Solar Hydrogen Generation For Energy Storage www.eni.it Laura Meda Istituto eni-donegani Via Fauser 4, Novara laura.meda@eni.com NANOTECHITALY- 2012
Solar Energy Conversion Strategies Light Fuels Chemicals Electricity CO 2 Sugar O 2 e H 2 e H O 2 O 2 Photosynthesis sc H2O M Semiconductor/Liquid Junctions n p Photovoltaics [N.S. Lewis, D.G. Nocera, Powering the Planet, Proc. Nat. Acad. Sci. USA 103 (43) 2006, 15729]
Water Splitting in a PEC cell SUN ENERGY CHEMICAL ENERGY Semiconductor materials can absorb sunlight; generate carriers; promote redox reactions with water O2 e - H 2 H 2 O 2 e - e - H 2 metal H 2 O h + OH - H +
Possible applications of photosplitting technology Electricity : solar H2 in fuel cell to generate electricity off-grid Energy Storage : accumulation of chemical energy in flow batteries Environment : photo-redox reactions of wastewater Fuels : reaction with CO2 to fuels Automotive : addition to CH4 in vehicles to decrease emissions 4
Glass Conductive support Pt Counter-electrode Energetic diagrams hν + semic. e - + h + 2 H 2 O + 4 h + O 2 + 4 H + + 4 e - 4 H + + 4 e - 2 H 2 -------------------------------------------------- hν + semic. + 2 H 2 O O 2 + 2 H 2 G = 237.2 kj/mol V bias e - e - e - 2H 2 O+2e - 2OH - +H 2 Light 1.23 ev h + 2OH - +2h + H 2 O+1/2O 2 Semiconductor Electrolyte 0 L b x
Semiconductor Candidates [M. Gratzel, Nature 414 (2001) 338] Low bandgap Good harvesting; Scarce stability High bandgap Scarce harvesting; Good stability ph 1 Thermodynamic request 1.23 ev Kinetic losses & overpotentials E g > 2 ev [K. Rajeshwar, J. Appl. Electrochem.37 (2007) 765]
Nanostructured Photo-electrodes WO3 solgel Xstal domains 20-80 nm Area max. 100 cm 2 Fe2O3 + Ti spray Xstal domains 20-60 nm Area max. 100 cm 2 TiO2 -anodic Xstal domains 20-80 nm Area max. 150 cm 2 WO3 -anodic Xstal domains 20-100 nm Area max. 150 cm 2
Sol-gel nanostructures AFM SEM Strato attivo TCO vetro 10 x 10 cm2 From tungstate salts to acidic solution + colloidal dispersion and gelification + blade deposition on conductive glass (FTO) + final calcination (450 C 650 C) [L. Meda, G. Tozzola, A.Tacca, G. Marra, et al, SOLMAT 94 (2010) 788]
Electro-anodized nanostructures 30 V Ti: EG + NH4F, RT + calc. 500 C W: H2O + NMF + NH4F, 40 C + calc. 500 C [A.Tacca, L. Meda, G.Marra, A. Savoini, S. Caramori et al, Chem. Phys. Chem. 13 (2012) 3025] [V.Cristino, S. Caramori, CA. Bignozzi, L. Meda, G. Marra, Langmuir (2011)]
Absorbance Absorbance Spray deposited Nanostructures Fe2O3 + Ti 5% Solutions sprayed on FTO at high temperature (> 400 C) Subtraction Result:*30202/86 2.4 Subtraction Result:*30202/85 Subtraction Result:*30202/82 2.2 Subtraction Result:*30202/81 Subtraction Result:*30202/80 Subtraction Result:*30202/87A 2.0 6, 10, 15, 20, 30 steps 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 Photoanode on FTO 0.2 350 400 450 500 550 600 650 700 750 Wavelength (nm) Wavelength
Current-voltage measurement and gas collection under solar simulated illumination N2 carrier Voltmetro Amperometro Counter O2 Counter H2 Gas cromatograph O2 H2 ABET Tech. solar simulator 550W AM 1.5G filtered 10x10 cm2 uniform area Photo anode Catode
The best for Fe2O3 CVD deposited + IrO2 catalyst S.D. Tilley, M. Cornuz, K. Sivula, and M. Graetzel
The best for WO3 and Fe2O3 tandem cells Colloidal sol-gel a) WO 3 TANDEM CELL. B) Fe 2 O 3 TANDEM CELL. B.D. Alexander, P.J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski J. Mater. Chem. 18 (2008) 2298 J. Brillet, J-H Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Nature Photonics (2012) doi:10.1038/nphoton.2012.265
J(mA/cm 2 ) Anodized WO3 9 8 1 M H 2 SO 4 1M H 2 SO 4 /MeOH 8/2 7 6 5 4 3 2 1 0-1 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 V (V vs SCE) S. Caramori, V. Cristino, C.A. Bignozzi, L.Meda, Topics in Current Chem. Vol. 303 (2011), 215 V. Cristino, S. Caramori, CA. Bignozzi, L. Meda Langmuir 27(11) 2011, 7276 A. Tacca, L. Meda,G. Marra, A. Savoini, S. Caramori, V. Cristino, C. Bignozzi, S. Gimenez, J. Bisquert Chem PhysChem, 13(12) 2012, 3025 14
Wastewater treatment & H2 photoproduction if the hydrogen production can be combined with waste water treatment, then the systems become economically viable [ M. R. Hoffmann et al., Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen, J. Phys. Chem. A 7616, 2008, 112, 7616 ] He C. et al. J. of Photochemistry and Photobiology A: Chemistry 157 (2003) 71-79 Enright P. et al. J. Appl. Electrochem, DOI: 10.1007/s10800-010-0244-1, 2010 15
Catalysts on triple-junction PV wireless device PV -Xunlight (OH, USA) Oper. Voltage = 1.65 V Oper. Current = 5.5 ma/cm2 Voc = 2.2 V M. Kanan, D. Nocera, Science 321 (2008) 1072 D. Nocera, Acc. of Chem. Res. 2011 Catalyst Depo. Technique Photocurrent (ma/cm 2 ) @ 0V bias Resa globale (%) STH Co-ox ELET 0,5 1,0 1,2 FeOOH ELET 0,1 0,5 0,6 FeOOH IMPR 1,0-2,0 2,5 NiO IMPR 0,5 1,5 1,9 18
IPCE % Efficiencies : Energy OUT / Energy IN Quantum Efficiency = electrons / photons 80 70 60 50 IPCE SPECTRA OF WO 3 PHOTOANODES anodically grown at 1V vs SCE anodically grown at 1V vs SCE colloidal at 1.5 V vs SCE 1239.8 (V nm) x J (ma/cm 2 ) IPCE % = ----------------------------------- P (mw/cm 2 ) x λ (nm) 40 30 20 10 70 % UV 40 % Vis 0 300 320 340 360 380 400 420 440 460 480 500 (nm) Global Efficiency STH (energy gain) J x ( V - V bias ) STH % {A.M. 1.5} = ------------------------ x 100 P = 3,15 % J = 5 ma/cm 2 V = 1,23 V V bias = 0,6 V P (1 sun) = 100 mw/cm 2 Z. Chen et al., J. Mater. Res. 25 (2010) 3
Efficiency for a PEC I e Light on The pink area represents the power spent by the applied bias. Dark The blue area represents the power stored as hydrogen. The grey area is the power spent for electrolysis. I PEC The sum pink + blue areas represents the global stored power. V PEC 1,23 V EL Storage Efficiency (total power converted in stored chemical energy) J x 1,23 STO. EFF. % {A.M. 1.5} = ---------------- x 100 = 6,15 % J = 5 ma/cm 2 P V = 1,23 V V bias = 0,6 V P (1 sun) = 100 mw/cm 2
From photocurrent density to evolved H2 J A-C [ A moli] [moli H2 ] ----------- ------------------- = -------------- 2 Fa [cm 2 coulomb] [ s cm 2 ] 1 Fa = 9.65 10 4 [coulomb/mole] 1 mole = 22.414 [litri] For J A-C = 1 10 [ma /cm 2 ] The evolved H 2 = 0.7 7 [ml/min 100 cm 2 ] = 4 40 [ l/h m 2 ] To feed a Fuel Cell (1W) => 14 [ml/min] are required
Outdoor demonstrators DEMO1 DEMO2 PEC cell PHOTO-CURRENT density H2 production PEC cell COST SOLAR H2 COST [ma/cm 2 ] [NL/h/m 2 ] [ /m 2 ] [ /kg] DEMO1 - TiO 2 0.25 1.1 164 43 DEMO2 - WO 3 1.00 4.2 302 20 EU target (2020)for solar H2 = 9.9 /kg
The electrolyzer Electricity is converted in chemical energy η = 40-70 % (cm 3 /h - 10 m 3 /h) From PV η(sc) 14 % x η(el) 40-70 % = η(tot) 6-10 % e - - e O 2 H 2 metal metal H 2 O H + H + H +
Comparison between PV+EL and PEC - - PV + EL Si-PV absorbs 60 % of solar spectrum Efficiency STH: 14% x 45-70% = 6-10 % High Energy dissipation Voltage required : > 2 V Solar H2 Cost : 30 /kg Lifetime 5 years PEC WO3 absorbs 9 % of solar spectrum Efficiency STH: 3 % Lower Energy dissipation Voltage required : < 1 V - zero Solar H2 Cost : 10-20 /kg Lifetime 10-20 years (?) Improvements are in PV efficiency... there are continuous improvements and 10% is not impossible
Cost considerations For PV+EL costs are reparted as 15% : 85% EL is the main cost because it uses noble metals electrodes and has short lifetime. PEC exploits solar energy to drive chimical reactions the requirement for water splitting voltage is reduced and so the cost is. Solar H2 PEC cost depends on materials, efficiency and duration: USA-DOE Final Report (2009) Techno economic Analysis of PEC H 2 Production by B.D. James, G.N. Baum, J. Perez, K.N. Baum.
Thanks to collaborators! I believe that water will one day be employed as fuel, that hydrogen and oxygen that constitute it will furnish an inexhaustible source of heat and light, of an intensity of which coal is not capable Water will be the coal of the future! From: L Ile mystérieuse by Jules Verne (1874) L. Abbondanza G. Bianchi R. Paglino R. Preda A. Romano F. Rubertelli F. Simone A. Tacca G. Tozzola