Bi-directional turbines for converting acoustic wave power into electricity

Similar documents
Turbine Design for Thermoacoustic

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

On the design of near atmospheric air operated thermoacoustic engines

Chapter 3.5: Fans and Blowers

1150 hp motor design, electromagnetic and thermal analysis

V kw The turbine that goes anywhere

Highly flexible couplings

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Unit 24: Applications of Pneumatics and Hydraulics

Dynamics of Offshore Wind Turbines

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

Micropower from Tidal Turbines

Part IV. Conclusions

WIND TURBINE TECHNOLOGY

Section 2.0 : Construction and Measurement of a Simple Test Transmission Line

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Application and Design of the ebooster from BorgWarner

APPLICATION NOTE AP050830

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

Commissioning of 87,000-kW Kaplan Turbine and Generator for Otori Power Station

Theory of turbo machinery / Turbomaskinernas teori. Chapter 4

Relevance of Modern Optimization Methods in Turbo Machinery Applications

T1-40 T1-40BF T1-40V T1-38 T1-38BF T1-38V

Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications

A TEST RIG FOR TESTING HIGH PRESSURE CENTRIFUGAL COMPRESSORS MODEL STAGES AT HIGH REYNOLDS NUMBER

Natural Convection. Buoyancy force

KEYWORDS Micro hydro turbine, Turbine testing, Cross flow turbine

User orientated simulation strategy to analyse large drive trains in SIMPACK

Journal bearings/sliding bearings

PeakVue Analysis for Antifriction Bearing Fault Detection

TABLE OF CONTENT

SYNCHRONOUS MACHINES

Development of a Diaphragm Stirling Cryocooler [THO10-1]

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

Experimental and Predicted Performance of the BEI Mini-Linear Cooler

Mobile field balancing reduces vibrations in energy and power plants. Published in VGB PowerTech 07/2012

Absorption mufflers in exhaust systems. Rolf Jebasinski. J. Eberspächer GmbH & Co. Abstract

Application Information

Torque motors. direct drive technology

CFD SUPPORTED EXAMINATION OF BUOY DESIGN FOR WAVE ENERGY CONVERSION

Forces on Large Steam Turbine Blades

State Newton's second law of motion for a particle, defining carefully each term used.

The quadrature signals and the index pulse are accessed through five inch square pins located on 0.1 inch centers.

COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE

MICRO HYDRO POWER GENERATING EQUIPMENT

Loudspeaker Parameters. D. G. Meyer School of Electrical & Computer Engineering

Accurate Air Flow Measurement in Electronics Cooling

T1-40 T1-40BF T1-40V T1-38 T1-38BF T1-38V

EXPERIMENTAL RESEARCH ON CHARACTERISTICS OF CENTRIFUGAL PUMP NOISE IN WATER PIPE SYS- TEM

CNC Machine Control Unit

PHYSICAL QUANTITIES AND UNITS

Measurement Types in Machinery Monitoring

A Brief Introduction and Discussion of R&D

Sound absorption and acoustic surface impedance

Bourns Resistive Products

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

T U R B I N E G A S M E T E R

Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry:

Introduction to acoustic imaging

Nordex SE. Capital Markets Day Products & Sales - Lars Bondo Krogsgaard

What Is Regeneration?

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Case Study 5 Use of Wind Turbine Technology

Transmission Line and Back Loaded Horn Physics

Description. Dimensions. Features. precision works better

APPENDIX F VIBRATION TESTING PROCEDURE

Unit 24: Applications of Pneumatics and Hydraulics

Outer Diameter 23 φ mm Face side Dimension 20.1 φ mm. Baffle Opening. Normal 0.5 Watts Maximum 1.0 Watts Sine Wave.

NO-BREAK KS 7e. Concentrated Energy kva (50Hz) 3000 kva (60Hz) DIESEL ROTARY UNINTERRUPTIBLE POWER SUPPLY SYSTEM

European Aviation Safety Agency

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

Investigations of a Long-Distance 1000 MW Heat Transport System with APROS Simulation Software

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Wind Turbine Power Calculations

ACOUSTIC CAVITIES DESIGN PROCEDURES

Hydraulic Control Technology for Wind Turbine Generators

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

Frequency-domain and stochastic model for an articulated wave power device

AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE

Study of a thermo acoustic Stirling cooler

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Various Technics of Liquids and Solids Level Measurements. (Part 3)

Project description. Power Electronics for Reliable and Energy efficient Renewable Energy Systems

UCCS ENSC/PES 2500: Renewable Energy Spring 2011 Test 3 name:

Encoders for Linear Motors in the Electronics Industry

A Measurement of 3-D Water Velocity Components During ROV Tether Simulations in a Test Tank Using Hydroacoustic Doppler Velocimeter

AXIAL TURBINE FOR DOUBLE EFFECT TIDAL POWER PLANTS: A CFD ANALYSIS.

MCQ - ENERGY and CLIMATE

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Siemens D7 platform 6.0-MW and 7.0-MW direct drive wind turbines. The new standard for offshore. siemens.com/wind

Waves - Transverse and Longitudinal Waves

Manufacturing Equipment Modeling

PERPLEXING VARIABLE FREQUENCY DRIVE VIBRATION PROBLEMS. Brian Howes 1

Hidetsugu KURODA 1, Fumiaki ARIMA 2, Kensuke BABA 3 And Yutaka INOUE 4 SUMMARY

High Voltage Power Supplies for Analytical Instrumentation

Transcription:

Bi-directional turbines for converting acoustic wave power into electricity Kees de BLOK 1, Pawel OWCZAREK 2, Maurice-Xavier FRANCOIS 3 1 Aster Thermoacoustics, Smeestraat 11, 8194LG Veessen, The Netherlands 2 Future Energy Management, Weegschaalstr.45, 7521cc Enschede, The Netherlands 3 Hekyom, 3, rue de la Croix Martre, 91120 Palaiseau, France e-mail address of corresponding author: c.m.deblok@aster-thermoacoustics.com Abstract Converting acoustic power from thermoacoustic engines into electricity using resonant linear alternators is a common approach but has severe limitations in terms of cost and scalability. The paper will describe in detail the experiments and measurement results on various bidirectional turbines in high frequent acoustic flow fields and at elevated mean pressures. The conclusion from the experiments so far is that this type of turbine could be a cost effective, scalable and efficient device for converting acoustic wave energy into rotation and from there into electricity. 1. Introduction Thermoacoustics is a key enabling technology for the conversion of heat into acoustic power. Nowadays thermoacoustics in itself is well understood and has proven to be a generic applicable and efficient conversion technology. For practical and economic viable applications however, two issues have to be solved in a practical and cost effective way. (1) heat to be converted need to be supplied at high or medium temperature and rejected at a lower temperature from the process with minimal temperature loss and (2) high acoustic (wave) power generated has to be converted into electricity. Focus of this paper is on the conversion of the generated acoustic power into electricity. Converting acoustic power from thermoacoustic engines into electricity using resonant linear alternators is a common approach but has severe limitations in terms of cost and scalability. The increase of moving mass with increasing power finally sets a practical limit to the output power caused by the extreme periodic forces in the construction and the difficulty to maintain clearance seals ( 70 µm) stable over large stroke amplitudes. Linear alternators make use of the pressure variation of the acoustic wave. There is however no physical reason why not using the periodic velocity component of the acoustic wave. A way to convert such a bi-directional flow into rotation is known from shore and off-shore electricity production plants based on an oscillating water column (OWC) [1,2,3]. In this type of power stations, waves force a water column in a chamber to go up and down. This chamber is connected to the open atmosphere and the periodic in- and outflow of air drives a bidirectional turbine of which the rotation direction is independent of the flow direction. In a thermoacoustic system similar periodic flow conditions exist, so in principle, bi-directional turbines can be deployed for conversion of acoustic wave motion as well.

In OWC plants, using air at atmospheric pressure, the reported conversion efficiency is in the range of 25 to 40%. This modest efficiency is because of the performance of (bi-directional) turbines depends on de density of the working fluid. Thermoacoustic engines, fortunately operate at elevated mean pressures up to 40 bar and the increased gas density will raise turbine efficiency up to 85%. This makes bi-directional turbines a low cost and scalable candidate for converting the generated acoustic power into electricity. For testing and validating of this option a few bidirectional impulse turbines were are designed and build using 3-D rapid prototyping. In parallel, a numerical model was developed. From the results we could estimate the performance based on the pressure distribution on the blade and the measured performance. The paper will describe in detail the experiments and measurement results on various bidirectional turbines in high frequent acoustic flow fields and at elevated mean pressures. Results so far are encouraging. The conclusion from the experiments is that this type of turbine could be a cost effective, scalable and efficient device for converting acoustic wave energy into rotation and from there into electricity. 2. Description of the turbine under test A bi-directional turbine consists of rotor with symmetric blade shape enclosed by two guide vane sets. The rotor is connected to a brushless electromotor used as generator. The dimensions and assembly is shown in Figure 1and Table 1. Figure 1 Rotor of the bi-directional turbine and the assemble with guide vanes and generator Table 1 Dimensions of the turbine Rotor diameter 84 mm Blade height 6 mm Blade chord 25 mm Blade thickness 5.5 mm Mutual space between blades 2.1 mm Number of blades 31 The generator is a brushless outer runner type A10-9L made by Hacker [4]. The output of the generator is connected to a set of 10W resistors which can be set to 1 to 5 Ω. Efficiency of

this motor as generator is measured separately in order to be able to estimate the actual shaft power of the rotor The acoustic source, generating the periodic flow, consist of a 12 500W bass speaker with a maximum cone stroke of about 50mm p-p driven by a function generator and power amplifier. The 300 long coupling tube between speaker and turbine is equipped with a dpdx probe for measuring the acoustic power towards the turbine. Output power is measured by the electric power dissipated in the load resistor of the generator corrected for the known generator efficiency to yield the shaft power. The mechanical turbine output power (P m ) at the rotor shaft is given by =.ω (1) In which To is the torque and ω the rotational speed. Torque and rotational speed are both functions of gas velocity so output power is proportional with gas velocity squared. For thermoacoustic applications the gas velocity and pressure amplitude are related by the acoustic impedance. Velocity amplitude of a traveling in an acoustic wave guide (tube) is given by, = ρ. In which p a is the pressure amplitude, ρ the gas density and c the speed of sound. Torque (To), pressure drop ( p), flow coefficient (φ) and rotor efficiency (η r ) can be calculated using the expressions given in [3] which are summarized below. (2) =.0.5.ρ. +.... (3) =.0.5.ρ. +.... (4) In which ρ is the gas density, v a the gas velocity in the blade section, U r the circumferential velocity at mean radius of the rotor (r R ), b the blade height, l t the blade chord and z the number of blades. These gas and geometric parameters can be used to dimension the turbine. The flow coefficient (φ) is defined as the mean axial flow velocity over the circumferential velocity φ=. Rotor efficiency is given by [ ] η =.φ The torque coefficient (C T ), the input coefficient (C A ) represent the effect of blade shape, blade angle, aerodynamic losses, tip clearance etc. Both are a function of the Reynolds number and flow coefficient (φ). Because of the nature of impulse turbines optimum performance is obtained when the circumferential speed equals the gas velocity (φ 1). In that case for an ideal turbine C T = C A. The performance of various impulse turbines therefore can be evaluated by measuring (or calculating) the C T and C A values as a function of φ. Bi-directional turbines operating in acoustic flow conditions largely differ from those in OWC plants. In OWC plants the time between a change of flow direction is relatively long (10-30s) and is not constant in amplitude and interval time. This means that gas displacement through

the turbine is large as compared to the blade chord leaving sufficient time for flow to develop during each half period even if the flow is irregular. In acoustic wave motion the period time is short (e.g. 0.02s at 50Hz) but perfect regularly. As a consequence of the short period time the gas displacement in the turbine could be shorter than the blade chord. Consequently the short gas displacement prevents the flow to reach a steady state which will affect the C T and C A values in a positive way and from that the turbine performance. On this turbines a series of measurements is performed of which the most remarkable results presented here is that bi-directional turbines operate well under high frequent acoustic flow conditions. From the measured data and the expressions given the rotor efficiency is measured and the result is plotted in Figure 2 for increasing acoustic input power at various frequencies. Figure 2 Measured rotor efficiency for the small bi-directional turbine Initially, rotor efficiency for continuous flow is measured to be 23%. Fout! Verwijzingsbron niet gevonden. Figure 2 shows that rotor efficiency under AC flow conditions has clearly improves. It should be noted that the relatively strong fall-off with frequency at low power caused by the fact that displacement amplitude becomes in the range of the open space between rotor and guide vanes. For example, at low frequencies and 7W acoustic power the peak to peak gas displacement could be as large as 100mm. At 50 Hz and 2W the gas displacement is reduced down to only two times the gap width between rotor and guide vanes. Assuming that flow in the gap does not contribute to the torque this could explain the declining efficiency at low power. 3. Operation at elevated pressure The measured efficiency for the small bi-directional turbine is in line with efficiencies reported in literature for OWC turbines operated with air at atmospheric pressure. Typical values are in the range of 30-40% and this efficiency is limited by the relative low density of the air.

Turbine operated with high density fluids like water could reach efficiencies up to 95%. Fortunately thermoacoustic engines are operated at high mean pressures proportionally increasing the density and with that the turbine efficiency. The relation between rotor efficiency and fluid density is given in Figure 3. Figure 3 Turbine efficiency as a function of fluid density Figure 3 shows that efficiency values found for bi-directional turbines operated at atmospheric pressure ( 1 kg.m -3 ) are typical in the range of 20-40%. At increasing density, and finally for water (1000kg.m -3 ), efficiency could be as high as 95%. To confirm this trend an experiment (not describes here) is performed using a larger bidirectional turbine (300mm ). This turbine is installed in a prototype of a multi-stage 100 kw T thermoacoustic power generator (TAP) build at a paper manufacturing plant in the Netherlands [5]. The test with the turbine is performed at with air at 1 MPa mean pressure. The measured efficiency defined as the mechanical shaft power over the acoustic power in that case is measured to be 76%. This result confirms that efficiency of bi-directional turbines improves with increasing mean pressure or fluid density. High end thermoacoustic engines typically run at elevated mean pressures up to 4MPa. So in the end, for acoustic wave energy conversion, this type of turbines could reach an efficiency up to 85%. Combined with a commercial high power 3 phase asynchronous electromotor as generator (η 95%) an overall conversion efficiency from acoustic power to electricity of 80% seems feasible. This efficiency is comparable or even better than the performance reached for small scale linear alternators. Even more important, however is that bi-directional turbines for acoustic wave energy conversion eliminate the limitations in power and cost of linear alternators paving the way for up scaling thermoacoustic system to power levels in the MW range. 4. Conclusion The feasibility of bi-directional turbines for the conversion of acoustic power into rotation and from there into electricity is experimentally investigated.

For a small axial bi-directional turbines a series of measurements is performed which confirms that bi-directional turbines operate well under high frequent acoustic flow conditions. At elevated mean pressure as is common in thermoacoustic engines a rotor efficiency of 85% seems feasible The bi- directional turbine as acoustic to electricity converter can be scaled up in power unlimited so eliminating the limitation in power and cost of linear alternators and paving the way for up scaling thermoacoustic system to power levels in the MW range. 5. References [1] Bruno Pereias at all. An improved radial impulse turbine for OWC. Renewable Energy 36 (2011) 1477-1484. [2] A Thakker, J Jarvis, A Sahed. Quasi-steady state analytical model benchmark of an impulse turbine for wave energy extraction International journal of rotary machinery Volume 2008, Article ID 536079, 12 pages [3] Toshiaki Setoguchi at all. Current status of self- rectifying air turbines for wave energy conversion Energy Conversion and Management 47 (2006) 2382-2396. [4] www.hacker-motor-shop.com [5] Kees de Blok, multi-stage traveling wave thermoacoustics in practice, 19th International Congress on Sound and Vibration, Vilnius, Lithuania, July 8-12, 2012