(DMFC) (A EM2DMFC) O H - PEM2. , O Hads , O H - H2 O, Pt2Ru2Ni/ C, Vol. 41 No. 6 Nov JOU RNAL OF TA IYUAN UN IV ERSIT Y OF TECHNOLO GY

Similar documents
Pt-free Direct Ethanol Fuell Cells

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting Prof. E. Peled School of Chemistry Tel Aviv University, Israel

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

Supporting Information

EFFECT OF TEMPERATURE ON THE ELECTRO-OXIDATION OF ETHANOL ON PLATINUM #

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation 1

Redox and Electrochemistry

Fuel Cell Activities at TU Graz

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. ( ) No. ( )

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

Chemistry 122 Mines, Spring 2014

Determination of the Real Surface Area of Pt electro-catalyst by Hydrogen Under-potential (UPD) Deposition

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole

Woods Chem-1 Lec Atoms, Ions, Mole (std) Page 1 ATOMIC THEORY, MOLECULES, & IONS

Supporting Information

Effect of the Hydrodynamic Conditions on the Electrochemical Degradation of Phenol on a BDD Anode

CHM1 Review Exam 12. Topics REDOX

Solution. Practice Exercise. Concept Exercise

Supporting Information

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

Name Electrochemical Cells Practice Exam Date:

1332 CHAPTER 18 Sample Questions

Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness

Supporting Information

Corrosion Inhibition of Nickel in Sulfuric Acid Using Tween Surfactants

Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile

ATOMS. Multiple Choice Questions

Improving the Ethanol Oxidation Activity of Pt-Mn Alloys through the Use of Additives during Deposition

Electrochemistry - ANSWERS

Fuel Cell as a Green Energy Generator in Aerial Industry

Additional Lecture: TITRATION BASICS

Study Guide For Chapter 7

In-situ gravimetry of nickel thin film during potentiodynamic polarization in acidic and alkaline sulfate solutions

The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.

Bi and Three-Metallic Electrocatalysts Preparation for Methanol Oxidation

Chem 1721 Brief Notes: Chapter 19

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Use of Carbon Nanoparticles for the Flexible Circuits Industry

Electrochemistry Worksheet

Vega Spans and NiOx-TX Spans

All answers must use the correct number of significant figures, and must show units!

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Electrochemistry Voltaic Cells

Asian Journal on Energy and Environment

o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

ADSORPTION, SCIENCE & TECHNOLOGY

K + Cl - Metal M. Zinc 1.0 M M(NO

Burcu Saner, Firuze Okyay, Fatma Dinç, Neylan Görgülü, Selmiye Alkan Gürsel and Yuda Yürüm*

ELECTROCHEMICAL CELLS

CHAPTER 21 ELECTROCHEMISTRY

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Alkaline Fuel Cell with Intrinsic Energy Storage

Ch. 6 Chemical Composition and Stoichiometry

Fuel Cells and Their Applications

Hydrodesulfurization of Thiophene over Platinum Supported on Metal Oxide Catalysts

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition

Monitoring the Ligand-Nanopartcle Interaction for the Development of SERS Tag Materials. Prepared by: George Franklin McKinney Jr.

5.111 Principles of Chemical Science

Potassium ion charge would be +1, so oxidation number is +1. Chloride ion charge would be 1, so each chlorine has an ox # of -1

Name period AP chemistry Unit 2 worksheet Practice problems

Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions

Syntese og karakterisering av katalysatorer for vannelektrolyse.

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule

Prof. Christina Roth Angewandte Physikalische Chemie, Institut für Chemie. Fuel cells: Electrochemistry, electrode reactions and materials

5.111 Principles of Chemical Science

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

PEM water electrolysis fundamentals. Dimitrios Tsiplakides

neutrons are present?

6 Reactions in Aqueous Solutions

Chapter 21a Electrochemistry: The Electrolytic Cell

From Quantum to Matter 2006

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

Chem 31 Fall Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Amount of Substance.

CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT

1. PECVD in ORGANOSILICON FED PLASMAS

Electrocatalysis and Kinetics of the Direct Alcohol Fuel Cells: DEMS and ac Voltammetry Studies

Vincenzo Esposito. Università di Roma Tor Vergata

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

Unit 6. Chapter 10: The MOLE! Date In Class Homework. % Composition & Calculating Empirical Formulas

Education. Professional Positions

Chemistry B11 Chapter 6 Solutions and Colloids

WP4: Risk assessment models for H 2 quality assurance - dynamic CO coverage model

FUEL CELL FUNDAMENTALS

Summer 2003 CHEMISTRY 115 EXAM 3(A)

Electrophoretic Gold Nanoparticles Depostion On Carbon Nanotubes For NO 2 Sensors

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

IB Chemistry. DP Chemistry Review

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

CO 2. Starch + O 2. Fuels + Useful Compounds. Photo Catalyst Particle H 2 O

Determining Equivalent Weight by Copper Electrolysis

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

Discovering Electrochemical Cells

EXPERIMENT #9 CORROSION OF METALS

Transcription:

3 41 6 2010 11 JOU RNAL OF TA IYUAN UN IV ERSIT Y OF TECHNOLO GY Vol. 41 No. 6 Nov. 2010 :100729432 (2010) 0620728205 Ni Pt2Ru / C 1, 1, 2, 1, 1, 1 (11, 030024 ;21, 116023) : 5 Pt2Ru2Ni/ C, X ( XRD) X ( XPS),, Ni Pt2Ru/ C,Ni Pt2Ru2Ni, Pt 52Ru42Ni0. 7/ C, 1. 0 mol/ L NaO H + 1. 0 mol/ L CH3 O H 842. 2 ma/ mg, Pt 52Ru5/ C 0. 16 V,, 0. 58 : ; ; ; :O646 :A (DMFC),, ( PEM2DMFC), : ;, O2, PEM2 DMFC, DMFC, ( A EM2DMFC),,, ;,O H -, [1 ], (A EM2DMFC) [1,2 ], Pt [ 327 ],,CO Hads COads Pt, O Hads CO2,CH3 O Hads COads COads, CH3 O H,,, O Hads, O Hads [2 ], Trip kovic Pt Ru Pt2Ru, Pt [8 ] Ru O H -, O Hads, Ru, O H -, O Hads, Ru,Ni, O H - H2 O, O Hads [9 ], Ni Pt2 Ru, Ni Pt2Ru2Ni/ C, Pt2Ru2Ni/ C,,, X ( XRD),X ( XPS), Ni 3 :2009212215 :(20676088) ; (863 ) (2006AA05Z139) ; (20091402110009) : (1979 - ),,, :,,, ( Tel) 15035138531, ( E2mail) sbliu @tyut. edu. cn

6 :Ni Pt2Ru/ C 729, Ni Pt2Ru2Ni/ C 1 111 Pt2Ru2Ni/ C [10 ] Pt 52 Ru42Ni0. 7 / C( Pt,Ru,Ni 5 4 0. 7, ), 5. 500 g ( 20 %) 41. 5 ml (0. 25 mol/ L, ), 0. 2075 mol/ L ( T HF ) 6615 mg PtCl2 4115 mgrucl3 4. 5 mgnicl2, 51011 mg, 40 5. 4 ml,, 4 h, 6 ml, 1 h 106. 5 mg ( 60 %), 12 h,, 4 h,,, 100,,NiCl2 1. 2 ( 4 mm), Al2 O3,, 7. 5 mg 2. 5 ml,, 6. 3 L,, Na2 fion ( 5 %),80, 60 g/ cm 2 1. 3,, Hg/ Hg2 SO4 ( MSE),,NaO H ( 0. 1, 0. 5,1. 0,2. 0 mol/ L ) + CH3 O H ( 0. 1, 0. 5,1. 0,2. 0 mol/ L ) 20 min,, 20 mv/ s, (30 + 1) VMP2 ( PA R ) MSE 1. 4 XRD, D/ max22500 ( Rigaku), Cu K, 40 kv, 100 ma, 8 / min, 2 30 85 ; V G Scientific ESCALab250i2XL (XPS), Al K X, 300 W 2 2. 1 1 Ni Pt2Ru2Ni/ C XRD, 5 Pt [111 ],[ 200 ],[220 ],[ 311 ], 39. 7,46. 4,68. 1,81. 6 ;, Pt [ 111 ],Pt [ 220 ], c,d,e,pt [ 111 ] [ 220 ] a,pt 52Ru5/ C ;b,pt 52Ru4/ C ;c,pt 52Ru42Ni0. 3/ C ; d,pt52ru42ni0. 7/ C ;e,pt52ru42ni1. 5/ C 1 XRD a,b, Ru Ni, Pt (fcc), Pt [ 111 ] ; Ni, Pt Ru, Pt2Ru/ C Ni Scherrer [ 11 ] : d = 0194 / B (2 ) cos. : d ; ( = 0. 154 2 nm),b (2 ) ; Pt [ 220 ], [9 ] : Pt52Ru5 / C 3. 9 nm, Pt 52Ru4 / C 3. 7 nm, Pt 52Ru42Ni0. 3 / C 2. 4 nm, Pt 52Ru42 Ni0. 7 2. 9 nm,pt 52Ru42Ni1. 5 / C 2. 7 nm 212 XPS 2 Pt 52Ru42Ni0. 7 / C XPS 22a Pt Pt4f 7/ 2, 71. 5 ev Pt 0 Pt4f 7/ 2,72. 6 ev Pt 2 + Pt4f7/ 2 22b Ru Ru3p 3/ 2

730 41, 461. 9 ev Ru 0 Ru3p3/ 2, 464. 1 ev RuO2 Ru3p3/ 2 [12 ] 22 c Ni Ni2p 3/ 2 ;, 854. 0,855. 6,857. 6 ev NiO,Ni (O H) 2,NiOO H Ni2p3/ 2 XPS, Pt 52Ru42Ni0. 7 / C,Pt 0,Pt 2 + Pt 56 %,44 % ; Pt 52Ru4 / C, Pt52Ru42Ni0. 3 / C, Pt 52Ru42Ni1. 5 / C,Pt 0 47 %,53 %,61 % Ni, Pt ; Pt 52Ru42Ni0. 7 / C, Ru 0 RuO2 Ru 41 % 59 % ;Ni NiO Ni (O H) 2 NiOO H, 12 %,78 %,10 %, Pt 52Ru42Ni1. 5 / C Ni 5 %,23 %,72 %, Ni 0, Pt,Ru,Ni, 0,,, 2. 3 21311 Ni Pt2Ru/ C 3 Ni Pt2Ru2Ni/ C 1 mol/ L NaO H + 1 mol/ L CH3 O H 2 Pt 52Ru42Ni017/ C XPS Pt52Ru5 / C,, Ni Ru Pt52Ru4 4 1 mol/ L NaO H + 1 mol/ L CH3 O H Tafel,5 Tafel b 3 Pt Ru Ni,4 Ni, Pt52Ru4/ C, Pt52Ru42Ni0. 3 / C, Pt52Ru42Ni0. 7 / C, Pt52Ru42Ni1. 5 / C : - 0. 95, - 0. 97, - 1. 1, - 1. 1 V, 317. 6,382. 8,842. 2,229. 5 ma/ mg ; Ni,, Pt52Ru42Ni0. 7 / C,Pt52Ru5/ C 1. 34, 110 mv Pt52Ru4 / C Ru,Pt52Ru42Ni0. 7 / C 4 Tafel, Ni ( b ) ; a,,ni (Ni Pt 017 5),, Pt52 Ru4 / C,,,Pt52Ru42Ni0. 7 / C Pt52Ru5/ C,,, 0. 342 ma/ mg,, Pt52Ru4 / C, 0. 034 9 ma/ mg

6 :Ni Pt2Ru/ C 731 2. 3. 2 5 Pt 52Ru42Ni0. 7 / C 1 mol/ L NaO H + n mol/ L CH3 O H, 1 mol/ L,,,, 0. 62 ;, 1 2 mol/ L,,,, 0. 53 2 mol/ L CH3 O H, 1 123. 5 ma/ mg 5 Pt 52Ru42Ni0. 7/ C 6 Pt 52Ru42Ni0. 7 / C 1 mol/ L CH3 O H + n mol/ L NaO H, 1 mol/ L,,,, ; 1 2 mol/ L,,,, 2 mol/ L NaO H, - 0. 59 V, 1 mol/ L NaO H 0. 40 V,, 801 ma/ mg, 1 mol/ L NaO H 815 ma/ mg, 0. 16, Ru XPS, Ni Ni ( O H ) 2 NiOO H,,Ni (O H) 2 Ni (O H) 2 Ni 2 + + 2O Hads + 2e - O Hads, CO Hads COads CH3 O Hads ;, Ni 2 + Ni 2 + + 2O H - Ni (O H) 2 COads CO Hads [2 ], O Hads,, Ni O H -,Ni, Ni,Ni Ni, Ni,Ni, Pt,, Ni, Pt 5 Ru42Ni0. 7 / C NaO H 1 mol/ L O H -, Pt Ni 5d 9 6s 1 3d 8 4s 2, Pt, d s Pt,, d Pt Ni d, Ni Pt s,, Pt, Pt Ni, Pt 0 Pt Ni, Pt d, Pt CH3 O H,, CO Hads COads,CO Hads COads, [3 ],Ni, 3 6 Pt 52Ru42Ni0. 7/ C, Ni Pt 52 Ru4 / C, 1) Ni Pt2Ru,Ni Pt2Ru2Ni, Ni,Ni Ni, Ni,Ni,,, Pt 52Ru42Ni0. 7 / C

732 41 2) Pt 52Ru4 Ni Ru ;Ni O H - 3) 1 mol/ L, 0. 62 ; NaO H 0. 5 2. 0 mol/ L, O H - 0. 16 : [ 1 ] Yu E H, Scott K. Development of direct met hanol alkaline fuel cells using anion exchange membranes[j ]. J Power Sources, 2004, 137 (2) : 248. [ 2 ] Yu E H, Scott K, Reeve R W. A study of t he anodic oxidation of met hanol on Pt in alkaline solutions[j ]. J Electroanal Chem, 2003, 547 (1) :17224. [ 3 ],,,. Ru, Sn Co Pt/ C [J ]., 2006, 27 (9) :7872792. [ 4 ] Manoharan R, Prabhuram J. Possibilities of prevention of formation of poisoning species on direct met hanol fuel cell anodes [J ]. J Power Sources, 2001, 96 :2202225. [ 5 ] Assiongbon K A, Roy D. Electro2oxidation of met hanol on gold in alkaline media : Adsorption characteristics of reaction in2 termediates studied using time resolved electro2chemical impedance and surface plasmon resonance techniques[j ]. J Surface Science, 2005, 594 :992119. [ 6 ] Orozco G, Perez M C, Rincon A, et al. Electro2oxidation of met hanol on silver in alkaline medium[j ]. J Electroanal Chem, 2000, 495 :71278. [ 7 ] Heli H, Jafarian M, Mahjani M G., et al. Electro2oxidation of met hanol on copper in alkaline solution[j ]. Electrochem Ac2 ta, 2004, 49 :499925006. [ 8 ] Tripkovic A V, Popovic K D, Grgur B N, et al. Met hanol electrooxidation on supported Pt and Pt Ru catalyst s in acid and al2 kaline solutions[j ]. J Electrochim Acta, 2002, 47 (22223) :370723714. [ 9 ] Mart nez H M V, Rojas S. Effect of Ni addition over Pt Ru/ C based electrocatalyst s for fuel cell applications[j ]. Appl Catal B Environ, 2006, 69 :75284. [ 10 ] Gotz M, Wendt H. Binary and ternary anode catalyst formulations including t he element s W, Sn and Mo for PEMFCs oper2 ated on methanol or reformate gas[j ]. Electrochim Acta, 1998, 43 (24) :363723644. [ 11 ] Radmilovic V, Gasterger H A, Ross P N. Structure and chemical composition of a supported Pt2Ru electrocatalyst for methanol oxidation[j ]. J Catal, 1995, 154 (1) :982106. [ 12 ] Prabhuram J, Zhao T S, Liang Z X,et al. A simple met hod for t he synt hesis of Pt Ru nanoparticles on t he multi2walled car2 bon nanotube for t he anode of a DMFC[J ]. Electrochim Acta, 2007, 52 (7) :264922656. Effect of Doping with Ni on the Performance of Pt2Ru / C f or Methanol Electro2Catalytic Oxidation in Alkaline Media ZHANG Tao 1, L IU Shi2bin 1, YANG Shao2hua 2, L I Yi2bing 1, ZHANG Zhong2lin 1, HAO Xiao2gang 1 (11 I nstitute of Clean Technique f or Chemical Engineering, Tai y uan Universit y of Technology, Tai y uan 030024, China; 21 Dalian I nstitute of Chemical Physics, Chinese A cadem y of S ciences, Dalian 116023, China) Abstract :The catalyst s of Pt2Ru2Ni/ C wit h different ato m ratio were p repared by colloidal met hod. The surface composition and crystal pattern of nano2particle supported by carbon black were characterized by X2ray diff ractio n and energy dispersive X2ray spect ro scop y. The catalyst ac2 tivity in different met hanol and NaO H concentration electrolytes was measured by cyclic voltam2 metry. The result s show t hat, the performance of Pt2Ru/ C for met hanol electro2oxidation was improved mark2edly by doping wit h Ni, and t he relation between the activity of Pt2Ru2Ni/ C and Ni atom ratio in alloy nano particles appeared volcanic. The Pt5 Ru4 Ni0. 7 / C gave t he best perform2 ance among t he five catalyst s wit h different Ni atom ratio, and t he peak current density on Pt 52 Ru42Ni0. 7 / C reached 842. 2 ma/ mg and t he onset potential of met hanol electro2oxidation was 0. 16 V lower t han t hat of Pt 52Ru5 / C in 1. 0 mol/ L NaO H + 1. 0 mol/ L CH3 O H. In the electrolyte wit h low met hanol concentration, t he met hanol reaction order was 0. 58. Key words :platinum nano2alloy ; elect ro2catalyst ; met hanol elect ro2o xidatio n ; alkaline media ( : )