Mobile Communications Chapter 5: Satellite Systems
|
|
|
- Sabina French
- 9 years ago
- Views:
Transcription
1 Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems
2 History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial Relays 1957 first satellite SPUTNIK 1960 first reflecting communication satellite ECHO 1963 first geostationary satellite SYNCOM 1965 first commercial geostationary satellite Satellit Early Bird (INTELSAT I): 240 duplex telephone channels or 1 TV channel, 1.5 years lifetime 1976 three MARISAT satellites for maritime communication 1982 first mobile satellite telephone system INMARSAT-A 1988 first satellite system for mobile phones and data communication INMARSAT-C 1993 first digital satellite telephone system 1998 global satellite systems for small mobile phones
3 Applications Traditionally weather satellites radio and TV broadcast satellites military satellites satellites for navigation and localization (e.g., GPS) Telecommunication global telephone connections replaced by fiber optics backbone for global networks connections for communication in remote places or underdeveloped areas global mobile communication satellite systems to extend cellular phone systems (e.g., GSM or AMPS)
4 Classical satellite systems Mobile User Link (MUL) Inter Satellite Link (ISL) Gateway Link (GWL) GWL MUL small cells (spotbeams) footprint base station or gateway ISDN PSTN GSM PSTN: Public Switched Telephone Network User data
5 Basics Satellites in circular orbits attractive force on earth gravity F g = m g (R/r)² centrifugal force F c = m r ω² m: mass of the satellite R: radius of the earth (R = 6370 km) r: distance from the satellite to the center of the earth. g: acceleration of gravity (g = 9.81 m/s²) ω: angular velocity (ω = 2 π f, f: rotation frequency) Stable orbit F g = F c r = 3 gr ( 2 π f 2 ) 2 The distance of a satellite to the earth s surface depends on its rotation frequency f. The satellite period equals 24 hours for a distance of 35,786 km.
6 Satellite period and orbits: velocity [ x1000 km/h] satellite period [h] synchronous distance 35,786 km x10 6 m radius
7 Basics: elliptical or circular orbits complete rotation time depends on distance satellite-earth Inclination: angle between orbit and equator Elevation: angle between satellite and horizon LOS (Line of Sight) to the satellite necessary for connection high elevation needed, less absorption due to e.g. buildings Uplink: connection base station - satellite Downlink: connection satellite - base station typically separated frequencies for uplink and downlink transponder used for sending/receiving and shifting of frequencies transparent transponder: only shift of frequencies regenerative transponder: additionally signal regeneration
8 The inclination angle: angle between the equatorial plane and plane by satellite orbit. Inclination angle 0 degrees - satellite above the equator. If satellite does not have circular orbit, the closest point to the earth is called the PERIGEE. The elevation angle: angle between centre of satellite beam and plane tangential to earth surface so called FOORPRINT.
9 Inclination plane of satellite orbit perigee satellite orbit δ inclination δ equatorial plane
10 Elevation Elevation: angle ε between center of satellite beam and surface minimal elevation: elevation needed at least to communicate with the satellite ε
11 Link budget of satellites Parameters like attenuation or received power determined by four parameters: sending power gain of sending antenna distance between sender and receiver Elevation angles Problems: varying strength of received signal due to multipath propagation. The power of the received signal decreases with the square of the distance.(transmit power, antenna diameter, operating frequency) Attenuation of signal due to atmospheric condition, depending on elevation the signal has to penetrate smaller and larger % of atmosphere. Rain absorption quite strong in tropical areas. >10 degree is useless for comm., L: Loss f: carrier frequency r: distance c: speed of light 4π r f L = c 2
12 Atmospheric attenuation Attenuation of the signal in % Example: satellite systems at 4-6 GHz rain absorption ε fog absorption 10 atmospheric absorption elevation of the satellite
13 Orbits I: Four different types of satellite orbits can be identified depending on the shape and diameter of the orbit: GEO: geostationary orbit, ca km above earth surface LEO (Low Earth Orbit): ca km MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit): ca km HEO (Highly Elliptical Orbit) elliptical orbits
14 Orbits II GEO (Inmarsat) HEO LEO (Globalstar, Irdium) MEO (ICO) inner and outer Van Allen belts earth Van-Allen-Belts: ionized particles km and km above earth surface km
15 Geostationary satellites Orbit 35,786 km distance to earth surface, orbit in equatorial plane (inclination 0 ) complete rotation exactly one day, satellite is synchronous to earth rotation Advantages: fixed antenna positions, no adjusting necessary. GEOs are ideal for TV and Broadcasting. Lifetime are high about 15yrs. No handover due to the large footprint. Disadvantages: Northern & southern regions more problems on receiving due to low elevation above a latitude of 60deg i.e greater antenna needed. Shading of signals in cities due to High buildings. high transmit power needed high latency due to long distance (ca. 275 ms) not useful for global coverage for small mobile phones and data transmission, typically used for radio and TV transmission
16 LEO systems Orbit ca km above earth surface visibility of a satellite ca minutes global radio coverage possible Provides omnidirectional antenna for mobile terminals Low power transmit 1W smaller footprints, better frequency reuse handover necessary from one satellite to another many satellites necessary for global coverage more complex systems due to moving satellites Examples: Iridium (start 1998, 66 satellites) Bankruptcy in 2000, deal with US DoD (free use, saving from deorbiting ) Globalstar (start 1999, 48 satellites) Not many customers (2001: 44000), low stand-by times for mobiles
17 MEO systems Orbit ca km above earth surface comparison with LEO systems: slower moving satellites less satellites needed simpler system design for many connections no hand-over needed higher latency, ca ms higher sending power needed special antennas for small footprints needed Example: ICO (Intermediate Circular Orbit, Inmarsat) start ca Bankruptcy, planned joint ventures with Teledesic, Ellipso cancelled again, start planned for 2003
18 Routing One solution: inter satellite links (ISL) reduced number of gateways needed forward connections or data packets within the satellite network as long as possible only one uplink and one downlink per direction needed for the connection of two mobile phones Problems: more complex focusing of antennas between satellites high system complexity due to moving routers higher fuel consumption thus shorter lifetime Iridium and Teledesic planned with ISL Other systems use gateways and additionally terrestrial networks
19 Localization of mobile stations Mechanisms similar to GSM Gateways maintain registers with user data HLR (Home Location Register): static user data VLR (Visitor Location Register): (last known) location of the mobile station SUMR (Satellite User Mapping Register): satellite assigned to a mobile station positions of all satellites Registration of mobile stations Localization of the mobile station via the satellite s position requesting user data from HLR updating VLR and SUMR Calling a mobile station localization using HLR/VLR similar to GSM connection setup using the appropriate satellite
20 Handover in satellite systems Several additional situations for handover in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites Intra satellite handover handover from one spot beam to another mobile station still in the footprint of the satellite, but in another cell Inter satellite handover handover from one satellite to another satellite mobile station leaves the footprint of one satellite Gateway handover Handover from one gateway to another mobile station still in the footprint of a satellite, but gateway leaves the footprint Inter system handover Handover from the satellite network to a terrestrial cellular network mobile station can reach a terrestrial network again which might be cheaper, has a lower latency etc.
21 Overview of LEO/MEO systems Iridium Globalstar ICO Teledesic # satellites altitude ca. 700 (km) coverage global ±70 latitude global global min elevation frequencies [GHz (circa)] 1.6 MS MS 2.5 MS MS 2.2 MS ISL 23.3 ISL access FDMA/TDMA CDMA FDMA/TDMA FDMA/TDMA method ISL yes no no yes bit rate 2.4 kbit/s 9.6 kbit/s 4.8 kbit/s 64 Mbit/s 2/64 Mbit/s # channels Lifetime [years] cost estimation 4.4 B$ 2.9 B$ 4.5 B$ 9 B$
5. Satellite Systems. History of Satellite Communications
5. Satellite Systems History and Orbits Routing, Localization, and Hand-over Systems 2005 Burkhard Stiller and Jochen Schiller FU Berlin M5 1 History of Satellite Communications 1945 Arthur C. Clarke about
Mobile Computing. Chapter 5: Satellite Systems
Mobile Computing Chapter 5: Satellite Systems Prof. Sang-Jo Yoo History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial Relays 1957 First satellite SPUTNIK by
Mobile Communications: Satellite Systems
Mobile Communications: Satellite Systems Mobile Communication: Satellite Systems - Jochen Schiller http://www.jochenschiller.de 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay
Mobile Communications Chapter 5: Satellite Systems
History of satellite communication Mobile Communications Chapter 5: Satellite Systems History Basics Orbits LEO, MEO, GEO Examples Handover, Routing 1945 Arthur C. Clarke publishes an essay about Extra
Satellite Communication Systems. mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW [email protected]
Satellite Communication Systems mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW [email protected] Satellite Communication Satellite Communication combines the missile and microwave technologies
Chapter 11 Satellite Systems
Chapter 11 Satellite Systems 1 Outline Introduction Types of Satellite Characteristic of Satellite Systems Satellite System Infrastructures Call Setup GPS Limitations of GPS Beneficiaries of GPS Applications
ANALOG SATELLITE COMMUNICATION : Introduction, Base band analog (Voice) signal,
Section-A PRINCIPLES OF SATELLITE COMMUNICATION: Evolution & growth of communication satellite, Synchronous satellite, Satellite frequency allocation & Band spectrum, advantages of satellite communication,
Second International Symposium on Advanced Radio Technologies Boulder Co, September 8-10, 1999
Second International Symposium on Advanced Radio Technologies Boulder Co, September 8-10, 1999 Overview of Satellite Communications Tim Pratt Center for Wireless Telecommunications Virginia Tech History
Overview of LEO Satellite Systems
Overview of LEO Satellite Systems Christopher Redding Institute for Telecommunication Sciences National Telecommunications and Information Administration Boulder, CO credding@its. @its.bldrdoc.gov 1999
Mobile Communications Exercise: Satellite Systems and Wireless LANs. Georg von Zengen, IBR, TU Braunschweig, www.ibr.cs.tu-bs.de
Mobile Communications Exercise: Satellite Systems and Wireless LANs N 1 Please define the terms inclination and elevation using the following two figures. How do these parameters influence the usefulness
2. Orbits. FER-Zagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
Physical Layer. Communication Satellites. ECE 453 Introduction to Computer Networks. Lecture 3 Physical Layer II
ECE 453 Introduction to Computer Networks Lecture 3 Physical Layer II 1 Physical Layer Services transmit bits from sender to receiver. Transmission media Guided: twisted pair, coax, fiber Unguided (wireless):
Evolution of Satellite Communication Systems
Mathieu DERVIN Brussels, 6th May 2015 Brussels, May 2015 Agenda I. From Sputnik to wideband satellite services: The key technological evolutions II. Increase the satellite system capacity: A global system
Introduction to satellite constellations orbital types, uses and related facts
Introduction to satellite constellations orbital types, uses and related facts Dr Lloyd Wood space team, Cisco Systems http://www.cisco.com/go/space Guest lecture, ISU summer session July 2006 created
Satellite Basics. Benefits of Satellite
Satellite Basics Benefits of Satellite People need access to enterprise-class, high-speed voice, video and data applications wherever they happen to be. Satellite connectivity has the power to drive communications
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 10 Satellite Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain different type of satellite orbits
MOBILE SATELLITE SERVICES (MSS) REPORT
PSWN Public Safety Wireless Network MOBILE SATELLITE SERVICES (MSS) REPORT PSWN 1 Mobile Satellite Service Foreword This report is a primer for interested parties to become more familiar with the various
SATELLITE COMMUNICATION
SATELLITE COMMUNICATION By Gaurish Kumar Tripathi. 1.0 INTRODUCTION: The use of satellite in communication system is very much a fact of everyday in life. This is evidence by the many homes, which are
Satellite Communications
Satellite Communications Department of Electrical Engineering Faculty of Engineering Chiangmai University Origin of Satellite Communications Arthur C. Clark (1945) British Science fiction writer propose
CME 574 Satellite Communications
CME 574 Satellite Communications Fall, 2007 Dr Hazem Al-Otum Ref. Ellwood Brem, Instructor To orbit the Earth is to fall down and miss the ground! Topics we will cover: History Satellite Mechanics Orbital
1. Introduction. FER-Zagreb, Satellite communication systems 2011/12
1. Introduction Topics History Characteristics of satellite communications Frequencies Application 1 History Arthur C. Clark suggested in 1945. Earth coverage with 3 geostationary satellites. On 4th of
Artificial Satellites Earth & Sky
Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,
OPTICAL SATELLITE NETWORKING. Indicative References
OPTICAL SATELLITE NETWORKING Indicative References 1 What is a network? It takes 2 nodes to have a link It takes minimum 3 nodes to have a network If the nodes are satellites and the links are optical
Mobile Communications
Mobile Communications Vincent Roca (2001-10) Claude Castelluccia (1998-2001) INRIA [email protected] [email protected] http://planete.inrialpes.fr/~roca/ Overview of the Course! Part 1:
RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento
RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne
UMTS Network Architecture
Chapter 5 UMTS Network Architecture A network architecture for all FPLMTS has been developed which is capable of supporting all proposed and anticipated future satellite systems. The development of this
Chapter 4 Solution to Problems
Chapter 4 Solution to Problems Question #1. A C-band earth station has an antenna with a transmit gain of 54 db. The transmitter output power is set to 100 W at a frequency of 6.100 GHz. The signal is
Communication Satellite Systems Trends and Network Aspects
Communication Satellite Systems Trends and Network Aspects Paul Anderson Communication Architectures Department The Aerospace Corporation [email protected] http://www.aero.org/ Lee Center, Caltech
RECOMMENDATION ITU-R F.1113. (Question ITU-R 157/9) b) that systems using this mode of propagation are already in service for burst data transmission,
Rec. ITU-R F.1113 1 RECOMMENDATION ITU-R F.1113 RADIO SYSTEMS EMPLOYING METEOR-BURST PROPAGATION (Question ITU-R 157/9) (1994) Rec. ITU-R F.1113 The ITU Radiocommunication Assembly, considering a) that
TELEDESIC SATELLITE SYSTEM OVERVIEW. M. A. Sturza - Teledesic Corporation F. Ghazvinian - Teledesic Corporation
TELEDESIC SATELLITE SYSTEM OVERVIEW M. A. Sturza - Teledesic Corporation F. Ghazvinian - Teledesic Corporation 1. INTRODUCTION There is a significant worldwide demand for broadband communications capacity.
Environmental Monitoring: Guide to Selecting Wireless Communication Solutions
Environmental Monitoring: Guide to Selecting Wireless Communication Solutions By: Scott South Published in WaterWorld, January 2005 (Page 48) Rapidly growing demands for information and increased productivity
IWSSC 2008 Tutorial Satellite Networks I: constellations orbital types, uses and advantages
IWSSC 2008 Tutorial Satellite Networks I: constellations orbital types, uses and advantages Lloyd Wood, Cisco Systems created with International Workshop on Satellite and Space Communications 2008, IWSSC
Satellite Communications
Satellite Communications Mika Nupponen S-72.4210 Postgraduate Course in Radio Communications 21/02/2006 1 Contents Introduction History of Satellite communications Satellites Satellite Link Design Propagation
Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam
Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of
The GSM and GPRS network T-110.300/301
The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic
Satellite technology
Satellite technology Overview What is a satellite? The key elements of orbital position Satellite manufacturers and design The components of a satellite: payload and bus Digital versus analogue How do
Penn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
Computers Are Your Future. 2006 Prentice-Hall, Inc.
Computers Are Your Future 2006 Prentice-Hall, Inc. Computers Are Your Future Chapter 3 Wired and Wireless Communication 2006 Prentice-Hall, Inc Slide 2 What You Will Learn... ü The definition of bandwidth
2G/3G Mobile Communication Systems
2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management
Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1
Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer
1 Introduction. 2 Demand for BSS services. Rep. ITU-R BO.2016 1 REPORT ITU-R BO.2016. BSS SYSTEMS FOR THE 40.5-42.5 GHz BAND (Question ITU-R 220/11)
Rep. ITU-R BO.2016 1 REPORT ITU-R BO.2016 BSS SYSTEMS FOR THE 40.5-42.5 GHz BAND (Question ITU-R 220/11) Rep. ITU-R BO.2016 (1997) 1 Introduction The purpose of this Report is to provide a preliminary
GSM Network and Services
GSM Network and Services Cellular networks GSM Network and Services 2G1723 Johan Montelius 1 The name of the game The number one priority for mobile/cellular networks is to implement full-duplex voice
Orbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
SATELLITE TECHNOLOGIES. Communications satellites have redefined our world. Satellites and other modern
Amanda Stokes COMM 421 Textbook Paper SATELLITE TECHNOLOGIES Communications satellites have redefined our world. Satellites and other modern telecommunications networks, together with TV, have now altered
DocumentToPDF trial version, to remove this mark, please register this software. WIRELESS COMMUNICATION -THE ULTIMATE WIRELESS NETWORK
WIRELESS COMMUNICATION TOPIC: IRIDIUM SATELLITE SYSTEM (ISS) -THE ULTIMATE WIRELESS NETWORK Pre s e n t e d b y : D.Narmada, III.B.Tech, 05121A0455 Mail_Id :[email protected] A.Nithya, III.B.Tech,
SATELLITE TECHNOLOGY STUDENT INFORMATION
SATELLITE TECHNOLOGY STUDENT INFORMATION Area of Study: Communications Objectives: Students will discover the basic principles of satellite technology through a demonstration and utilization of web resources.
Satellite Basics Term Glossary
Satellite Basics Term Glossary AES Advanced Encryption Standard is an encryption standard comprised of three blocks of ciphers AES 128, AES 192, and AES 256 ACM Adaptive Coding and Modulation uses an algorithm
Wireless Telecommunication Systems GSM, GPRS, UMTS. GSM as basis of current systems Satellites and
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: Wireless Telecommunication Systems GSM, GPRS,
Lecture L17 - Orbit Transfers and Interplanetary Trajectories
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to
Analysis of the US Government and Military Commercial Satellite Market Turbulent Government Contracts Impact Growth
Analysis of the US Government and Military Commercial Satellite Market Turbulent Government Contracts Impact Growth November 2014 Contents Section Slide Number Executive Summary 4 Market Overview 8 Total
How To Understand The Gsm And Mts Mobile Network Evolution
Mobile Network Evolution Part 1 GSM and UMTS GSM Cell layout Architecture Call setup Mobility management Security GPRS Architecture Protocols QoS EDGE UMTS Architecture Integrated Communication Systems
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu
Mobile Communications Chapter 4: Wireless Telecommunication Systems slides by Jochen Schiller with modifications by Emmanuel Agu Market GSM Overview Services Sub-systems Components Prof. Dr.-Ing. Jochen
GSM GPRS. Course requirements: Understanding Telecommunications book by Ericsson (Part D PLMN) + supporting material (= these slides)
GSM Example of a PLMN (Public Land Mobile Network) At present most successful cellular mobile system (over 200 million subscribers worldwide) Digital (2 nd Generation) cellular mobile system operating
How To Understand And Understand The Power Of A Cdma/Ds System
CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle
Migration for Fixed Satellite Station in C-Band from Measat 1 to Measat 3
World Applied Sciences Journal 24 (2): 207-212, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.24.02.1024 Migration for Fixed Satellite Station in C-Band from Measat 1 to Measat
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
CHEIA Satellite Communication Center
Opened in October 1976,, from Prahova region, Romania, is the largest teleport in Central and South-eastern Europe. Located in a unique natural environment in the country due to the mountainous relief
Section 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
Satellite Services for Internet Access in Rural Areas 1
Satellite Services for Internet Access in Rural Areas 1 Hans Kruse McClure School of Communication Systems Management Ohio University [email protected] Executive Summary This report examines the use of direct
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed
PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE
GUIDELINES ON SATELLITE NETWORK FILING
GUIDELINES ON SATELLITE NETWORK FILING 1. Introduction 1.1. Satellite orbital slots are valuable and limited resources, which need to be planned and managed for the efficient use of, and also, the avoidance
LRS - Application Form PRESIDENT OF THE OFFICE OF ELECTRONIC COMMUNICATIONS
Date...... LRS (company's stamp) ref. sign:... PRESIDENT OF THE OFFICE OF ELECTRONIC COMMUNICATIONS Issue No.: The application concerns the station: APPLICATION for a license on usage of radio devices
About Me" List of Lectures" In This Course" Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems" " Dr. Cecilia Mascolo" "
About Me Reader in Mobile Systems NetOS Research Group Research on Mobile, Social and Sensor Systems More specifically, Human Mobility and Social Network modelling Opportunistic Mobile Networks Mobile
Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos [email protected] 1-2009
Unit of Learning # 2 The Physical Layer Redes de Datos Sergio Guíñez Molinos [email protected] 1-2009 The Theoretical Basis for Data Communication Sergio Guíñez Molinos Redes de Computadores 2 The Theoretical
In this Lecture" Access method CDMA" Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Layer and Telecommunications
Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Layer and Telecommunications Dr. Cecilia Mascolo In this Lecture In this lecture we will discuss aspects related to the MAC Layer of wireless
192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]
192620010 Mobile & Wireless Networking Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] Geert Heijenk Outline of Lecture 5 Cellular Systems (UMTS / LTE) (1/2) q Evolution of cellular
Telecommunications and the Information Age ET108B. Cell Phone Network
Telecommunications and the Information Age ET108B Cell Phone Network The Cellular Telephone Network Cellular Telephone Features Carrying Data Across the Cellular Network Satellite Telephone Service Cellular
SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO
CDMA Network Planning
CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications
Amateur Satellites Michael G7VJR. OSCAR communications from G6UW
Amateur Satellites Michael G7VJR OSCAR communications from G6UW Overview Background of OSCAR and AMSAT Technical Topics Workable Satellites Using software and Yaesu FT-847 Next steps AMSAT and OSCAR AMSAT
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur
Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular
Satellite Orbits, Coverage, and Antenna Alignment
Telecommunications Satellite Communications Satellite Orbits, Coverage, and Antenna Alignment Courseware Sample 87768-F0 Order no.: 87768-10 First Edition Revision level: 04/2016 By the staff of Festo
Mobile Communications
October 21, 2009 Agenda Topic 2: Case Study: The GSM Network 1 GSM System General Architecture 2 GSM Access network. 3 Traffic Models for the Air interface 4 Models for the BSS design. 5 UMTS and the path
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
How To Run A Space Station From A Polar Relay Station
SSC space expertise on high latitudes FMV Sensor Symposium Stockholm, September 2014 Björn Ohlson 1 50 years in space 1961 The first sounding rocket launch from Sweden 1962 Building of Esrange starts 1966
Truck Automation for the Ready Mixed Concrete Industry. Michael J. Hoagland (205) 879-3282 ext. 1164 [email protected]
Truck Automation for the Ready Mixed Concrete Industry Michael J. Hoagland (205) 879-3282 ext. 1164 [email protected] Session Agenda What is GPS and How does it work? Auto Signaling Explained
EPL 657 Wireless Networks
EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing
High Throughput Ku-band for Aero Applications. Chris McLain James Hetrick Sunil Panthi
High Throughput Ku-band for Aero Applications Chris McLain James Hetrick Sunil Panthi Introduction Wide band Aeronautical Mobile Satellite Systems (AMSS) have been using Ku-band wide beams for number of
Wireless LAN Concepts
Wireless LAN Concepts Wireless LAN technology is becoming increasingly popular for a wide variety of applications. After evaluating the technology, most users are convinced of its reliability, satisfied
The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use
The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use Spectrum Management 2012 National Spectrum Management Association Scott Pace (with thanks to Chris Hegerty, MITRE) Space Policy
Positioning in GSM. Date: 14th March 2003
Positioning in GSM Date: 14th March 2003 Overview of seminar Potential applications in cellular network Review of localization system and techniques Localization in GSM system Progress of the project with
Evaluation for Cargo Tracking Systems in Railroad Transportation
INTERNATIONAL FORUM ON SHIPPING PORTS AND AIRPORTS Evaluation for Cargo Tracking Systems in Railroad Transportation N.K.Park Tongmyung Univ CONTENTS INTRODUTION BASIC RESEARCH REVIEW THE RAILWAY TRACKING
Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA
CASE STUDY Enabling Modern Telecommunications Services via Internet Protocol and Satellite Technology Presented to PTC'04, Honolulu, Hawaii, USA Stephen Yablonski and Steven Spreizer Globecomm Systems,
Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered
Separating Fact from Fiction: HTS Ka- and Ku- Band for Mission Critical SATCOM
Home Separating Fact from Fiction: HTS Ka- and Ku- Band for Mission Critical SATCOM Ben Pawling, Harris CapRock and Keith Olds, Harris Government Communications August 14, 2013 Whether for enterprise,
Appendix A: Basic network architecture
Appendix A: Basic network architecture TELECOMMUNICATIONS LOCAL ACCESS NETWORKS Traditionally, telecommunications networks are classified as either fixed or mobile, based on the degree of mobility afforded
REPORT ITU-R M.2134. Requirements related to technical performance for IMT-Advanced radio interface(s)
Rep. ITU-R M.2134 1 REPORT ITU-R M.2134 Requirements related to technical performance for IMT-Advanced radio interface(s) (2008) TABLE OF CONTENTS... Page 1 Introduction... 2 2 Scope and purpose... 2 3
Coverage Characteristics of Earth Satellites
Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite
Satellite data communications as a complement to GSM
as a complement to GSM Master s project report by Fredrik Palmquist Department of Teleinformatics, KTH Scania Infotronics AB 00-03-06 Abstract The use of mobile Internet has reached the transport industry.
A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2
Communication Links for Offshore Platforms. A User s Guide to Troposcatter Communications
Communication Links for Offshore Platforms A User s Guide to Troposcatter Communications 1.0 INTRODUCTION Offshore platforms, whether for coastal defense systems, environmental monitoring, pipe line operations,
FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY
FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY (Study Paper by FLA Division) Ram Krishna Dy. Director General (FLA) TEC New Delhi, DoT, Govt. of India. E-mail: [email protected] Mrs.
