Micropower from Tidal Turbines
|
|
|
- Arthur Hawkins
- 10 years ago
- Views:
Transcription
1 Micropower from Tidal Turbines Brian Polagye 1, Rob Cavagnaro 1, and Adam Niblick 2 1 Northwest National Marine Renewable Energy Center, University of Washington 2 Creare, Inc. 13th International Symposium on Fluid Power July 9, 2013
2 Tidal Current Energy Utility scale (> 1 MW) turbines harnessing renewable, predictable kinetic energy from tidal currents Siemens/MCT Ocean Renewable Power Company Andritz Hydro/Hammerfest
3 Physical environment: Near field Physical environment: Far field Habitat Invertebrates Potential Environmental Impacts Device presence: Static effects Device presence: Dynamic effects Chemical effects Acoustic effects Electromagnetic effects Energy removal Cumulative effects Low Moderate High Scientific Uncertainty Potential Significance Low Moderate Fish: Migratory Fish: Resident Marine mammals Seabirds High Polagye, B., B. Van Cleve, A. Copping, and K. Kirkendall (eds), (2011) Environmental effects of tidal energy development. Ecosystem interactions
4 Studying Changes to Distribution and Use Pre installation studies of tidal energy sites must typically rely on autonomous instrumentation Active acoustic sensors for observations of marine life have relatively high power draws (> 20 W) 3 4 deep cycle lead acid batteries required to achieve 10% duty cycle for 1 month SoundMetrics DIDSON BioSonics DTX
5 Tidal Micropower Concept Support Frame Turbine Generator and Battery Storage Integrate energy harvesting capability into sensor package Modular alternative to cabled observatories Target W/m 2 power output (including battery storage losses)
6 System Components Kinetic Power Rotor Mechanical Power Power Train Electrical Power Controller P 1 2 U 3 AC P o Battery Storage Flow Velocity Swept Area Balance of System Efficiency Sensors Rotor Efficiency
7 Micropower Rotor Requirements Self starting without external excitation Accommodate currents with time varying direction High efficiency conversion of kinetic power to electrical power
8 Rotor Selection Cross flow turbine High solidity Helical blades NACA 0018 profile N: Number of blades (4) H/D: Aspect Ratio (1.4) φ: Blade helix angle (60 o ) Nc σ: Turbine solidity (0.3) D Limited existing parametric studies Shiono, M., Suzuki, K., and Kiho, S., 2002, Output characteristics of Darrieus water turbine with helical blades for tidal current generations, Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, pp Bachant, P., and Wosnik, M. 2011, Experimental investigation of helical cross flow axis hydrokinetic turbines, including effects of waves and turbulence, Proceedings of the ASME JSME KSME 2011 Joint Fluids Engineering Conference, Hamamatsu, Shizuoka, Japan.
9 Principle of Operation Radius Rotational rate R U Free stream Velocity U cos 2 Neglecting wake and induction Local Velocity
10 Laboratory Experiments Chord Length Re Uc Re c Blockage Ratio 18 21% Froude number Fr Turbulence Intensity U I 4% U Niblick, A.L., 2012, Experimental and analytical study of helical crossflow turbines for a tidal micropower generation system, Masters thesis, University of Washington, Seattle, WA.
11 Turbine Operation
12 C p λ Velocity Dependence Whelan, J. I., J. M. R. Graham, and J. Peiro (2009) A freesurface and blockage correction for tidal turbines. Journal of Fluid Mechanics 624, 1:
13 Possible Effect of Reynolds Number Approximate Local Velocity Re c Uc Sheldahl, R. E. and Klimas, P. C., 1981, Aerodynamic characteristics of seven airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of vertical axis wind turbines, SAND , March 1981, Sandia National Laboratories, Albuquerque, New Mexico.
14 Angle of Attack Variation Angular Position sin tan 1 cos Tip Speed Ratio
15 Significance of Dynamic Stall Range of α at position of maximum torque along each blade 4 Re c 5x10 Jacobs, E.N., and Sherman, A., 1937, Airfoil section characteristics as affected by variations of the Reynolds number, Report No. 586, National Advisory Committee for Aeronautics.
16 Tow vessel Field Experiments Tow line (~100 m) Skiff (w/ load bank) Skiff Attachment Generator Gearbox Re c U I U % Rotor 0% Fr 0 No Blockage
17 Turbine Operation
18 Electrical Power Field Performance C Pe U RH P o 3? Radius Height
19 Laboratory Dynamometer Reaction Torque Sensor Generator Encoder Coupling to Motor Generator connected to field testing load bank Motor driven by variable frequency drive (3 phase AC) Evaluate generator and gearbox efficiency under same conditions as field test (loads and rpm)
20 Generator Efficiency
21 Gearbox Efficiency
22 Field Performance System Performance Rotor Performance Rotor performance (without blockage) in line with expectations from prior work by Bachant and Wosnik (2011), accounting for higher solidity
23 Response to Turbulent Perturbations G f S P e P e S PP f f f c U L Taylor s hypothesis f c 2 Hz Smallest engulfing gust U 1.5m/s Maximum C P
24 Tidal Micropower Feasibility Self starting without external excitation Accommodate currents with time varying direction High efficiency conversion of kinetic power to electrical power Low balance of system efficiency Relatively low rotor efficiency
25 Improved Rotor Efficiency Design Refinements Decrease solidity to increase λ Asymmetric foil with higher C L /C D at Re c ~ (similar Re c to UAVs) Submersible Direct Drive Generator With existing drivetrain, optimal λ depends on inflow velocity (undesirable for control) Eliminate rotary seal Minimize thermal management challenge foilhistory.html
26 Acknowledgements This material is based upon work supported by the Department of Energy under Award Number DE FG36 08GO Funding for field scale turbine fabrication and testing provided by the University of Washington Royalty Research Fund. Fellowship support for Adam Niblick and Robert Cavagnaro was provided by Dr. Roy Martin. Two senior level undergraduate Capstone Design teams fabricated the turbine blades and test rig. Martin Wosnik and Pete Bachant provided a number of helpful comments on representations of the blade chord Reynolds number for cross flow turbines.
Experimental and Analytical Study of Helical Cross Flow Turbines for a Tidal Micropower Generation System
Experimental and Analytical Study of Helical Cross Flow Turbines for a Tidal Micropower Generation System Adam Niblick University of Washington Northwest National Marine Renewable Energy Center MSME Thesis
AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE
AERODYNAMIC ANALYSIS OF BLADE 1.5 KW OF DUAL ROTOR HORIZONTAL AXIS WIND TURBINE HITENDRA KURMI Research scholar, School of Energy and Environmental Managment,UTD, RGPV Bhopal,MP,INDIA [email protected]
NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION
Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids
Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,
Performance Measurement of a Two-Stage Two- Bladed Savonius Rotor
Performance Measurement of a Two-Stage Two- Bladed Savonius Rotor K.K. Sharma*, R. Gupta*, A.Biswas* *Mechanical Engg. NIT Silchar, Assam, India ([email protected], [email protected], [email protected])
Relevance of Modern Optimization Methods in Turbo Machinery Applications
Relevance of Modern Optimization Methods in Turbo Machinery Applications - From Analytical Models via Three Dimensional Multidisciplinary Approaches to the Optimization of a Wind Turbine - Prof. Dr. Ing.
Comparison of aerodynamic models for Vertical Axis Wind Turbines
Downloaded from orbit.dtu.dk on: Jan 3, 6 Comparison of aerodynamic models for Vertical Axis Wind Turbines Ferreira, C. Simão; Aagaard Madsen, Helge; Barone, M.; Roscher, B.; Deglaire, P.; Arduin, I. Published
Comparison between OpenFOAM CFD & BEM theory for variable speed variable pitch HAWT
ITM Web of Conferences 2, 05001 (2014) DOI: 10.1051/itmconf/20140205001 C Owned by the authors, published by EDP Sciences, 2014 Comparison between OpenFOAM CFD & BEM theory for variable speed variable
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code
Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code D.C. Maniaci Pennsylvania State University Y. Li National
Some scientific challenges in aerodynamics for wind turbines
Some scientific challenges in aerodynamics for wind turbines Christian Bak Senior Scientist Team Leader: Aerodynamics, aeroacoustics, airfoil and blade design Technical University of Denmark DTU Wind Energy
The Kobold marine turbine: from the testing model to the full scale prototype
The Kobold marine turbine: from the testing model to the full scale prototype Guido Calcagno INSEAN Italian National Institute for Naval Architecture Studies and Testing (Rome Italy) Alberto Moroso Ponte
Design and Characterization of a Small Wind Turbine Model equipped with a Pitching System
Design and Characterization of a Small Wind Turbine Model equipped with a Pitching System In Partial Fulfilment of the Requirements for the degree Master of Science in Engineering Renewable Energy and
SELECTION AND PERFORMANCE GENERATOR COUPLING TO VERTICAL AXIS WIND TURBINES TO URBAN APPLICATIONS
EWEA 11 - Europe s Premier Wind Energy Event 14-17 March 11, Brussels, Belgium SELECTION AND PERFORMANCE GENERATOR COUPLING TO VERTICAL AXIS WIND TURBINES TO URBAN APPLICATIONS Jorge A. Villar Alé, Damien
Wind Turbine Power Calculations
Wind Turbine Power Calculations RWE npower renewables Mechanical and Electrical Engineering Power Industry INTRODUCTION RWE npower is a leading integrated UK energy company and is part of the RWE Group,
UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name:
UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: 1. When a wind turbine is positioned between radio, television or microwave transmitter and receiver it can sometime reflect some of the in
Wind Energy Conversion Systems
Wind Energy Conversion Systems Lecture Notes by Prof. Shireesh B. Kedare Adjunct Assistant Professor ENERGY SYSTEMS ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY Powai, Mumbai 400076, INDIA Contents
Research, Development and Testing at NNMREC and PMEC. Belinda Batten. Director, Northwest National Marine Renewable Energy Center
Research, Development and Testing at NNMREC and PMEC Belinda Batten Director, Northwest National Marine Renewable Energy Center National Marine Renewable Energy Centers Northwest National Marine Renewable
Inverters & Variable Frequency Drives
Inverters & Variable Frequency Drives NREL / NWTC 5 MW Dynamometer Rob Wills, Intergrid, LLC Temple, NH, rwills @ intergrid.us 603-801-4749 1 About the Presenter.. Renewable Energy since 1982 Codes and
Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT
Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx
Wind Energy Math Calculations Calculating the Tip Speed Ratio of Your Wind Turbine
Wind Energy Math Calculations Calculating the Tip Speed Ratio of Your Wind Turbine The Tip Speed Ratio (TSR) is an extremely important factor in wind turbine design. TSR refers to the ratio between the
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and
Manufactured by Seaforth Energy. The world s most proven 50 kw wind turbine
Manufactured by Seaforth Energy The world s most proven 50 kw wind turbine The world s most proven 50 kw wind turbine The AOC 15/50 is the world s most proven 50 kw wind turbine. Manufactured by Seaforth
Experimental Wind Turbine Aerodynamics Research @LANL
Experimental Wind Turbine Aerodynamics Research @LANL B. J. Balakumar, Los Alamos National Laboratory Acknowledgment: SuhasPol(Post-doc), John Hoffman, Mario Servin, Eduardo Granados (Summer students),
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Taimoor Asim 1, Rakesh Mishra 1, Sree Nirjhor Kaysthagir 1, Ghada Aboufares
ROADMAP ON MARINE RENEWABLE ENERGY
FAME PROJECT - INTERNATIONAL WORKSHOP TERESA SIMAS 1 20 TH NOVEMBER, 2012 OBJECTIVES Overview of marine renewable energy development and prospects CONTENTS Green House Gas emissions targets Renewable energy
Case Study 5 Use of Wind Turbine Technology
Case Study 5 Use of Wind Turbine Technology 1. Context Hong Kong relies on an adequate and reliable electricity supply for its economic development. Our electricity needs are met by the two electricity
COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE
Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 4, October, 2014 2014 IJMERR. All Rights Reserved COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS OF INTERMEDIATE PRESSURE STEAM TURBINE Shivakumar
The Delft Offshore Wind Turbine Concept (DOT)
December 2009 The Delft Offshore Wind Turbine Concept (DOT) A hydraulic solution for offshore wind energy Antonio Jarquín Laguna Delft University of Technology Challenge the future Table of Contents Current
GE Power & Water Renewable Energy. Digital Wind Farm THE NEXT EVOLUTION OF WIND ENERGY. www.ge.com/wind
GE Power & Water Renewable Energy Digital Wind Farm THE NEXT EVOLUTION OF WIND ENERGY www.ge.com/wind GE S DIGITAL WIND FARM PITCH Since entering the wind industry in 2002, GE Power & Water s Renewable
Research Directions in Wind Turbine Blades: Materials and Fatigue
Research Directions in Wind Turbine Blades: Materials and Fatigue Presentation for GCEP - Stanford by Paul Veers Wind Energy Technology Department Sandia National Laboratories Sandia is a multi-program
offshore wind The future of
The future of offshore wind As a subsidiary company of Mitsubishi Heavy Industries Ltd (MHI), Mitsubishi Power Systems Europe (MPSE) is part of one of the world s most innovative, successful and responsible
Building Research Capacity for Marine Renewable Energy in Ireland. Prof. Tony Lewis Emeritus Beaufort Professor University College Cork, Ireland
Building Research Capacity for Marine Renewable Energy in Ireland Prof. Tony Lewis Emeritus Beaufort Professor University College Cork, Ireland National Drivers Research Infrastructures Integrating research
WIND TURBINE TECHNOLOGY
Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems
Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micropower Generation System
Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micropower Generation System Adam L. Niblick A thesis submitted in partial fulfillment of the requirements for the degree of
DAN-AERO MW: Detailed aerodynamic measurements on a full scale MW wind turbine
DAN-AERO MW: Detailed aerodynamic measurements on a full scale MW wind turbine Christian Bak, Helge A. Madsen, Uwe Schmidt Paulsen, Mac Gaunaa Risø DTU National Laboratory for Sustainable Energy, DK-4000
CFD Analysis of Swept and Leaned Transonic Compressor Rotor
CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India
Optimization of a Vertical Axis Micro Wind Turbine for Low Tip Speed Ratio Operation
Optimization of a Vertical Axis Micro Wind Turbine for Low Tip Speed Ratio Operation Ryan McGowan, Kevin Morillas, Akshay Pendharkar, and Mark Pinder The Daniel Guggenheim School of Aerospace Engineering
Overview of Atlantic Offshore Renewable Energy Studies Program. Brian Hooker Office of Renewable Energy Programs
Overview of Atlantic Offshore Renewable Energy Studies Program Brian Hooker Office of Renewable Energy Programs February 2012 Completed Studies of Interest Compendium of Avian Information and Comprehensive
OpenFOAM in Wind Energy: Wind Turbines as a source term. Paolo Schito, Luca Bernini, Alberto Zasso
OpenFOAM in Wind Energy: Wind Turbines as a source term Paolo Schito, Luca Bernini, Alberto Zasso Analysis of Wind Turbine 2 Wind turbine aerodynamics simulation is an important task for develop future
Resistance & Propulsion (1) MAR 2010. Presentation of ships wake
Resistance & Propulsion (1) MAR 2010 Presentation of ships wake Wake - Overview Flow around a propeller is affected by the presence of a hull Potential and viscous nature of the boundary layer contribute
Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412
, July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections
Aeroelastic models for wind turbines
Aeroelastic models for wind turbines how accurate does the flow model have to be? Helge Aagaard Madsen Georg Pirrung Torben J. Larsen Section Aeroelastic Design Department of Wind Energy [email protected] How
Offshore Renewable Energy in Virginia
Offshore Renewable Energy in Virginia Presented to the Renewable Natural Resources Foundation December, 8 2009 Neil Rondorf Vice President, Maritime Operations Science Applications International Corporation
Vertical Axis Wind Turbine at WVU Tech. Alex Perry, Tavon Johnson Undergraduate Mechanical Engineering Students
Vertical Axis Wind Turbine at WVU Tech Alex Perry, Tavon Johnson Undergraduate Mechanical Engineering Students Farshid Zabihian Assistant Professor West Virginia University Institute of Technology Montgomery,
Theory of turbo machinery / Turbomaskinernas teori. Chapter 4
Theory of turbo machinery / Turbomaskinernas teori Chapter 4 Axial-Flow Turbines: Mean-Line Analyses and Design Power is more certainly retained by wary measures than by daring counsels. (Tacitius, Annals)
The aerodynamic center
The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate
Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.
Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive
Instrumentation for Monitoring around Marine Renewable Energy Devices
Instrumentation for Monitoring around Marine Renewable Energy Devices 1 Introduction As marine renewable energy has developed, a set of consistent challenges has emerged following attempts to understand
AN INVESTIGATION ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL AXIS WIND TURBINE ETESH VAISHNAV
AN INVESTIGATION ON THE AERODYNAMIC PERFORMANCE OF A VERTICAL AXIS WIND TURBINE By ETESH VAISHNAV Bachelor of Science in Mechanical Engineering Bhilai Institute of Technology Durg, India 2007 Submitted
Induction Motor Theory
PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org
EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000 MW STEAM TURBINE
Proceedings of 11 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC11, March 23-27, 2015, Madrid, Spain EXPERIMENTAL RESEARCH ON FLOW IN A 5-STAGE HIGH PRESSURE ROTOR OF 1000
CFD Simulation of the NREL Phase VI Rotor
CFD Simulation of the NREL Phase VI Rotor Y. Song* and J. B. Perot # *Theoretical & Computational Fluid Dynamics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts
Chapter 3.5: Fans and Blowers
Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist
DIRECT MATCHING TO GRID WITHOUT INVERTER VARIABLE PITCH. 20/24/30 mt TOWER WITH HYDRAULIC SYSTEM YAWING SYSTEM SAFETY LEVELS PLC CONTROL
Wind turbine EW 50 Ergo Wind srl can boast of thirty years experience in the field of renewable energies as a producer of low environmental impact systems. The core business is represented by small wind
GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT. www.ge.com/wind
GE Renewable Energy GE s 3 MW Platform POWERFUL AND EFFICIENT www.ge.com/wind GE S 3 MW PLATFORM PITCH Since entering the wind industry in 2002, GE Renewable Energy has invested more CONTROLS than $2 billion
Wind turbine database: Modelling and analysis with focus on upscaling. Master s thesis in the Master programme Applied Mechanics
Wind turbine database: Modelling and analysis with focus on upscaling Master s thesis in the Master programme Applied Mechanics JUAN PABLO SÁNCHEZ DE LARA GARCÍA Department of Applied Mechanics Division
IEA Wind Task 30 OC4 Project. Offshore Code Comparison Collaboration Continuation
IEA Wind Task 30 OC4 Project Offshore Code Comparison Collaboration Continuation Brian Smith National Renewable Energy Laboratory IEA ExCo Meeting 68 Dublin, Ireland October, 2011 OC4 Motivation Offshore
informing technology decisions
Technical Capabilities and Business Profile informing technology decisions Cardinal Engineering LLC Rev April 2015 213 Duke of Gloucester Street Annapolis, MD 21401 Phone: (202) 506-3962 E-mail: [email protected]
A wind turbine is a machine for converting the kinetic energy in wind into mechanical energy.
Type of Turbines Page 1 Turbines A wind turbine is a machine for converting the kinetic energy in wind into mechanical energy. mills Turbines If the mechanical energy is used directly by machinery, such
Design, Fabrication and Testing of a Water Current Energy Device
Memorial University of Newfoundland Faculty of Engineering and Applied Science Mechanical Design Project II ENGI 8926 Design, Fabrication and Testing of a Water Current Energy Device Team: M13 Team Members:
WIND POWER GENERATION TECHNOLOGY Mrs. N.V. Vader Mrs. V.A. Joshi
WIND POWER GENERATION TECHNOLOGY Mrs. N.V. Vader Mrs. V.A. Joshi Abstract: The paper deals with the technical details involved in the generation of power through wind technology. It discusses the factors
Inductance. Motors. Generators
Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
Libellula 50/55 kw WIND TURBINE TECHNICAL DESCRIPTION
Sede legale: Via Giuseppe Garibaldi 63, 59100 Prato P.IVA 02110810971 Sede operativa: Via del Mandorlo 30, 59100 Prato tel. (+39) 0574 550493 fax (+39) 0574 577854 - [email protected] Ufficio Commerciale:
C Standard AC Motors
C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake
Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels
NASA/CR 2008-215434 Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels David A. Spera Jacobs Technology, Inc., Cleveland, Ohio An errata was added
BAFFLES AS A MEANS OF STATION PROTECTION FROM HIGH AIR VELOCITIES - COMPARISON OF ANALYTICAL AND FIELD MEASUREMENTS RESULTS
- 289 - BAFFLES AS A MEANS OF STATION PROTECTION FROM HIGH AIR VELOCITIES - COMPARISON OF ANALYTICAL AND FIELD MEASUREMENTS RESULTS Maevski Igor, PhD, PE Jacobs Engineering, USA ABSTRACT Draught relief
Upwind 20MW Wind Turbine Pre- Design
Upwind 20MW Wind Turbine Pre- Design Blade design and control Johan Peeringa, Remco Brood(WMC), Ozlem Ceyhan, Wouter Engels, Gerben de Winkel(WMC) ECN-E--11-017 December 2011 Acknowledgement This project
INDUCTION REGULATOR. Objective:
INDUCTION REGULATOR Objective: Using a wound rotor induction motor an Induction Regulator, study the effect of rotor position on the output voltage of the regulator. Also study its behaviour under load
Active Vibration Isolation of an Unbalanced Machine Spindle
UCRL-CONF-206108 Active Vibration Isolation of an Unbalanced Machine Spindle D. J. Hopkins, P. Geraghty August 18, 2004 American Society of Precision Engineering Annual Conference Orlando, FL, United States
1.0 Background 1.1 Historical background 1.2 Cost of wind turbines
1.0 Background 1.1 Historical background Wind energy has been used for thousands of years for milling grain, pumping water and other mechanical power applications. Wind power is not a new concept. The
Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS)
Renewable Energy Applications: Photovoltaic and Wind Energy Conversion Systems (WECS) Josep Pou Antoni Arias Page 1 Outline 1. Renewable Energy Perspectives 2. Solar Photovoltaic (PV) 3. Wind Generation
QBLADE: AN OPEN SOURCE TOOL FOR DESIGN AND SIMULATION OF HORIZONTAL AND VERTICAL AXIS WIND TURBINES
International Journal of Emerging Technology and Advanced Engineering Volume 3, Special Issue 3: ICERTSD 2013, Feb 2013, pages 264-269 An ISO 9001:2008 certified Int. Journal, ISSN 2250-2459, available
PMDD WIND TURBINE 1.5MW
1.5MW PMDD WIND TURBINE Generator Stator Rotor Blade Wind Measurement Equipment Casted Hub Auxiliary Crane Pitch System Base Frame Generator PM Rotor GOLDWIND 1.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD)
V52-850 kw The turbine that goes anywhere
V2-8 kw The turbine that goes anywhere Versatile, efficient, dependable and popular The highly efficient operation and flexible configuration of the V2 make this turbine an excellent choice for all kinds
SYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical
COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF WIND TURBINE ROTOR BLADES- A REVIEW
COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF WIND TURBINE ROTOR BLADES- A IJCRR Vol 04 issue 21 Section: Technology Category: Review Received on: 06/08/12 Revised on: 19/08/12 Accepted on: 01/09/12 Prashant
The DTU 10-MW Reference Wind Turbine
Downloaded from orbit.dtu.dk on: Nov 22, 2015 The DTU 10-MW Reference Wind Turbine Bak, Christian; Zahle, Frederik; Bitsche, Robert; Kim, Taeseong; Yde, Anders; Henriksen, Lars Christian; Hansen, Morten
NUMERICAL ANALYSIS OF A MODEFID AIRFOIL FOR WIND TURBINE
Diyala Journal of Engineering Sciences ISSN 1999-8716 Printed in Iraq Vol. 07, No. 02, pp. 38-79, June 2014 NUMERICAL ANALYSIS OF A MODEFID AIRFOIL FOR WIND TURBINE Wisam Abd Mohammed Al-Shohani Assistant
Marine and Hydrokinetic U.S. Resource Assessments and Technologies
Marine and Hydrokinetic U.S. Resource Assessments and Technologies Presented by Brooke White, Knauss Fellow, Wind and Water Power Program U.S. Department of Energy September 6 th 2012, Silver Spring MD
Design and Structural Analysis of the Ribs and Spars of Swept Back Wing
Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Mohamed Hamdan A 1, Nithiyakalyani S 2 1,2 Assistant Professor, Aeronautical Engineering & Srinivasan Engineering College, Perambalur,
Wind Turbine Blade Efficiency and Power Calculation with Electrical Analogy
International Journal of Scientific and Research Publications, Volume 2, Issue 2, February 2012 1 Turbine Blade Efficiency and Power Calculation with Electrical Analogy Asis Sarkar*, Dhiren Kumar Behera**
Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms
Application of a Tightly-Coupled CFD/6-DOF Solver For Simulating Offshore Wind Turbine Platforms Alexander J. Dunbar 1, Brent A. Craven 1, Eric G. Paterson 2, and James G. Brasseur 1 1 Penn State University;
in-service inspections www.sgs.com
in-service inspections www.sgs.com Minimising down -time for wind turbines One of the major concerns in investing in wind farm projects is related to turbine availability, which represents the risk of
A CFD Study of Wind Turbine Aerodynamics
A CFD Study of Wind Turbine Aerodynamics Chris Kaminsky *, Austin Filush *, Paul Kasprzak * and Wael Mokhtar ** Department of Mechanical Engineering Grand Valley State University Grand Rapids, Michigan
A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic
AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines
Coupled CFD and Vortex Methods for Modelling Hydro- and Aerodynamics of Tidal Current Turbines and On- and Offshore Wind Turbines SIMPACK User Meeting 2014 Augsburg, Germany October 9 th, 2014 Dipl.-Ing.
CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise)
CROR Noise Generation Mechanism #3: Installation Effects (& Quadrupole Noise) Arne Stuermer & Jianping Yin Institute of Aerodynamics & Flow Technology DLR Braunschweig Germany 14th CEAS-ASC Workshop October
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
Keyword wind turbine wind turbine wind turbine design small wind turbine honeywell wind turbine wind turbines what is a wind turbine wind turbine
Keyword wind turbine wind turbine wind turbine design small wind turbine honeywell wind turbine wind turbines what is a wind turbine wind turbine facts vertical wind turbines wind turbine for home micro
The Reliance on Wind Energy Depends on Advancements in Blade Pitch Control
INSIGHT# 2010-23MPH JULY 6, 2010 The Reliance on Wind Energy Depends on Advancements in Blade Pitch Control By Sal Spada Overview Source: GWEC Many nations are in the process of making wind power an integral
Design of an Alternative Hybrid Vertical Axis Wind Turbine
E-project-032714-164435 - PPM MQP 1342 E-project-032814-091749 - DM3 MQP AAFO E-project-032814-094103 - BJS MQP 1342 Design of an Alternative Hybrid Vertical Axis Wind Turbine A Major Qualifying Report
Lecture 4 Energy Conversion in Wind Turbine
Tuuli- ja aurinkovoimateknologia ja -liiketoiminta Wind and Solar Energy Technology and Business BL20A1200 Lecture 4 Energy Conversion in Wind Turbine LUT Energia, Olli Pyrhönen Equations for energy conversion
Wind Turbine Design of Turbine Blade
Wind Turbine Design of Turbine Blade Ryo S. Amano University of Wisconsin, Milwaukee, U.S.A. Abstract As renewable energy sources become increasingly popular, wind power provides a safe and dependable
Zied Driss, Ali Damak, Mohamed Salah Abid
Etude expérimentale des performances d une éolienne à axe vertical de type Savonius à différents recouvrements externes Experimental investigation of the external overlap ratios effect on the performance
