Cellular Calcium Dynamics. Jussi Koivumäki, Glenn Lines & Joakim Sundnes
|
|
|
- Stella Hamilton
- 10 years ago
- Views:
Transcription
1 Cellular Calcium Dynamics Jussi Koivumäki, Glenn Lines & Joakim Sundnes
2 Cellular calcium dynamics
3 A real cardiomyocyte is obviously not an empty cylinder, where Ca 2+ just diffuses freely......instead it's filled with myofibrils, mitochondria, sarcoplasmic reticulum, t-tubule, etc. junctional sarcoplasmic reticulum network sarcoplasmic reticulum
4 Cellular calcium dynamics: influx This triggers release of Ca 2+ from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) Membrane Ca 2+ channels open during the action potential
5 Cellular calcium dynamics: efflux Primarily, Ca 2+ is removed from the cytosol by sarcoplasmic reticulum Ca 2+ ATPase (SERCA) Secondarily, Ca 2+ is extruded by the Na + /Ca 2+ exchanger (NCX)
6 Cellular calcium dynamics Let's take a step back and view development Why has calcium dynamics evolved to be so complex?
7 In addition to actions on the contractile filaments, calcium signals also regulate the activity of kinases, phosphatases, ion channels, exchangers and transporters, as well as function, growth, gene expression, differentiation, and development of cardiac muscle cells. The multifunctional roles require 1) high dynamic gain, as well as 2) fast propagation and 3) accurate spatial control of the calcium signals.
8 What does high dynamic gain mean in the context of calcium dynamics? In the adult mammalian heart, calcium-induced calcium release establishes an outstanding dynamic range of calcium signals up to 1000-fold increase in the calcium concentration in only tens of milliseconds. This is a totally different scale than, for example, intracellular Na+ and K+ concentrations, which vary by some tens of percent, at most.
9 What defines propagation speed of calcium signals in the cytosol? In all biological systems, diffusion is a ubiquitous mechanism equalizing the concentration gradients of all moving particles in the cells cytosol. It forms also the basis for distribution of Ca 2+ ions in the cytosol. In general, in muscle cells diffusion of ions (K+, Na+, Cl-) in cytosol is relatively fast, only 2-fold slower than in water. However, diffusion of Ca2+ is an exception from this rule, it is 50-times slower in the cytosol than in pure water. This is due to the stationary and mobile calcium buffers that slow down the calcium diffusion remarkably.
10 Why is the propagation speed of calcium signals in the cytosol so slow? The job of a cardiomyocyte is to contract upon electrical stimulus and not to diffuse calcium as fast as possible... 1) Assembly of contractile elements is progressively augmented during development to fulfill the demand for more forceful contraction 2) Capacity of SR calcium stores is synchronously increased to provide more calcium release for activating contraction. Both of these developmental steps lead to increased cytosolic calcium buffering.
11 How to ensure fast (enough) propagation of calcium signals in the cytosol?
12 Main players in calcium handling are: Buffers Pumps Transporters/exchangers Ion channels
13 Calcium buffers are large Ca 2+ binding proteins. CaM
14
15 Well mixed concentrations If we assume a well mixed solution the concentration only vary with time, not space: dc dt = J IPR + J RyR + J in + J pm Jserca Jon + J o Where c is the calcium concentration, similarly for the endoplasmic content: where dc e dt = (J serca J IPR J RyR ) Jon,e + J o,e = v cyt /v e
16 Calcium pumps Early model based on Hill-type formulation: Jserca = V pc 2 K 2 p + c 2 Draw backs: Independent of c e and always positive, which is not the case when c e is large.
17 Alternative formulation Two main configurations: E1 Calcium binding sites exposed to cytoplasma E2 Calcium binding sites exposed to endoplasmic reticulum
18 Model reduction Assuming steady state between s 1 and s 2,andt 2 and t 3.And introduce s 1 = s 1 + s 2 and t 2 = t 2 + t 3, s 1 = s 1 1+ c2 K 1 s 1 = K 1 c 2 s 2 = s 2 1+ K 1 c 2
19 Calcium release Calcium released from internal stores is mediated by 2 types of channels (receptors) I Inositol (1,4,5)-triphosphate (IP 3 )receptors I Ryanodine receptors
20 Ryanodine Receptors, I Sits at the surface of intra cellular calcium stores I I Endoplasmic Reticulum (ER) Sarcoplasmic Reticulum (SR) I Sensitive to calcium. Both activation and inactivation. I Upon stimulation calcium is released from the stores. I To di erent pathways I Triggering from action potential through extra cellular calcium inflow. I Calcium oscillations observed in some neurons at fixed membrane potentials.
21 Compartments and fluxes in the model
22 Model equations d[c] dt = J L1 J P1 + J L2 J P2 d[c s ] dt = (J P2 J L2 ) J L1 = k 1 (c e c), Ca 2+ entry J P1 = k 2 c, Ca 2+ extrusion J L2 = k 3 (c s c), Ca 2+ release J P2 = k 4 c, Ca 2+ uptake
23 The calcium sensitivity Release modelled with Hill type dynamics: J L2 = k 3 (c s c)=(apple 1 + apple 2c n K n d + cn )(c s c)
24 Experiments and simulations
25 I Good agreement between experiments and simulations I Inactivation through calcium not included, but does not seem to be an important aspect
26 Bu ered di usion, Consider bu ering of calcium: Conservation implies: [Ca 2+ ]+[B] k +! = 2 c 2 + k w k +cv + f (t, = 2 v 2 + k w = 2 w 2 k w + k + cv where c =[Ca 2+ ], v =[B],andw =[CB]. Bu er is large compared to Ca 2+ so D b is used for both bound and unbound state.
27 Quasi static assumption Adding the bu er equations + = D 2 (v + 2 Thus if v + w is initially uniform, it will stay uniform, v(x)+w(x) =w 0 If bu ering is fast compared to f : k (w 0 v) k + cv =0 so: v = K eqw 0 K eq + c, where K eq = k /k +
28 Eliminating v and w Subtracting the equations for c t and v t and then eliminating v and w yields: c t = D c + (c)d b 1+ (c) c xx + D b 0 (c) 1+ (c) (c x) 2 + f (t, x, c) 1+ (c) where (c) =K eq w 0 /(K eq + c) 2 Bu ering thus gives rise to a non-linear transport equation with non-linear di usion coe cient. If c << K eq,then (c) w 0 /K eq. D e = D c + D b w 0 K eq 1+ w 0 K eq I.e. a linear combination of D c and D b. Reaction rate is slowed by 1/(1 + w 0 /K eq )
Lecture Outline. Cardiovascular Physiology. Cardiovascular System Function. Functional Anatomy of the Heart
Lecture Outline Cardiovascular Physiology Cardiac Output Controls & Blood Pressure Cardiovascular System Function Functional components of the cardiovascular system: Heart Blood Vessels Blood General functions
CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.
CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Types of Muscle Tissue Classified by location, appearance, and by the type of nervous system control or innervation. Skeletal
Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure
Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation
Cardiac Muscle. Learning Objectives.
Cardiac Muscle. Learning Objectives. At the end of this course, you should be able to : 1. describe the structure of cardiac muscle 2. understand the concept of the functional syncytium 3. give a basic
Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know
Actions of Hormones on Target Cells Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Actions of Hormones on Target Cells Hormones
Teppe Treppe: A staircase increase in tension production after repeated simulation, even though the muscle is allowed to relax between twitches.
Part II, Muscle: Mechanisms of Contraction and Neural Control, Chapter 12 Outline of class notes Objectives: After studying part II of this chapter you should be able to: 1. Discuss how contractile force
Chapter-21b: Hormones and Receptors
1 hapter-21b: Hormones and Receptors Hormone classes Hormones are classified according to the distance over which they act. 1. Autocrine hormones --- act on the same cell that released them. Interleukin-2
PSIO 603/BME 511 1 Dr. Janis Burt February 19, 2007 MRB 422; 626-6833 [email protected]. MUSCLE EXCITABILITY - Ventricle
SIO 63/BME 511 1 Dr. Janis Burt February 19, 27 MRB 422; 626-6833 MUSCLE EXCITABILITY - Ventricle READING: Boron & Boulpaep pages: 483-57 OBJECTIVES: 1. Draw a picture of the heart in vertical (frontal
BIO 2401 MUSCLE TISSUE page 1 MUSCLES AND MUSCLE TISSUE. Striations Present or Absent?
BIO 2401 MUSCLE TISSUE page 1 Types of Muscle MUSCLES AND MUSCLE TISSUE Type of Muscle Skeletal Location of Muscle attaches to and covers bony skeleton Striations Present or Absent? present Control of
Mechanisms of Hormonal Action Bryant Miles
Mechanisms of ormonal Action Bryant Miles Multicellular organisms need to coordinate metabolic activities. Complex signaling systems have evolved using chemicals called hormones to regulate cellular activities.
Muscles How muscles contract - The Sliding Filament Theory
Muscles How muscles contract - The Sliding Filament Theory A muscle contains many muscle fibers A muscle fiber is a series of fused cells Each fiber contains a bundle of 4-20 myofibrils Myofibrils are
Bi 360: Midterm Review
Bi 360: Midterm Review Basic Neurobiology 1) Many axons are surrounded by a fatty insulating sheath called myelin, which is interrupted at regular intervals at the Nodes of Ranvier, where the action potential
REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential
REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date ACTIVITY 1 The Resting Membrane Potential 1. Explain why increasing extracellular K + reduces the net diffusion of K + out of
Smooth Muscle. Learning Objectives.
Smooth Muscle. Learning Objectives. At the end of this course, you should be able to : 1. describe the structure of smooth muscle 2. describe where smooth muscle occurs within the body 3. discuss the structural
CHAPTER 5 SIGNALLING IN NEURONS
5.1. SYNAPTIC TRANSMISSION CHAPTER 5 SIGNALLING IN NEURONS One of the main functions of neurons is to communicate with other neurons. An individual neuron may receive information from many different sources.
Ions cannot cross membranes. Ions move through pores
Ions cannot cross membranes Membranes are lipid bilayers Nonpolar tails Polar head Fig 3-1 Because of the charged nature of ions, they cannot cross a lipid bilayer. The ion and its cloud of polarized water
Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores
Biological Membranes Impermeable lipid bilayer membrane Protein Channels and Pores 1 Biological Membranes Are Barriers for Ions and Large Polar Molecules The Cell. A Molecular Approach. G.M. Cooper, R.E.
Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.
Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex
Fight or Flight Response: Play-by-Play
One of the most remarkable examples of cell communication is the fight or flight response. When a threat occurs, cells communicate rapidly to elicit physiological responses that help the body handle extraordinary
Muscular System. Skeletal Muscle
Muscular System Overview of Muscle Tissues Types of Muscle Tissue o Skeletal and smooth muscles which are elongated are called muscle fibers o Myo- and Mys- = muscle o Sarco = flesh refers to muscle; i.e.,
12. Nervous System: Nervous Tissue
12. Nervous System: Nervous Tissue I. Introduction to the Nervous System General functions of the nervous system The nervous system has three basic functions: 1. Gather sensory input from the environment
PART I: Neurons and the Nerve Impulse
PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus
Resting membrane potential ~ -70mV - Membrane is polarized
Resting membrane potential ~ -70mV - Membrane is polarized (ie) Electrical charge on the outside of the membrane is positive while the electrical charge on the inside of the membrane is negative Changes
Questions on The Nervous System and Gas Exchange
Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).
Chapter 8. Movement across the Cell Membrane. AP Biology
Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.
Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.
http://www.bristol.ac.uk/phys-pharm/teaching/staffteaching/sergeykasparov.htmlpharm/teaching/staffteaching/sergeykasparov.html Physiology of the Cell Membrane Membrane proteins and their roles (channels,
RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue
RAD 223 Radiography physiology Lecture Notes First lecture: Cell and Tissue Physiology: the word physiology derived from a Greek word for study of nature. It is the study of how the body and its part work
Section 7-3 Cell Boundaries
Note: For the past several years, I ve been puzzling how to integrate new discoveries on the nature of water movement through cell membranes into Chapter 7. The Section below is a draft of my first efforts
Neurophysiology. 2.1 Equilibrium Potential
2 Neurophysiology 2.1 Equilibrium Potential An understanding of the concepts of electrical and chemical forces that act on ions, electrochemical equilibrium, and equilibrium potential is a powerful tool
Nerves and Nerve Impulse
Nerves and Nerve Impulse Terms Absolute refractory period: Period following stimulation during which no additional action potential can be evoked. Acetylcholine: Chemical transmitter substance released
Smooth Muscle. Smooth Muscle Structure
Smooth Muscle Spindle-shaped Small (2-5 um wide, 50-300 um long) 1 centrally placed nucleus per cell Usually organized in small to moderate sized clusters of cells Lack sarcomeres No T-tubules or terminal
Membrane Structure and Function
Membrane Structure and Function -plasma membrane acts as a barrier between cells and the surrounding. -plasma membrane is selective permeable -consist of lipids, proteins and carbohydrates -major lipids
Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias INTRODUCTION
Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias Alfred E. Buxton, M.D., Kristin E. Ellison, M.D., Malcolm M. Kirk, M.D., Gregory F. Michaud, M.D. INTRODUCTION
Practice Chapter 6. Figure 6.3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Chapter 6 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Voluntary muscle tissue is; a. smooth muscle b. skeletal muscle c. dense regular d.
Diabetes and Insulin Signaling
Diabetes and Insulin Signaling NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE by Kristy J. Wilson School of Mathematics and Sciences Marian University, Indianapolis, IN Part I Research Orientation
Biological cell membranes
Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple
Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law 250560559. Medical Biophysics 3970
Simulation of an Action Potential using the Hodgkin-Huxley Model in Python Nathan Law 250560559 Medical Biophysics 3970 Instructor: Dr. Ian MacDonald TA: Nathaniel Hayward Project Supervisor: Dr. Andrea
Biology Slide 1 of 38
Biology 1 of 38 2 of 38 35-2 The Nervous System What are the functions of the nervous system? 3 of 38 35-2 The Nervous System 1. Nervous system: a. controls and coordinates functions throughout the body
2006 7.012 Problem Set 6 KEY
2006 7.012 Problem Set 6 KEY ** Due before 5 PM on WEDNESDAY, November 22, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You create an artificial
Parts of the Nerve Cell and Their Functions
Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory
Chapter 10: Muscles and Muscle Tissue
Chapter 10: Muscles and Muscle Tissue Chapter Objectives OVERVIEW OF MUSCLE TISSUE 1. Describe the three key functions of muscle. 2. Describe the four special properties of muscle tissue. SKELETAL MUSCLE
EXCITABILITY & ACTION POTENTIALS page 1
page 1 INTRODUCTION A. Excitable Tissue: able to generate Action Potentials (APs) (e.g. neurons, muscle cells) B. Neurons (nerve cells) a. components 1) soma (cell body): metabolic center (vital, always
4. Biology of the Cell
4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles
Cell Membrane Structure (and How to Get Through One)
Cell Membrane Structure (and How to Get Through One) A cell s membrane is a wall of sorts that defines the boundaries of a cell. The membrane provides protection and structure for the cell and acts as
CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet
AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production
Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.
Biology Keystone (PA Core) Quiz Homeostasis and Transport - (BIO.A.4.1.1 ) Plasma Membrane, (BIO.A.4.1.2 ) Transport Mechanisms, (BIO.A.4.1.3 ) Transport Facilitation Student Name: Teacher Name: Jared
MUSCULAR SYSTEM. A. K. Sengupta 9/9/2010 1/12
MUSCULAR SYSTEM Introduction Functions and basic types of muscle cells Skeletal muscle cells and connective tissues The nervous system Mechanism of muscle contraction Motor unit Action potential basis
Modes of Membrane Transport
Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids
AP BIOLOGY CHAPTER 7 Cellular Respiration Outline
AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other
Chapter 2: Cell Structure and Function pg. 70-107
UNIT 1: Biochemistry Chapter 2: Cell Structure and Function pg. 70-107 Organelles are internal structures that carry out specialized functions, interacting and complementing each other. Animal and plant
Lecture 4 Cell Membranes & Organelles
Lecture 4 Cell Membranes & Organelles Structure of Animal Cells The Phospholipid Structure Phospholipid structure Encases all living cells Its basic structure is represented by the fluidmosaic model Phospholipid
Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression
Eukaryotes The Eukaryotic Cell Classwork 1. Identify two characteristics that are shared by all cells. 2. Suppose you are investigating a cell that contains a nucleus. Would you categorize this cell as
Absorption of Drugs. Transport of a drug from the GI tract
Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,
CELLS IN THE NERVOUS SYSTEM
NEURONS AND GLIA CELLS IN THE NERVOUS SYSTEM Glia Insulates, supports, and nourishes neurons Neurons Process information Sense environmental changes Communicate changes to other neurons Command body response
BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT
BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY BMLS II / B Pharm II / BDS II VJ Temple
7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.
7.2 Cell Structure Lesson Objectives Describe the structure and function of the cell nucleus. Describe the role of vacuoles, lysosomes, and the cytoskeleton. Identify the role of ribosomes, endoplasmic
Hormones: Classification. Hormones: Classification. Peptide Hormone Synthesis, Packaging, and Release
Hormones: Classification Hormones: Classification Be able to give types and example. Compare synthesis, half-life and location of receptor 1. Peptide or protein hormones Insulin from amino acids 2. Steroid
Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods. 250 20 Yes. 125 20 Yes. 60 20 No. 60 25 No.
3: Neurophysiology of Nerve Impulses (Part 2) Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods Interval between stimuli Stimulus voltage (mv) Second action potential?
Biology 2401 Anatomy and Physiology I Exam 3 Notes- Muscular System Ch. 8
Biology 2401 Anatomy and Physiology I Exam 3 Notes- Muscular System Ch. 8 Functions of the muscular system: movement of body or body parts and materials within the body maintain posture and body position
CONSERVATION LAWS. See Figures 2 and 1.
CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vector-valued function F is equal to the total flux of F
Anatomy and Physiology Placement Exam 2 Practice with Answers at End!
Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.
Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS
Mammalian Physiology Cellular Membranes Membrane Transport UNLV 1 UNIVERSITY OF NEVADA LAS VEGAS PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton Objectives Describe the structure of the cell membrane
Chapter 10 Muscle Tissue Lecture Outline
Chapter 10 Muscle Tissue Lecture Outline Muscle tissue types 1. Skeletal muscle = voluntary striated 2. Cardiac muscle = involuntary striated 3. Smooth muscle = involuntary nonstriated Characteristics
Cells & Cell Organelles
Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell
Computational Neuroscience. Models of Synaptic Transmission and Plasticity. Prof. Dr. Michele GIUGLIANO 2036FBDBMW
Computational Neuroscience 2036FBDBMW Master of Science in Computer Science (Scientific Computing) Master of Science in Biomedical Sciences (Neurosciences) Master of Science in Physics Prof. Dr. Michele
Regulating the Internal Environment Water Balance & Nitrogenous Waste Removal
Regulating the Internal Environment Water Balance & Nitrogenous Waste Removal 2006-2007 Animal systems evolved to support multicellular life CH CHO O 2 O 2 NH 3 CH CHO O 2 CO 2 NH NH 3 O 2 3 NH 3 intracellular
tissues are made of cells that work together, organs are )
Study Guide Cells Unit Test Matching. Write the letter of the correct response on the line. You may use the responses more than once. A. proteins B. simple carbohydrates C. complex carbohydrates D. lipids
The Lipid Bilayer Is a Two-Dimensional Fluid
The Lipid Bilayer Is a Two-Dimensional Fluid The aqueous environment inside and outside a cell prevents membrane lipids from escaping from bilayer, but nothing stops these molecules from moving about and
Homeostasis and Transport Module A Anchor 4
Homeostasis and Transport Module A Anchor 4 Key Concepts: - Buffers play an important role in maintaining homeostasis in organisms. - To maintain homeostasis, unicellular organisms grow, respond to the
CHAPTER 5.1 5.2: Plasma Membrane Structure
CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids
The mhr model is described by 30 ordinary differential equations (ODEs): one. ion concentrations and 23 equations describing channel gating.
On-line Supplement: Computer Modeling Chris Clausen, PhD and Ira S. Cohen, MD, PhD Computer models of canine ventricular action potentials The mhr model is described by 30 ordinary differential equations
Cardiovascular System
Topics to Review Diffusion Skeletal muscle fiber (cell) anatomy Membrane potential and action potentials Action potential propagation Excitation-contraction coupling in skeletal muscle skeletal muscle
Muscular System: Muscle Tissue (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College
Muscular System: Muscle Tissue (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Sources for figures and content: Eastern Campus Marieb, E. N. Human Anatomy
7 Answers to end-of-chapter questions
7 Answers to end-of-chapter questions Multiple choice questions 1 B 2 B 3 A 4 B 5 A 6 D 7 C 8 C 9 B 10 B Structured questions 11 a i Maintenance of a constant internal environment within set limits i Concentration
Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8
Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The
Chapter 9 Review Worksheet Cellular Respiration
1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
Hormones & Chemical Signaling
Hormones & Chemical Signaling Part 2 modulation of signal pathways and hormone classification & function How are these pathways controlled? Receptors are proteins! Subject to Specificity of binding Competition
The Action Potential
OpenStax-CNX module: m46526 1 The Action Potential OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you
Passive Conduction - Cable Theory
Passive Conduction - Cable Theory October 7, 2013 Biological Structure Theoretical models describing propagation of synaptic potentials have evolved significantly over the past century. Synaptic potentials
Before continuing try to answer the following questions. The answers can be found at the end of the article.
EXCITABLE TISSUE ELECTROPHYSIOLOGY ANAESTHESIA TUTORIAL OF THE WEEK 173 8 TH MARCH 2010 Dr John Whittle Specialist Registrar Anaesthetics Dr Gareth Ackland Consultant and Clinical Scientist Anaesthetics,
Cell Structure & Function!
Cell Structure & Function! Chapter 3! The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' but 'That's funny.! -- Isaac Asimov Animal Cell Plant Cell Cell
Six major functions of membrane proteins: Transport Enzymatic activity
CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic
Copyright 2000-2003 Mark Brandt, Ph.D. 54
Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,
Name: Teacher: Olsen Hour:
Name: Teacher: Olsen Hour: The Nervous System: Part 1 Textbook p216-225 41 In all exercises, quizzes and tests in this class, always answer in your own words. That is the only way that you can show that
Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope
CH 6 The Cell Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye. In a light microscope (LM), visible light is passed through a specimen and then through glass
Cell Biology - Part 2 Membranes
Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside
ANIMATED NEUROSCIENCE
ANIMATED NEUROSCIENCE and the Action of Nicotine, Cocaine, and Marijuana in the Brain Te a c h e r s G u i d e Films for the Humanities & Sciences Background Information This program, made entirely of
Skeletal Muscle Contraction MUSCLE PHYSIOLOGY. Sliding Filament Model of Contraction. Nerve Stimulus of Skeletal Muscle
Skeletal Muscle Contraction MUSCLE PHYSIOLOGY In order to contract, a skeletal muscle must: Be stimulated by a nerve ending Propagate an electrical current, or action potential, along its sarcolemma Have
Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole
Name: ate: 1. Which structure is outside the nucleus of a cell and contains N?. chromosome. gene. mitochondrion. vacuole 2. potato core was placed in a beaker of water as shown in the figure below. Which
Propagation of Cardiac Action Potentials: How does it Really work?
Propagation of Cardiac Action Potentials: How does it Really work? J. P. Keener and Joyce Lin Department of Mathematics University of Utah Math Biology Seminar Jan. 19, 2011 Introduction A major cause
Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:
and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways
The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism.
Regulation of carbohydrate metabolism Intracellular metabolic regulators Each of the control point steps in the carbohydrate metabolic pathways in effect regulates itself by responding to molecules that
Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta
Compartmentalization of the Cell Professor Alfred Cuschieri Department of Anatomy University of Malta Objectives By the end of this session the student should be able to: 1. Identify the different organelles
I have also included the questions from the muscular system quiz 7AB and 8 AB in this practice set.
1 Practice Questions for Exam 2 As you prepare for the exam you should review all of your lecture notes, study guides, key medical terms, blood test information, and previous quizzes. The following are
Lesson 3 Reading Material: Oncogenes and Tumor Suppressor Genes
Lesson 3 Reading Material: Oncogenes and Tumor Suppressor Genes Becoming a cancer cell isn t easy One of the fundamental molecular characteristics of cancer is that it does not develop all at once, but
Mechanism of hormone action
Mechanism of hormone action ผศ.ดร.พญ.ส ว ฒณ ค ปต ว ฒ ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Aims What is hormone receptor Type of hormone receptors - cell surface receptor - intracellular receptor
