Hands On Relay School Transformer Protection Open Lecture

Similar documents
INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012

Percentage Restrained Differential, Percentage of What?

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear.

Protection of Phase Angle Regulating Transformers

Generator Differential Relay Electrical Apparatus

Transformer Protection Application Guide

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v Spring web.itu.edu.tr/yumakk. Distance Protection

Current Transformers. Bonneville Power Administration. Steve Laslo For the Hands On Relay School (3-12) Revision 1.1. February 21,

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO

Eaton s E-Series protective relay family

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Shunt Capacitor Bank Fundamentals and Protection

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

VOLTAGE REGULATOR AND PARALLEL OPERATION

Transformer protection

CT Application Guide for the 489 Generator Management Relay

GE Multilin technical note

Introduction to Paralleling of LTC Transformers by the Circulating Current Method

WHITE PAPER GROUND FAULT. Lowering the Limits for Ground Fault Detection

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

TURBOtech srl. SED-635 Digital Excitation System. Industrial Electronics Sector FEATURES

TRANSFORMER DIFFERENTIAL PROTECTION SCHEME WITH INTERNAL FAULTS DETECTION ALGORITHM USING SECOND HARMONICS RESTRAIN AND FIFTH HARMONICS BLOCKING LOGIC

Unit 33 Three-Phase Motors

Chapter 12: Three Phase Circuits

THE PER-UNIT SYSTEM. (2) The per-unit values for various components lie within a narrow range regardless of the equipment rating.

Bus Protection Considerations for Various Bus Types

1 Introduction. 2 The Symmetrical Component Transformation. J.L. Kirtley Jr.

SELECTION OF CURRENT TRANSFORMERS & WIRE SIZING IN SUBSTATIONS. Sethuraman Ganesan ABB Inc. Allentown, PA

BALANCED THREE-PHASE CIRCUITS

PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP

Effective: September 10, 2006 Vermont Attachment 1 to Rule Public Service Board Page 1 of 6

Current Transformers Ratio / Polarity / Types

Protection of a Three- Winding Transformer

Open Phase Conditions in Transformers Analysis and Protection Algorithm

GENERATOR DIFFERENTIAL PROTECTION RELAY STABILITY VIS-A -VIS SELECTION OF CTS MR. H. C. MEHTA & MR. JAY MEHTA Power Linker Group Co.

E-Series protective relay family

Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Measurement of Power in single and 3-Phase Circuits. by : N.K.Bhati

Lab 8: DC generators: shunt, series, and compounded.

FREQUENCY CONTROLLED AC MOTOR DRIVE

Product Data Bulletin

Design and Analysis of Switched Reluctance Motors

White Paper Mervin Savostianik P. Eng. Littelfuse, Inc.

DISTRIBUTION TRANSFORMER OVERLOAD PROTECTION TRIPPING CIRCUIT

7CURRENT TRANSFORMERS

CPW Current Programmed Winder. Application Handbook. Copyright 2002 by Eurotherm Drives, Inc.

16 Transformer and Transformer-feeder Protection

Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques

IAV. Time Delay Voltage. For AC and DC circuit applications. GE Multilin 1. Protection and Control. Features and Benefits.

Instrument Transformers Application Guide

Power Technology Issue 106. Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Type SA-1 Generator Differential Relay

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

Lab 14: 3-phase alternator.

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

Test & Data Management Software

15LINE PROTECTION WITH PILOT RELAYS

Chapter 11. Inductors ISU EE. C.Y. Lee

FREJA Win Software for FREJA relay testing system

Tamura Closed Loop Hall Effect Current Sensors

CHAPTER 5 PHOTOVOLTAIC SYSTEM DESIGN

7. Reactive energy compensation

System Grounding and Ground-Fault Protection Methods for UPS-Supplied Power Systems

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture phase System 4

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

SYNCHRONOUS MACHINES

INSTRUCTION MANUAL TRANSFORMER PROTECTION RELAY GRT100 - C

ACCURACY OF POTENTIALTRANSFORMERS

T Substation Maintenance and Commissioning Test Equipment

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

ET 332b Ac Electric Machines and Power Systems

Transformers. Special transformers Reactors products

ABB ! CAUTION. Type COQ Negative Sequence Generator Relay. (50/60 Hertz) J. Instruction Leaflet

TDMS Test & Data Management Software

Line Reactors and AC Drives

Synchronous motor. Type. Non-excited motors

Chapter 24. Three-Phase Voltage Generation

Transmission Protection Overview

Motor Protection Principles. Craig Wester GE Multilin

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

Full representation of the real transformer

Current Probes, More Useful Than You Think

Current and voltage measuring relays

Everything you need for protection scheme testing

DIRECT CURRENT GENERATORS

6. Synchronous machine dynamics

SPECIAL TOPICS ON GROUND FAULT PROTECTION AND PROTECTION COORDINATION IN INDUSTRIAL AND COMMERCIAL POWER SYSTEMS

Loading Considerations When Paralleling Transformers

ELECTRONIC POWER SYSTEMS

The full wave rectifier consists of two diodes and a resister as shown in Figure

WINDING RESISTANCE TESTING

Typical Data Requirements Data Required for Power System Evaluation

Paralleling Power Sources Which Share a Common Neutral

EVALUATION OF FAULT ANALYSIS IN TRANSMISSION LINES USING RELAY SETTINGS

8 Speed control of Induction Machines

USER MANUAL THE RESOLVER

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Chapter 12 Three-Phase Circuit

Transcription:

Hands On Relay School Transformer Protection Open Lecture

Open Lecture Transformer Differential Protection ntroduction: Transformer differential protection schemes are ubiquitous to almost any power system. While the basic premise of transformer differential protection is straightforward, numerous features are employed to compensate for challenges presented by the transformer application.

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused by the Transformation Ratio and Differing CT Ratios Current Mismatch Caused by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused by the Transformation Ratio and Differing CT Ratios Current Mismatch Caused by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

Current Mismatch Caused by the Transformation Ratio and Differing CT Ratios Kirchhoff s Current Law: At any node, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node (fig 1). 1 + 2 + 3 = 0 1 2 Node 3

Current Mismatch Caused by the Transformation Ratio and Differing CT Ratios Because of the transformation ratio and probable CT ratio mismatch, transformer winding currents cannot be directly compared, but the MVA on each side can be compared. MVA 1 + MVA 2 + MVA 3 = 0 1 + 2 + 3 = 0 1 2 Node MVA 1 Transformer MVA 2 3 MVA 3

Current Mismatch Caused by the Transformation Ratio and Differing CT Ratios To calculate the secondary current equal to one per unit, the following calculations are used on each side of the transformer: For wye connected CT s: WindingTap TransformerVA V L L CTR * 3 For delta connected CT s: WindingTap TransformerVA V L L CTR * 3 3

Current Mismatch Caused by the Transformation Ratio and Differing CT Ratios During testing, the desired starting current values is determined by multiplying the desired per unit current by the tap to find the equivalent secondary PUcurrent WindingTap for each side. Desired Test To convert a measured trip current to a per unit current, divide the current by the tap for that winding. PU measured measured WindingTap

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused the Transformation Ratio and by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

Delta Wye Transformation of Currents Transformers frequently employ Delta Wye connections. Not only do these connections introduce a 30 degree phase shift, but they also change the makeup of the currents measured by the CT s. For differential schemes, the current cannot be directly compared to current. A B B C C A a b c

Delta Wye Transformation of Currents A B a Primary Winding A Secondary Winding a For electromechanical differential relays like the HU, BDD, and CA, the solution for delta wye transformers is to simply connect the Winding 2 CT secondary circuits in a delta to match the primary main windings. B C C A WB WC Wb Wc c b Differential A Differential B Differential C

Delta Wye Transformation of Currents Angular Displacement Conventions: ANS Y Y, @ 0 ; Y, Y @ X1 lags H1 by 30 ANS makes life easy Euro designations use 30 increments of LAG from the X1 bushing to the H1 bushings Dy11=X1 lags H1 by 11*30 =330 or, H1 leads X1 by 30 Think of a clock each hour is 30 degrees 9 10 8 0 11 1 2 4 3 Dy1 = X1 lags H1 by 1*30 = 30, or H1 leads X1 by 30 (ANS std.) 7 6 5

Delta Wye Transformation of Currents There are also several transformer relay manufacturer conventions commonly used for defining the transformer connections. The following are examples for ABC rotation except where noted: SEL 387 Method: n this convention each winding is given a number 0 11, which corresponds to the number of 30 degree leading angle increments. Beckwith 3311 Custom Method: n this convention each winding is given a number 0 11, which corresponds to the number of 30 degree lagging angle increments relative of a hypothetical wye winding. GE T60 Method: n this convention each winding is given an angle which corresponds to the lagging angle relative to the designated reference winding.

Delta Wye Transformation of Currents So what does all this mean while testing? Here is a list of common relays, common connections, and test angles (assuming set to positive angles lead): W1 W2 EC Beckwith Custom GE (Ref SEL Test Angles (ABC Rotation) W1 W2 W1) W1 W2 W1 A W1 B W1 C W2 A W2 B W2 C Y Y Yy0 0 0 Yy0 12 12 0 120 120 180 60 60 DAB Y Dy1 11 1 Dy30 1 12 30 90 150 180 60 60 Y DAB Yd11 0 11 Yd330 12 1 0 120 120 150 30 90 DAC Y Dy11 1 0 Dy330 11 12 30 150 90 180 60 60 Y DAC Yd1 0 1 YD30 12 11 0 120 120 150 30 90 DAC DAC Dd0 1 1 Dd0 11 11 30 150 90 150 30 90 DAB DAB Dd0 11 11 Dd0 1 1 30 90 150 150 30 90 DAC DAB Dd10 1 11 Dd300 11 1 30 150 90 150 30 90 DAB DAC Dd2 11 1 Dd60 1 11 30 90 150 150 30 90

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused the Transformation Ratio and by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

Zero Sequence Elimination n all wye connected windings, the ground provides a way for current to enter the differential zone without being measured by a phase differential CT. This can unbalance the differential during external phase to neutral faults. f the differential protection is to resist improperly tripping for external faults, this current has to be removed from differential calculations. A B a B C b C A c

Zero Sequence Elimination The first removal method is to simply connect the CT secondary circuit in delta. This straightforward method is used in electromechanical and in some digital relay retrofit differential applications. A B a Primary Winding A Secondary Winding a B C b WB Wb C A c WC Wc Differential A Differential B Differential C

Zero Sequence Elimination n digital applications with wye connected CT secondary circuits, the ground current has to be removed numerically. This is done by either converting the currents to delta quantities or by directly subtracting calculated zero sequence current from the differential quantity.

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused the Transformation Ratio and by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance The X axis is the Restraint Current is the measure of current in the transformer. Differential relay sensitivity is inversely proportional to restraint current. Relay manufacturers use a variety of calculations like the maximum of the winding currents or the average of the currents. The Y axis is the Differential/Operate current is the sum of all winding currents after amplitude and angle compensation.

LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance The Minimum Pickup region is used between zero and approximately 0.5 per unit restraint current. t provides security against CT remanence and accuracy errors and is usually set between 0.3 and 0.5pu. The Slope 1 region is used between the minimum pickup region and the slope 2 breakpoint. Slope 1 provides security against false tripping due to CT accuracy. Class C CT accuracy is +/ 10%, therefore 20% should be the absolute minimum setting with greater than 30% preferred. For LTC applications, another +/ 10% is added. The Slope 2 region is used above the slope 2 breakpoint, which is normally set at 2pu. Slope 2 provides security against false tripping during through fault events where CT saturation is likely. Above 2pu current, a significant DC current component will be present and therefore saturation is likely. Slope 2 is normally set at 60 80%.

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused the Transformation Ratio and by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

nrush Phenomena and Harmonic Content Availability When a transformer is energized, a step change in magnetizing voltage occurs. This step change in magnetizing voltage results in over fluxing the transformer core, causing magnetizing currents of up to 10pu.

nrush Phenomena and Harmonic Content Availability During inrush, transformers also generate significant amounts of even harmonics. These even harmonics can be used to prevent undesired differential relay operation by restraining the differential if the even harmonic content is above a preset level.

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused the Transformation Ratio and by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

Over Excitation Phenomena Over excitation occurs whenever the transformer voltage is too high for the frequency. Over excitation is expressed as a percentage: 100 Transformers are normally rated for at least 105% over excitation. Levels above this can damage the transformer.

Over Excitation Phenomena As percent over excitation increases, magnetizing current will increase. Without appropriate logic, this can lead misoperation of the differential scheme ahead of dedicated V/Hz relays.

Over Excitation Phenomena This additional magnetizing current is rich in 5 th harmonic current. This plot shows the same fault record filtered for 5 th harmonic content.

Over Excitation Phenomena Modern digital relays have logic that increases the differential elements minimum pickup setting if significant 5 th harmonic current is detected

Challenges to Understanding Transformer Differential Protection Current Mismatch Caused the Transformation Ratio and by Differing CT Ratios Delta Wye Transformation of Currents Zero Sequence Elimination LTC nduced Mismatch, CT Saturation, CT Remanence, and CT Tolerance nrush Phenomena and Harmonic Content Availability Over Excitation Phenomena Switch Onto Fault concerns

Switch Onto Fault concerns f a transformer experiences an internal fault on energization, the harmonic restraint feature on a restrained differential could delay tripping. Therefore relays commonly employ a secondary, unrestrained differential element. Of course this element must be set above the maximum expected inrush current, normally 8 12pu.

Switch Onto Fault concerns n GE BDD and or Westinghouse HU types, an instantaneous overcurrent unit in series with the differential provides this feature. n digital relays, a separate setpoint is provided. To test these elements, parallel current channels as necessary and apply currents to one side of the differential.

Understanding Transformer Differential Protection J. Scott Cooper Manta Test Systems, nc. 2013 Massachusetts Ave. NE Saint Petersburg, FL 33703 scottc@mantatest.com