, L. Meda, G.Marra, A. Savoini, S. Caramori et al, Chem. Phys. Chem. 13 (2012) 3025] [V.Cristino, S. Caramori, CA. Bignozzi, L. Meda, G. Marra, Langmuir (2011)]

Absorbance Absorbance Spray deposited Nanostructures Fe2O3 + Ti 5% Solutions sprayed on FTO at high temperature (> 400 C) Subtraction Result:*30202/86 2.4 Subtraction Result:*30202/85 Subtraction Result:*30202/82 2.2 Subtraction Result:*30202/81 Subtraction Result:*30202/80 Subtraction Result:*30202/87A 2.0 6, 10, 15, 20, 30 steps 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 Photoanode on FTO 0.2 350 400 450 500 550 600 650 700 750 Wavelength (nm) Wavelength

Current-voltage measurement and gas collection under solar simulated illumination N2 carrier Voltmetro Amperometro Counter O2 Counter H2 Gas cromatograph O2 H2 ABET Tech. solar simulator 550W AM 1.5G filtered 10x10 cm2 uniform area Photo anode Catode

The best for Fe2O3 CVD deposited + IrO2 catalyst S.D. Tilley, M. Cornuz, K. Sivula, and M. Graetzel

The best for WO3 and Fe2O3 tandem cells Colloidal sol-gel a) WO 3 TANDEM CELL. B) Fe 2 O 3 TANDEM CELL. B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski J. Mater. Chem. 18 (2008) 2298 J. Brillet, J-H Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Nature Photonics (2012) doi:10.1038/nphoton.2012.265

J(mA/cm 2 ) Anodized WO3 9 8 1 M H 2 SO 4 1M H 2 SO 4 /MeOH 8/2 7 6 5 4 3 2 1 0-1 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 V (V vs SCE) S. Caramori, V. Cristino, C.A. Bignozzi, L.Meda, Topics in Current Chem. Vol. 303 (2011), 215 V. Cristino, S. Caramori, CA. Bignozzi, L. Meda Langmuir 27(11) 2011, 7276 A. Tacca, L. Meda,G. Marra, A. Savoini, S. Caramori, V. Cristino, C. Bignozzi, S. Gimenez, J. Bisquert Chem PhysChem, 13(12) 2012, 3025 14

Wastewater treatment & H2 photoproduction if the hydrogen production can be combined with waste water treatment, then the systems become economically viable [ M. R. Hoffmann et al., Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen, J. Phys. Chem. A 7616, 2008, 112, 7616 ] He C. et al. J. of Photochemistry and Photobiology A: Chemistry 157 (2003) 71-79 Enright P. et al. J. Appl. Electrochem, DOI: 10.1007/s10800-010-0244-1, 2010 15

Catalysts on triple-junction PV wireless device PV -Xunlight (OH, USA) Oper. Voltage = 1.65 V Oper. Current = 5.5 ma/cm2 Voc = 2.2 V M. Kanan, D. Nocera, Science 321 (2008) 1072 D. Nocera, Acc. of Chem. Res. 2011 Catalyst Depo. Technique Photocurrent (ma/cm 2 ) @ 0V bias Resa globale (%) STH Co-ox ELET 0,5 1,0 1,2 FeOOH ELET 0,1 0,5 0,6 FeOOH IMPR 1,0-2,0 2,5 NiO IMPR 0,5 1,5 1,9 18

IPCE % Efficiencies : Energy OUT / Energy IN Quantum Efficiency = electrons / photons 80 70 60 50 IPCE SPECTRA OF WO 3 PHOTOANODES anodically grown at 1V vs SCE anodically grown at 1V vs SCE colloidal at 1.5 V vs SCE 1239.8 (V nm) x J (ma/cm 2 ) IPCE % = ----------------------------------- P (mw/cm 2 ) x λ (nm) 40 30 20 10 70 % UV 40 % Vis 0 300 320 340 360 380 400 420 440 460 480 500 (nm) Global Efficiency STH (energy gain) J x ( V - V bias ) STH % {A.M. 1.5} = ------------------------ x 100 P = 3,15 % J = 5 ma/cm 2 V = 1,23 V V bias = 0,6 V P (1 sun) = 100 mw/cm 2 Z. Chen et al., J. Mater. Res. 25 (2010) 3

Efficiency for a PEC I e Light on The pink area represents the power spent by the applied bias. Dark The blue area represents the power stored as hydrogen. The grey area is the power spent for electrolysis. I PEC The sum pink + blue areas represents the global stored power. V PEC 1,23 V EL Storage Efficiency (total power converted in stored chemical energy) J x 1,23 STO. EFF. % {A.M. 1.5} = ---------------- x 100 = 6,15 % J = 5 ma/cm 2 P V = 1,23 V V bias = 0,6 V P (1 sun) = 100 mw/cm 2

From photocurrent density to evolved H2 J A-C [ A moli] [moli H2 ] ----------- ------------------- = -------------- 2 Fa [cm 2 coulomb] [ s cm 2 ] 1 Fa = 9.65 10 4 [coulomb/mole] 1 mole = 22.414 [litri] For J A-C = 1 10 [ma /cm 2 ] The evolved H 2 = 0.7 7 [ml/min 100 cm 2 ] = 4 40 [ l/h m 2 ] To feed a Fuel Cell (1W) => 14 [ml/min] are required

Outdoor demonstrators DEMO1 DEMO2 PEC cell PHOTO-CURRENT density H2 production PEC cell COST SOLAR H2 COST [ma/cm 2 ] [NL/h/m 2 ] [ /m 2 ] [ /kg] DEMO1 - TiO 2 0.25 1.1 164 43 DEMO2 - WO 3 1.00 4.2 302 20 EU target (2020)for solar H2 = 9.9 /kg

The electrolyzer Electricity is converted in chemical energy η = 40-70 % (cm 3 /h - 10 m 3 /h) From PV η(sc) 14 % x η(el) 40-70 % = η(tot) 6-10 % e - - e O 2 H 2 metal metal H 2 O H + H + H +

Comparison between PV+EL and PEC - - PV + EL Si-PV absorbs 60 % of solar spectrum Efficiency STH: 14% x 45-70% = 6-10 % High Energy dissipation Voltage required : > 2 V Solar H2 Cost : 30 /kg Lifetime 5 years PEC WO3 absorbs 9 % of solar spectrum Efficiency STH: 3 % Lower Energy dissipation Voltage required : < 1 V - zero Solar H2 Cost : 10-20 /kg Lifetime 10-20 years (?) Improvements are in PV efficiency... there are continuous improvements and 10% is not impossible

Cost considerations For PV+EL costs are reparted as 15% : 85% EL is the main cost because it uses noble metals electrodes and has short lifetime. PEC exploits solar energy to drive chimical reactions the requirement for water splitting voltage is reduced and so the cost is. Solar H2 PEC cost depends on materials, efficiency and duration: USA-DOE Final Report (2009) Techno economic Analysis of PEC H 2 Production by B.D. James, G.N. Baum, J. Perez, K.N. Baum.

Thanks to collaborators! I believe that water will one day be employed as fuel, that hydrogen and oxygen that constitute it will furnish an inexhaustible source of heat and light, of an intensity of which coal is not capable Water will be the coal of the future! From: L Ile mystérieuse by Jules Verne (1874) L. Abbondanza G. Bianchi R. Paglino R. Preda A. Romano F. Rubertelli F. Simone A. Tacca G. Tozzola