Semiconductor Detectors basic structures

Similar documents
Silicon Drift Detector Product Brochure Update 2013

Solid State Detectors = Semi-Conductor based Detectors

Semiconductors, diodes, transistors

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

Solid-State Physics: The Theory of Semiconductors (Ch ) SteveSekula, 30 March 2010 (created 29 March 2010)

The Physics of Energy sources Renewable sources of energy. Solar Energy

ENEE 313, Spr 09 Midterm II Solution

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

The MOSFET Transistor

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

Radiation Hard Sensor Materials for the CMS Tracker Upgrade The CMS HPK Campaign

Operation and Performance of the CMS Silicon Tracker

Si Detector Structures for HE Physics and Astronomy

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

Lecture 2 - Semiconductor Physics (I) September 13, 2005


New Products and Projects

Project 2B Building a Solar Cell (2): Solar Cell Performance

Theory of Transistors and Other Semiconductor Devices

FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights

SMA Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

Information about the T9 beam line and experimental facilities

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

Gamma and X-Ray Detection

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Solar Photovoltaic (PV) Cells

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE

FYS Vår 2015 (Kondenserte fasers fysikk)

Yrd. Doç. Dr. Aytaç Gören

MOS (metal-oxidesemiconductor) 李 2003/12/19

THE CMS PIXEL DETECTOR: FROM PRODUCTION TO COMMISSIONING

Track Trigger and Modules For the HLT

Silicon drift detector the key to new experiments

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June Institut für Experimentalphysik Forschungsgruppe Neutrinophysik

Sample Exercise 12.1 Calculating Packing Efficiency

Characteristic curves of a solar cell

Development of on line monitor detectors used for clinical routine in proton and ion therapy

Diodes and Transistors

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

How Does One Obtain Spectral +Imaging Data

New technologies of silicon position-sensitive detectors for future tracker systems

05 Bipolar Junction Transistors (BJTs) basics

Large Hadron Collider am CERN

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Arizona Institute for Renewable Energy & the Solar Power Laboratories

LAB IV. SILICON DIODE CHARACTERISTICS

ELECTRICAL CONDUCTION

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

Large Hadron Collider LHC will explore a new energy domain: the Terascale

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

Proton tracking for medical imaging and dosimetry

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

AC coupled pitch adapters for silicon strip detectors

6.772/SMA Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline

Solar Cell Parameters and Equivalent Circuit

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

FYS Vår 2014 (Kondenserte fasers fysikk)

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY)

Advanced VLSI Design CMOS Processing Technology

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Performance of Silicon N-in-P Pixel Detectors Irradiated up to neq /cm2 for Future ATLAS Upgrades

Infrared Focal Plane Arrays. High Performance. Optics & Photonics News. Nonlinear Spatial Solitons Report from OFC/NFOEC 2008

A.Besson, IPHC-Strasbourg

The CMS All Silicon Tracker

High. Thickness. epitaxial Silicon. Carbide Detectors. INFN - Gruppo V 2009

How To Make Hard Xray Pixel Detectors For Hard X-Ray Astrophysics

Recent developments in high bandwidth optical interconnects. Brian Corbett.

Measuring Silicon and Germanium Band Gaps using Diode Thermometers

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz,

Semiconductor I. Semiconductors. germanium. silicon

Applied Physics of solar energy conversion

Chip Diode Application Note

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Technology Developments Towars Silicon Photonics Integration

CMS Tracker sensors Upgrade

Characterisation of the Timepix Chip for the LHCb VELO Upgrade

Semiconductor doping. Si solar Cell

CMS Tracker module / hybrid tests and DAQ development for the HL-LHC

AN900 APPLICATION NOTE

MADP T. Non Magnetic MELF PIN Diode

Conduction in Semiconductors

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads

Silicon-On-Glass MEMS. Design. Handbook

Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch)

BASIC ELECTRONICS TRANSISTOR THEORY. December 2011

50 Years of Detectors for Particle Physics and beyond at MPI-München

Junction FETs. FETs. Enhancement Not Possible. n p n p n p

ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely

SEMICONDUCTOR DEVICE FUNDAMENTALS

Indirect X-ray photon counting image sensor with 27T pixels and 15 electrons RMS accurate threshold

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing

Avalanche Photodiodes: A User's Guide

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

Transcription:

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 1 OUTLINE Part I: Semiconductor Detectors basic structures 1. Semiconductors 2. Basic semiconductor structures (a) the pn diode (b) the MOS structure 3. Semiconductor fabrication: detectors and electronis 4. Simple pn-diode type detectors 5. Applications in high energy physics

Semiconductors as detector and electronics material 1. Semiconductors: E Gap 1-3 ev small leakage currents low noise, operation @ r.t. 2. Pair creation energy: w = 2 5 ev large number of signal charges per energy deposit in detector 3. Density: ρ = 2-10 g cm -3 high energy loss per unit length low range of δ - electrons This leads to: good energy resolution high spatial resolution high quantum and detection efficieny good mechanical regidity and thermal conductivity Semiconductors equally offer: fixed space charges high mobility of charge carriers Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 2

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 3 Semiconductor Physics,crystal stucture Crystal structure of most commonly used semiconductors: Si ; Ge GaAs Diamond lattice Zinc blende lattice Can be considered as two interpenetrating face centered cubic sublattices displaced by one quarter of the diagonal of the cube

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 4 Lattice structure Tetahedron bond to closest neighbors Three dimensional arrangement and symbolic two dimensional representation

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 5 The silicon lattice Reduce lattice spacing from infinity to lowest potential energy value Bond representation Band representation

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 6 Isolators, conductors and in between Band representation for different types of material isolator E gap 5 ev semiconductor E gap 1 ev metal

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 7 The silicon lattice n-type p-type Bond picture Band representation

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 8 Intrinsic and extrinsic semiconductors Band structure Localized energy levels shown in this figure not present in intrinsic semiconductors Energy Density of Occupation Carrier Band States probability concentration

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 9 Carrier transport Drift (acceleration between random collisions) Diffusion Current density (drift and diffusion) Einstein equation Inside magnetic field

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 10 Continuity equations Simultaneous consideration of Generation Recombination Drift Diffusion Drift due to electric field derived from Poisson Equation Numerical simulation: simultaneous solution of diffusion and Poisson equation with boundary conditions

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 11 Charge carrier generation Thermal generation By photons By charged particles (Bethe-Bloch) Charge multiplication

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 12 Recombination Direct and indirect semiconductors Si indirect GaAs direct

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 13 Charge carrier lifetimes Generation and recombination through two step processes Characterized by lifetimes Generation and recombination lifetimes are differently defined: Recombination: return to equilibrium in neutral semiconductor (emission and capture processes) Generation: approach to intrinsic carrier density in fully depleted semiconductor (emission processes only)

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 14 BASIC STRUCTURES p-n junction Connection between n-type and p-type semiconductor: rectifier Approximation: abrupt change from neutral semiconductor to space charge region

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 15 p-n junction Thermal equilibrium Constant Fermi level Drift current equal diffusion current Built in voltage Shallow dopands majority carriers Built in voltage Example: high doped n (1e16) on low doped p(1e12)

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 16 p-n junction Application of an exteral voltage Change extent of space charge region Non-equilibrium: Fermi level not defined Drift current not equal diffusion current Diffusion of minority carriers into (out of) space charge region

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 17 MOS (Metal-Insulator-Semiconductor) Structure Bond picture (p-type semiconductor) CCD Transistor Basic structure in MOS transistor and in MOS CCDs

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 18 Semiconductors as Nuclear Radiation Detectors Outstanding Material Properties small band gap (Si 1.12eV) low e-h pair generation energy (Si 3.6 ev) (ionisation energy for gases 30 ev) High density (Si 2.33 g/cm 2 ) large energy loss/length for ionising particles thin detectors; small range δ- electrons; precise position measurement Almost free movement of electrons and holes Mechanical rigidity; self supporting structure Doping creates fixed space charges; building of sophisticated field structures integration of detector and electronics in single device

Detector and electronics simulation and layout Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 19 1. The detector idea: simulation of electrical properties 2. Simulationof the production process 3. Design and layout of the entire detetor system, including signal processing and DAQ

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 20 Detector and electronics fabrication 4. Fabrication facility at the MPI - HLL from outside and from inside 5. Quality assurance and control 6. Separation, mounting, bonding 7. System test, field test, data analysis and modelling

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 21 Diode type detectors C = Aε d rε 0

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 22 Structured Diode Strip Detector particle tracking = detection of individual charged particles 1D resolution

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 23 Structured Diode Strip Detector particle tracking 2D resolution

Strip Detector example ATLAS Silicon Tracker @ CERN LHC application particle tracking strip detector format 6 x 6 cm² x 280 µm single-sided p-strips on n-substrate strips 768 strip pitch 80 µm strip width 20 µm resolution 23 µm rms readout ac-coupled, binary strip capacitance 20 pf/cm coupling 1 pf/cm interstrip ATLAS strip detector, wedge shape, forward ATLAS silicon tracker 55 m² of silicon strip and pixel detectors! Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 24

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 25 Silicon strip detectors for position resolution First strip detector: NA11 experiment at CERN (1980): Hadronic charm production Detector detail for the ATLAS SSD (2004)

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 26 Strip Detector - Limitation?? ambiguity at high occupancy» 2D pixel sensor

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 27 Structured Diode Pad Detector / Pixel Sensor "p on n" 2D resolution particle tracking = detection of individual charged particles imaging = count / integrate particles or photons

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 28 Structured Diode Pad Detector / Pixel Sensor "n on n" 2D resolution particle tracking = detection of individual charged particles imaging = count / integrate particles or photons

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 29 Hybrid Pixel Sensor 1 preamp per pixel!» front-to-front mounting of detector and readout chip ( bump bonding ) electroplating / reflow solder (PbSn) bumps "lift-off Indium bumps

Hybrid Pixel Sensor example 1 PILATUS @ SLS / PSI application: imaging, protein crystallography pixel sensor format 36 x 80 mm² x 300 µm 157 x 366 pixels n-pixels on n-substrate pixel size 217 x 217 µm² count rate max. 10 6 sec -1 dynamic range > 10 4 PILATUS detector modules 3 x 5 total area 20 x 24 cm² pixels 0.85 M PILATUS plate Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 30

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 31 Diode electronic noise 2kT 2 1 2 ENC = α Ctot A1 + 2π a Ctot A2 + qil A3 τ f g τ m thermal noise 1/f noise leakage optimum shaping time τ opt = 2A A 1 3 kt q C 2 tot I L 2 3g m» For good resolution high count rate capability the total capacitance must be minimised!!

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 32 Sideward Depletion Structure Emilio Gatti & Pavel Rehak, 1983 symmetric bias fully depleted volume minimum capacitance of bulk contact (independent of sensitive area)

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 33 Sideward Depletion Structure Emilio Gatti & Pavel Rehak, 1983 asymmetric bias fully depleted volume minimum capacitance of bulk contact (independent of sensitive area)?? signal extraction??» advanced detector concepts

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 34 Silicon Drift Detector (SDD) Emilio Gatti & Pavel Rehak, 1984 drift field surface 1D position resolution by drift time measurement start trigger!!

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 35 Drift detector: signal shape (first measurements by Rehak and Holl, 1985) Signal for varying distance for varying drift field 425 V/cm 130 V/cm 265 V/cm 105 V/cm 105 V/cm 210 V/cm 80 V/cm 185 V/cm 67 V/cm Light pulser 22000e 200 ns/div Light pulser 22000e

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 36 Silicon Drift Detector (SDD) Emilio Gatti & Pavel Rehak, 1984 2D position resolution by drift time measurement segmentation of the anode

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 37 SDD example 1 STAR 1) experiment @ RHIC 2) / BNL 3) application particle tracking SDD parameters format 6 x 6 cm² x 280 µm bidirectional drift anodes 2 x 240 anode pitch 250 µm drift voltage 1.500 V drift time max. 5 µsec resolution 17 µm rms drift 8 µm rms anode STAR detector 3 barrels r = 5, 10, 15 cm SDDs 216 readout channels 103.680 pixels 13.271.040 1) Solenoidal Tracker At RHIC 2) Relativistic Heavy Ion Collider 3) Brookhaven National Laboratory

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 38 SDD example 2 CERES experiment @ CERN SPS application particle tracking AZTEC SDD parameters format Ø = 10 cm x 280 µm central 6 mm hole radial drift field anodes 360 anode pitch 1 drift voltage 2.000 V drift time max. 6 µsec resolution 16 mrad rms angular < 25 µm rms radial CERES detector 2 SDDs distance to target 10 cm, 13.8 cm

Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 39

Semiconductor Detectors applications in basic science and industry OUTLINE Part II: 1. Semiconductors based on sideward depletion (a) the SDD with integrated FET (b) the pnccd (c) the CDD (d) the DEPFET (active pixel sensor) 2. Avalanche amplifiers 3. Summary and Conclusion Istanbul, September - 8, 2005 Lothar Strüder MPI Halbleiterlabor, University of Siegen 40