Hodgkin-Huxley Project

Similar documents
Action Potentials I Generation. Reading: BCP Chapter 4

BIOPHYSICS OF NERVE CELLS & NETWORKS

EXCITABILITY & ACTION POTENTIALS page 1

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential

Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods Yes Yes No No.

Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law Medical Biophysics 3970

The Action Potential Graphics are used with permission of: adam.com ( Benjamin Cummings Publishing Co (

Resting membrane potential ~ -70mV - Membrane is polarized

Bi 360: Midterm Review

Simulating Spiking Neurons by Hodgkin Huxley Model

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

The FitzHugh-Nagumo Model

Nerves and Nerve Impulse

Slide 1. Slide 2. Slide 3. Cable Properties. Passive flow of current. Voltage Decreases With Distance

Laboratory Guide. Anatomy and Physiology

Lab 1: Simulation of Resting Membrane Potential and Action Potential

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

The mhr model is described by 30 ordinary differential equations (ODEs): one. ion concentrations and 23 equations describing channel gating.

12. Nervous System: Nervous Tissue

PSIO 603/BME Dr. Janis Burt February 19, 2007 MRB 422; jburt@u.arizona.edu. MUSCLE EXCITABILITY - Ventricle

The action potential and nervous conduction CH Fry and RI Jabr Postgraduate Medical School, Division of Clinical Medicine, University of Surrey, UK

Student Academic Learning Services Page 1 of 8 Nervous System Quiz

Propagation of Cardiac Action Potentials: How does it Really work?

Controlling the brain

The Action Potential

Laboratory Guide. Anatomy and Physiology

PART I: Neurons and the Nerve Impulse

Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias INTRODUCTION

Neurophysiology. 2.1 Equilibrium Potential

Before continuing try to answer the following questions. The answers can be found at the end of the article.

Ion Channels. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

The Electrical Activity of Cardiac Tissue via Finite Element Method

Lab 6: Bifurcation diagram: stopping spiking neurons with a single pulse

Passive Conduction - Cable Theory

Modelling Hodgkin-Huxley

Biology Slide 1 of 38

Influence of Extracellular K+ Concentration on Cable Properties and Excitability of Sheep Cardiac Purkinje Fibers

Lecture Outline. Cardiovascular Physiology. Cardiovascular System Function. Functional Anatomy of the Heart

Second Quarterly Progress Report NO1-DC The Neurophysiological Effects of Simulated Auditory Prosthesis Stimulation

CHAPTER 5 SIGNALLING IN NEURONS

Lab #6: Neurophysiology Simulation

Problem Sets: Questions and Answers

AP Biology I. Nervous System Notes

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Diffusion and Osmosis

Andrew Rosen - Chapter 3: The Brain and Nervous System Intro:

Biology/ANNB 261 Exam 1 Name Fall, 2006

Nerves and Conduction of Nerve Impulses

CHAPTER I From Biological to Artificial Neuron Model

Sign up to receive ATOTW weekly - worldanaesthesia@mac.com. Correspondence to: anand.sardesai@addenbrookes.nhs.uk

How Brain Cells Work. Part II The Action Potential

Action Potential Duration Restitution and Electrical Excitation Propagation in a Ring of Cardiac Cells

I. INTRODUCTION CHAOS VOLUME 14, NUMBER 1 MARCH 2004

Chapter 7: The Nervous System

FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli.

The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function

Electrolyte Physiology. Something in the way she moves

Chapter 9 Nervous System

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Chapter 11: Functional Organization of Nervous Tissue

Biology 347 General Physiology Lab Advanced Cardiac Functions ECG Leads and Einthoven s Triangle

ELECTROCARDIOGRAPHY (I) THE GENESIS OF THE ELECTROCARDIOGRAM

Prof. Dr. Yaprak Gülcan Dokuz Eylül Üniversitesi İşletme Fakültesi İktisat Bölümü

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Cellular Calcium Dynamics. Jussi Koivumäki, Glenn Lines & Joakim Sundnes

Potassium channel blockers from Ruta - a new approach for the treatment of multiple sclerosis

What role does the nucleolus have in cell functioning? Glial cells

Biology/ANNB 261 Exam 1 Spring, 2006

Using the frog sciatic nerve

UNIT 2 PRACTICE EXAM (Part 1: General Chemistry)

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

ANIMATED NEUROSCIENCE

Core conductor theory and cable properties of neurons

Minnesota Department of Health Health Occupations Program P.O. Box St. Paul, MN

Ion Exchange Design Hand calculation. Brian Windsor (Purolite International Ltd)

QUANTAL ANALYSIS AT THE NEUROMUSCULAR JUNCTION

Neural Response Imaging: Measuring Auditory-Nerve Responses from the Cochlea with the HiResolution Bionic Ear System

CHAPTER 13: SOLUTIONS

Hearing and Deafness 1. Anatomy & physiology

Nodus 3.1. Manual. with Nodus 3.2 Appendix. Neuron and network simulation software for Macintosh computers

Fairfield Public Schools

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

Technical Writing: How to Translate Data into a Written Presentation of Your Findings

Electrodes placed on the body s surface can detect electrical activity, APPLIED ANATOMY AND PHYSIOLOGY. Circulatory system

1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions of the structure labeled B on the diagram.

Liquid Conductivity: Measuring Conductivity in Saline Water Solutions (Teacher s Guide)

hij GCSE Additional Science Chemistry 2 Higher Tier Chemistry 2H SPECIMEN MARK SCHEME Version 1.0

Welcome to Vibrationdata

Simulating a Neuron Soma

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B.

The Detection of Neural Fatigue during intensive conditioning for football: The Potential of Transcranial Magnetic Stimulation

Chapter 2: The Chemical Context of Life

Electrophysiological Recording Techniques

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Prelab Exercises: Hooke's Law and the Behavior of Springs

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

CHAPTER 2 ANATOMY AND PHYSIOLOGY OF UTERUS AND FOETAL HEART

ANATOMY AND PHYSIOLOGY I (BIO 2311) SYLLABUS

Transcription:

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science, Department of Mechanical Engineering, Division of Bioengineering and Environmental Health, Harvard-MIT Division of Health Sciences and Technology Quantitative Physiology: Cells and Tissues 2.791J/2.794J/6.021J/6.521J/BE.370J/BE.470J/HST.541J Hodgkin-Huxley Project This theoretical project is intended to provide an opportunity to learn about the complex behaviors that can be exhibited by the Hodgkin-Huxley model and to compare behaviors of the model with behaviors of electrically excitable cells. We have two simulations. The first models a spaceclamped axon. That model generates membrane action potentials. The second models an axon without space-clamp (although the second model can simulate a space clamp since the longitudinal resistances can be set to zero). The second model can produce propagated action potentials. The second model can be used to explore a wider range of phenomena than the first. The first model is faster and simpler than the second. Thus both models are useful, and your project can use either or both of the models. Students are STRONGLY encouraged to work in pairs, however, individual projects will be approved if there are extenuating circumstances. If a pair of students collaborate on a project they should submit a single proposal and a single report which identifies both members of the team and gives both email addresses. Proposals should be submitted via the form available on the MIT server. Proposals will be returned as soon as possible so that students can revise them. Only the final, accepted proposal will be given a grade. The demonstration project performed in lecture on the effect of temperature cannot be the basis of a student project. Practical considerations in the choice of a topic Projects can involve almost any of the properties of the Hodgkin-Huxley model. However, to avoid projects whose aims are vague (e.g., I would like to understand how the Hodgkin-Huxley model works ) the proposed project should be in the form of a specific and testable hypothesis. Projects that involve months of computation should obviously be avoided. The amount of computation time should be explicitly taken into account in planning a project. For example, any project that involves measuring the threshold of occurrence of an action potential for many different parameter values is bound to be very time consuming, because determining the threshold for a single set of parameters itself involves many computations. The task is to choose a physiological property of the excitation of the action potential that is of interest, and then to define a specific, feasible project. Choice of topics Topics can involve comparing predictions of the Hodgkin-Huxley model with measurements on cells. For example, the text contains data on the effects of many external parameters (e.g., ionic concentrations, cell type) on action potentials. A project might involve reading the original papers that describe such measurements (some were made before the Hodgkin-Huxley model was formulated), and testing the hypothesis that these measurements are (or are not) consistent with 1

the Hodgkin-Huxley model. Similarly, a project might involve examining the effect of some pharmacological substance on measurements of the action potential and testing the hypothesis that the substance produces its effect by changing one or another parameter of the model. These projects will require some reading of original literature which is often difficult and usually time consuming. However, such a project can lead to a very rewarding educational experience. Alternatively, the project might involve a purely theoretical topic in which some property of the model is explained in terms of its underlying structure. This type of project does not necessarily involve reading the original literature. Examples of hypotheses 1. Hypothesis The effect of temperature on the conduction velocity of the squid giant axon can be fit by the Hodgkin-Huxley model. Articles in the literature should be consulted for this project: Chapman, R. A. (1967). Dependence on temperature of the conduction velocity of the action potential of the squid giant axon. J. Physiol. 213:1143-1144. Easton, D. M. and Swenberg, C. E. (1975). Temperature and impulse velocity in giant axon of squid loligo pealei. Am. J. Physiol. 229:1249-1253. 2. Hypothesis When two action potentials are elicited, one just after another, the velocity of the second is slower than the velocity of the first action potential. This phenomenon is predicted by the Hodgkin-Huxley model. Articles in the literature should be consulted for this project: George, S. A., Mastronarde, D. N., and Dubin, M. W. (1984). Prior activity influences the velocity of impulses in frog and cat optic nerve fibers. Brain Res. 304:121-126. 3. Hypothesis The threshold current for eliciting an action potential with an intracellular electrode is higher for a space-clamped than for an unclamped model of an axon. 4. Hypothesis Increasing the membrane capacitance will decrease the conduction 5. Hypothesis Increasing the membrane conductance (by scaling all the ionic conductances) will increase the conduction 6. Hypothesis Increasing the external concentration of sodium will increase the conduction 7. Hypothesis Increasing the external concentration of potassium will increase the conduction 8. Hypothesis Increasing the external concentration of calcium will increase the conduction 9. Hypothesis Increasing the temperature will increase the conduction 10. Hypothesis The difference in waveform of the action potential of a frog node of Ranvier and of a squid giant axon (Figure 1.9 in volume 2 of the text) can be reproduced by the Hodgkin-Huxley model of a squid giant axon by a change in temperature. 2

11. Hypothesis The membrane capacitance determines the time course of the rising phase of the action potential. Increasing the membrane capacitance decreases the rate of increase of the rising phase of the action potential. 12. Hypothesis The falling phase of the action potential (repolarization) can occur in the absence of a change in potassium conductance. 13. Hypothesis Increasing the temperature sufficiently blocks the occurrence of the action potential because the membrane time constant limits the rate at which the membrane variables can change and prevents the difference in time course of the sodium and potassium activation which is responsible for initiation of the action potential. 14. Hypothesis The initiation of the action potential is independent of the potassium conductance. 15. Hypothesis The prolonged plateau of the cardiac muscle action potential can be accounted for by the Hodgkin-Huxley model with a potassium conductance that has a slow activation. 16. Hypothesis The effect of tetraethylammonium chloride (TEA) on the action potential of the squid giant axon can be modelled with the Hodgkin Huxley model by decreasing K n and increasing K h. Articles in the literature should be consulted for this project: Armstrong, C. M. (1966). Time course of TEA + -induced anamalous rectification in squid giant axons. J. Gen. Physiol. 50:491-503. Armstrong, C. M. and Binstock, L. (1965). Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. Gen. Physiol. 48:859-872. Tasaki, I. and Hagiwara, S. (1957). Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J. Gen. Physiol. 40:859-885. 17. Hypothesis The shape of the action potential in the presence of tetraethylammonium chloride (TEA) can be accounted for by the Hodgkin-Huxley model with a reduced maximum value of the potassium conductance. Articles in the literature should be consulted for this project: Armstrong, C. M. (1966). Time course of TEA + -induced anamalous rectification in squid giant axons. J. Gen. Physiol. 50:491-503. Armstrong, C. M. and Binstock, L. (1965). Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. Gen. Physiol. 48:859-872. Tasaki, I. and Hagiwara, S. (1957). Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J. Gen. Physiol. 40:859-885. 18. Hypothesis Increasing the external calcium concentration will block the occurrence of the action potential because this will reduce the difference in the time constant of sodium and potassium activation which is responsible for the initiation of the action potential. 19. Hypothesis Increasing the external concentration of potassium will decrease the refractory period; decreasing this concentration will lengthen the refractory period. 20. Hypothesis Increasing the external concentration of sodium will decrease the refractory period; decreasing this concentration will lengthen the refractory period. 3

21. Hypothesis Absolute and relative refractory periods are decreased by increasing the rate constants for sodium inactivation and for potassium activation. 22. Hypothesis Repolarization cannot occur if the potassium activation rate constant is zero. 23. Hypothesis The threshold of the action potential to a brief pulse of current decreases as the external potassium current is increased. 24. The Hodgkin-Huxley model with default parameters does not exhibit accommodation. Hypothesis Accommodation occurs if the leakage conductance is increased. 25. The Hodgkin-Huxley model with default parameters does not exhibit accommodation. Hypothesis Accommodation occurs if the potassium conductance is increased. 26. Hypothesis Increasing the leakage equilibrium potential will block the action potential. 27. Hypothesis The effect of the changes in concentration of sodium ions on the action potential of the giant axon of the squid can be accounted for by the Hodgkin-Huxley model. Articles in the literature should be consulted for this project: Hodgkin A. L. and Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108:37-77. Baker, P. F., Hodgkin, A. L., and Shaw, T. I. (1961). Replacement of the protoplasm of a giant nerve fibre with artificial solutions. Nature 190:885-887. 28. Hypothesis In response to rectangular pulses of current, the rheobase of the strengthduration relation increases as temperature increases. 29. Hypothesis An increase in temperature results in a decrease in the duration of the refractory period. 30. Hypothesis The threshold membrane potential at which the Hodgkin-Huxley model produces an action potential in response to a brief pulse of current is equal to the membrane potential for which the linearized Hodgkin-Huxley equations have unstable eigenvalues. 31. Application of a long-duration constant current to the Hodgkin-Huxley model produces a train of action potentials. Hypothesis The frequency of the action potentials increases with increasing current amplitude. 32. Application of a long-duration constant current to the Hodgkin-Huxley model produces a train of action potentials. Hypothesis The frequency of action potential increases as the parameter K n is increased. 33. Application of a long-duration constant current to the Hodgkin-Huxley model produces a train of action potentials. Hypothesis The frequency of action potential increases as the temperature is increased. 34. Hypothesis An increase in the external concentration of potassium increases the threshold potential at which an action potential is elicited. 35. Hypothesis Increasing K h will result in an increase in the steepness of the repolarization phase of the action potential. 4

Any of these (or other) hypotheses can be the starting point for a project. Most of the hypotheses given above are simplistic, and a careful investigation will reveal their shortcomings. The Hodgkin-Huxley model is sufficiently complex that investigation of any of the hypotheses will most likely lead to unexpected results. You should pursue these unexpected results and try to understand their bases. For example, you may find that in pursuing some hypothesis you choose to change some parameter of the model that you expect to result in some change in action potential waveform. The resulting computation might reveal, much to your surprise and chagrin, that no action potential has occurred. Determine why no action potential occurred. The explanation will usually be instructive. Your aim should be not simply to reject or accept the hypothesis but to delve into the topic in sufficient depth so as to a deepen your understanding of the model. One outcome of the project might be to restate your original hypothesis in a new and more sophisticated form. Beginning with the proposal and extending through the project, you should keep clearly in mind that you are not investigating nerve membrane in these exercises. You are investigating the Hodgkin-Huxley model for nerve membrane. Your explanations of all phenomena must be in terms of the primitive concepts of this model the ionic conductances, ionic concentrations, ionic currents, the capacitance, and the variables m, n, and h. Explanations in terms of molecular channel mechanisms or electrodiffusion of ions in the membrane are irrelevant in so far as they are not contained in the Hodgkin-Huxley model! 5