Mobile Communications Chapter 5: Satellite Systems

Similar documents
Mobile Communications Chapter 5: Satellite Systems

Mobile Communications Chapter 5: Satellite Systems

Mobile Communications: Satellite Systems

5. Satellite Systems. History of Satellite Communications

Mobile Computing. Chapter 5: Satellite Systems

Chapter 11 Satellite Systems

Satellite Communication Systems. mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW

ANALOG SATELLITE COMMUNICATION : Introduction, Base band analog (Voice) signal,

Overview of LEO Satellite Systems

Second International Symposium on Advanced Radio Technologies Boulder Co, September 8-10, 1999

Satellite Basics. Benefits of Satellite

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

Physical Layer. Communication Satellites. ECE 453 Introduction to Computer Networks. Lecture 3 Physical Layer II

MOBILE SATELLITE SERVICES (MSS) REPORT

Mobile Communications Exercise: Satellite Systems and Wireless LANs. Georg von Zengen, IBR, TU Braunschweig,

Evolution of Satellite Communication Systems

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Introduction to satellite constellations orbital types, uses and related facts

SATELLITE COMMUNICATION

1. Introduction. FER-Zagreb, Satellite communication systems 2011/12

CME 574 Satellite Communications

Communication Satellite Systems Trends and Network Aspects

The GSM and GPRS network T /301

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions

Satellite Communications

Artificial Satellites Earth & Sky

Computers Are Your Future Prentice-Hall, Inc.

Truck Automation for the Ready Mixed Concrete Industry. Michael J. Hoagland (205) ext

UMTS Network Architecture

Satellite technology

Chapter 4 Solution to Problems

TELEDESIC SATELLITE SYSTEM OVERVIEW. M. A. Sturza - Teledesic Corporation F. Ghazvinian - Teledesic Corporation

SATELLITE TECHNOLOGIES. Communications satellites have redefined our world. Satellites and other modern

Mobile Communications

OPTICAL SATELLITE NETWORKING. Indicative References

How To Understand The Gsm And Mts Mobile Network Evolution

2G/3G Mobile Communication Systems

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use

GUIDELINES ON SATELLITE NETWORK FILING

DocumentToPDF trial version, to remove this mark, please register this software. WIRELESS COMMUNICATION -THE ULTIMATE WIRELESS NETWORK

Where it s Been and Where it s Going. Michael Cruess March 28, 2012

RECOMMENDATION ITU-R F (Question ITU-R 157/9) b) that systems using this mode of propagation are already in service for burst data transmission,

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1

CONTENTS. Satellite Fleet. Türksat 2A. Türksat 3A. Türksat 4A. Türksat 4B. Türksat VSAT

Your Worldwide Teleport

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam

Analysis of the US Government and Military Commercial Satellite Market Turbulent Government Contracts Impact Growth

Getting your C-Store Connected


IWSSC 2008 Tutorial Satellite Networks I: constellations orbital types, uses and advantages

Bi-Directional DGPS for Range Safety Applications

SATELLITE TECHNOLOGY STUDENT INFORMATION

FAQ s 1. What is GPS? 2. How does GPS work? 3. What is GPRS? 4. How does your device communicate?

Satellite Communications

Greg Keel P.Eng. Parallel Geo Services

Migration for Fixed Satellite Station in C-Band from Measat 1 to Measat 3

communication over wireless link handling mobile user who changes point of attachment to network

Vehicle Scrutinizing using GPS & GSM Technologies Implemented with Ardunio controller

3.4 SCS Technologies for Container Integrity: Track/Trace or Positioning technologies

1 Introduction. 2 Demand for BSS services. Rep. ITU-R BO REPORT ITU-R BO BSS SYSTEMS FOR THE GHz BAND (Question ITU-R 220/11)

Mobile Wireless Overview

How To Run A Space Station From A Polar Relay Station

Appendix A: Basic network architecture

PLM PRODUCT INFORMATION

ORBCOMM World s First Commercial Low-Earth Orbit Satellite Communications System

Satellite Services for Internet Access in Rural Areas 1

Chapter 6: Broadcast Systems. Mobile Communications. Unidirectional distribution systems DVB DAB. High-speed Internet. architecture Container

Positioning in GSM. Date: 14th March 2003

Lecture overview. History of cellular systems (1G) GSM introduction. Basic architecture of GSM system. Basic radio transmission parameters of GSM

Learning about GPS and GIS

Mobile Communications

Wireless Telecommunication Systems GSM, GPRS, UMTS. GSM as basis of current systems Satellites and

State of the Satellite Industry Report June 2013

High Speed and Voice over I.P September 1, 2005

CHEIA Satellite Communication Center

Section 4: The Basics of Satellite Orbits

In this Lecture" Access method CDMA" Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Layer and Telecommunications

PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND MHz

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Bringing Cost-Effective Satellite Communications Technology

Chapter 9 Communications and Networks

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Evaluation for Cargo Tracking Systems in Railroad Transportation

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl

Amateur Satellites Michael G7VJR. OSCAR communications from G6UW

SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992

ENGN4536 Mobile Communications

Orbital Mechanics and Space Geometry

Communication Links for Offshore Platforms. A User s Guide to Troposcatter Communications

ADSL or Asymmetric Digital Subscriber Line. Backbone. Bandwidth. Bit. Bits Per Second or bps

Wireless Technologies for the 450 MHz band

High speed Internet in sparsely populated areas

BTS Backhaul by Satellite

RECOMMENDATION ITU-R S (Questions ITU-R 48/4 and ITU-R 70/4)

Transcription:

Mobile Communications Chapter 5: Satellite Systems History Basics Orbits LEO, MEO, GEO Examples Handover, Routing Mobile Communications Satellite Systems 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial Relays 1957 first satellite SPUTNIK 1960 first reflecting communication satellite ECHO 1963 first geostationary satellite SYNCOM 1965 first commercial geostationary satellite Satellit Early Bird (INTELSAT I): 240 duplex telephone channels or 1 TV channel, 1.5 years lifetime 1976 three MARISAT satellites for maritime communication 1982 first mobile satellite telephone system INMARSAT-A 1988 first satellite system for mobile phones and data communication INMARSAT-C 1993 first digital satellite telephone system 1998 global satellite systems for small mobile phones Mobile Communications Satellite Systems 2 Applications Traditionally weather satellites radio and TV broadcast satellites military satellites satellites for navigation and localization (e.g., GPS) Telecommunication global telephone connections backbone for global networks connections for communication in remote places or underdeveloped areas global mobile communication replaced by fiber optics satellite systems to extend cellular phone systems Mobile Communications Satellite Systems 3

Classical satellite systems Mobile User Link (MUL) Inter Satellite Link (ISL) Gateway Link (GWL) GWL MUL small cells (spotbeams) footprint base station or gateway ISDN PSTN GSM PSTN: Public Switched Telephone Network User data Mobile Communications Satellite Systems 4 Basics Satellites in circular orbits attractive force F g = m g (R/r)² centrifugal force F c = m r ω² m: mass of the satellite R: radius of the earth (R = 6370 km) r: distance to the center of the earth g: acceleration of gravity (g = 9.81 m/s²) ω: angular velocity (ω = 2 π f, f: rotation frequency) Stable orbit F g = F c r = 3 gr ( 2π f 2 ) 2 Mobile Communications Satellite Systems 5 Satellite period and orbits 24 20 velocity [ x1000 km/h] satellite period [h] 16 12 8 4 synchronous distance 35,786 km 10 20 30 40 x10 6 m radius Mobile Communications Satellite Systems 6

Basics elliptical or circular orbits complete rotation time depends on distance satellite-earth inclination: angle between orbit and equator elevation: angle between satellite and horizon LOS (Line of Sight) to the satellite necessary for connection high elevation needed, less absorption due to e.g. buildings Uplink: connection base station - satellite Downlink: connection satellite - base station typically separated frequencies for uplink and downlink transponder used for sending/receiving and shifting of frequencies transparent transponder: only shift of frequencies regenerative transponder: additionally signal regeneration Mobile Communications Satellite Systems 7 Inclination plane of satellite orbit satellite orbit perigee δ inclination δ equatorial plane Mobile Communications Satellite Systems 8 Elevation Elevation: angle ε between center of satellite beam and surface minimal elevation: elevation needed at least to communicate with the satellite ε Mobile Communications Satellite Systems 9

Link budget of satellites Parameters like attenuation or received power determined by four parameters: sending power L: Loss f: carrier frequency gain of sending antenna r: distance distance between sender c: speed of light 2 and receiver 4π r f gain of receiving antenna L = c Problems varying strength of received signal due to multipath propagation interruptions due to shadowing of signal (no LOS) Possible solutions Link Margin to eliminate variations in signal strength satellite diversity (usage of several visible satellites at the same time) helps to use less sending power Mobile Communications Satellite Systems 10 Atmospheric attenuation Attenuation of the signal in % 50 Example: satellite systems at 4-6 GHz 40 rain absorption ε 30 20 fog absorption 10 atmospheric absorption 5 10 20 30 40 50 elevation of the satellite Mobile Communications Satellite Systems 11 Orbits I Four different types of satellite orbits can be identified depending on the shape and diameter of the orbit: GEO: geostationary orbit, ca. 36000 km above earth surface LEO (Low Earth Orbit): ca. 500-1500 km MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit): ca. 6000-20000 km HEO (Highly Elliptical Orbit) elliptical orbits Mobile Communications Satellite Systems 12

Orbits II GEO (Inmarsat, Thuraya) HEO LEO (Globalstar, Irdium) MEO (ICO, GPS) inner and outer Van Allen belts earth 1000 10000 Van-Allen-Belts: ionized particles 2000-6000 km and 15000-30000 km above earth surface 35768 km Mobile Communications Satellite Systems 13 LEO systems Orbit ca. 500-1500 km above earth surface visibility of a satellite ca. 10-40 minutes global radio coverage possible latency comparable with terrestrial long distance connections, ca. 5-10 ms smaller footprints, better frequency reuse but now handover necessary from one satellite to another many satellites necessary for global coverage more complex systems due to moving satellites Examples: Iridium (start 1998, 66 satellites) Globalstar (start 2000, 48 satellites) Mobile Communications Satellite Systems 14 MEO systems Orbit ca. 5000-12000 km above earth surface comparison with LEO systems: slower moving satellites less satellites needed simpler system design for many connections no hand-over needed higher latency, ca. 70-80 ms higher sending power needed special antennas for small footprints needed Example: ICO (Intermediate Circular Orbit, Inmarsat) GPS, GALILEO Mobile Communications Satellite Systems 15

MEO systems: GPS (Global Positioning System) Basic concept of GPS GPS receiver calculates its position (latitude, longitude, and altitude) by precisely timing the signals sent by GPS satellites high above the Earth Each satellite continually transmits messages that include the time the message was transmitted precise orbital information the general system health and rough orbits of all GPS satellites Receiver uses the received messages to determine the transit time of each message and computes the distance to each satellite Trilateration Due to errors (inprecise clocks), not three but four or more satellites are used for calculations Position useful in mobil communications for Location based services Accuracy: some meter with Wide Area Augmentation System WAAS Mobile Communications Satellite Systems 16 Adopted from Wikipedia MEO systems: GPS (Global Positioning System) Structure: three major segments 1. space segment (SS) orbiting GPS satellites, or Space Vehicles (SV) 2. control segment (CS) master control station (MCS), alternate master control station, four dedicated ground antennas and six dedicated monitor stations 3. user segment (U.S.) user devices US Air Force develops, maintains, and operates space & ctrl segments Adopted from Wikipedia Mobile Communications Satellite Systems 17 MEO systems: GPS (Global Positioning System) Space segment (SS) orbiting GPS satellites, or Space Vehicles (SV) 24 SVs: six planes with four satellites each (plus some extra) approximately 55 inclination orbits are arranged such that >= 6 satellites are always within LOS four satellites are not evenly spaced (90 degrees) within each orbit, but 30, 105, 120, and 105 degrees rotation time approx. 12 hours orbit 20200 km ~ 9 satellites are visible from any point on ground at any one time Mobile Communications Satellite Systems 18

MEO systems: GPS (Global Positioning System) Ground-Track (sub satellite path) of the Satellite GPS BIIR-07 (PRN 18) of 18.10.2001, 00:00 h to 19.10.2001, 00:00 h orbit time is slightly shifted (about 4 minutes) in 24 h 21:30 zone of sight Mobile Communications Satellite Systems 19 MEO systems: GPS (Global Positioning System) Position of the monitor stations and the master control station (Earthmap:NASA; http://visibleearth.nasa.gov/) master control station (Schriever AFB) plus additional monitoring stations for monitoring the satellites every satellite can be seen from at least two monitor stations Mobile Communications Satellite Systems 20 Geostationary satellites Orbit 35,786 km distance to earth surface, orbit in equatorial plane (inclination 0 ) complete rotation exactly one day, satellite is synchronous to earth rotation fix antenna positions, no adjusting necessary satellites typically have a large footprint (up to 34% of earth surface!), therefore difficult to reuse frequencies bad elevations in areas with latitude above 60 due to fixed position above the equator high transmit power needed high latency due to long distance (ca. 275 ms) not useful for global coverage for small mobile phones and data transmission, typically used for radio and TV transmission, but some for mobile communications as well Mobile Communications Satellite Systems 21

GEO Systems: Example Thuraya regional satellite phone provider shareholders are mixture of Middle Eastern and North African telcos and investment companies coverage area most of Europe, Middle East, North, Central and East Africa, Asia and Australia subscribers: ~ 250,000 (March 2006) ~ 360,000 Thuraya handsets in service since launch in 2001 Structure of Thuraya spot beams Mobile Communications Satellite Systems 22 GEO Systems: Example Thuraya Mobile Communications Satellite Systems 23 Services GEO Systems: Example Thuraya Voice communications with hand held or fixed terminals Short message service 9.6 kbit/s of data & fax service 60 kbit/s downlink and 15 kbit/s uplink "GMPRS" mobile data service 144 kbit/s high-speed data transfer via a notebook-sized terminal (ThurayaDSL) GPS is supported by all handsets value-added services, e.g., news, call back / waiting, missed calls one-way 'high power alert' capability that notifies users of incoming call, when signal path to satellite is obstructed (e.g. inside building) Marine Services: a combination of a special (fixed) base station and subscription offering voice, fax, data and always on internet-access Also an emergency service: sends multiple SMS messages containing alarm-status and actual position to pre-defined destinations Mobile Communications Satellite Systems 24

GEO Systems: Example SkyDSL Internet access via satellite Interesting for users in areas where no other broadband Internet access available has technically not much to do with DSL GEO satellite for downlink uplink (also for requests) via modem/telephone or other mobil comm. or also via satellite data rate up to max. 36000 KBit/s # users ca. 100.000 in Germany large latency due to GEO already signal propagation for distance of 2 * 36000 km: ~240 ms Mobile Communications Satellite Systems 25 Routing One solution: inter satellite links (ISL) reduced number of gateways needed forward connections or data packets within the satellite network as long as possible only one uplink and one downlink per direction needed for the connection of two mobile phones Problems: more complex focusing of antennas between satellites high system complexity due to moving routers higher fuel consumption thus shorter lifetime Iridium and Teledesic planned with ISL Other systems use gateways and additionally terrestrial networks Mobile Communications Satellite Systems 26 Localization of mobile stations Mechanisms similar to GSM Gateways maintain registers with user data HLR (Home Location Register): static user data VLR (Visitor Location Register): (last known) location of the mobile station SUMR (Satellite User Mapping Register): satellite assigned to a mobile station positions of all satellites Registration of mobile stations Localization of the mobile station via the satellite s position requesting user data from HLR updating VLR and SUMR Calling a mobile station localization using HLR/VLR similar to GSM connection setup using the appropriate satellite Mobile Communications Satellite Systems 27

Handover in satellite systems Several additional situations for handover in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites Intra satellite handover handover from one spot beam to another mobile station still in the footprint of the satellite, but in another cell Inter satellite handover handover from one satellite to another satellite mobile station leaves the footprint of one satellite Gateway handover Handover from one gateway to another mobile station still in the footprint of a satellite, but gateway leaves the footprint Inter system handover Handover from the satellite network to a terrestrial cellular network mobile station can reach a terrestrial network again which might be cheaper, has a lower latency etc. Mobile Communications Satellite Systems 28