Differential Op Amp Single-Supply Design Techniques

Similar documents
How To Close The Loop On A Fully Differential Op Amp

Designing Gain and Offset in Thirty Seconds

SDLS068A DECEMBER 1972 REVISED OCTOBER Copyright 2001, Texas Instruments Incorporated

Filter Design in Thirty Seconds

Buffer Op Amp to ADC Circuit Collection

Pressure Transducer to ADC Application

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

Op Amp and Comparators Don t Confuse Them!

More Filter Design on a Budget

A Differential Op-Amp Circuit Collection

APPLICATION BULLETIN

Using the Texas Instruments Filter Design Database

A Differential Op-Amp Circuit Collection

Controlling TAS5026 Volume After Error Recovery

Calculating Gain for Audio Amplifiers

Signal Conditioning Wheatstone Resistive Bridge Sensors

Application Report SLVA051

Signal Conditioning Piezoelectric Sensors

August 2001 PMP Low Power SLVU051

Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT

SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

Audio Tone Control Using The TLC074 Operational Amplifier

Lab 7: Operational Amplifiers Part I

WHAT DESIGNERS SHOULD KNOW ABOUT DATA CONVERTER DRIFT

LM5030 LM5030 Application: DC - DC Converter Utilizing the Push-Pull Topology

Application Report SLOA030A

Current-Transformer Phase-Shift Compensation and Calibration

Single Supply Op Amp Circuits Dr. Lynn Fuller

Standard Linear & Logic Semiconductor Marking Guidelines

MAS.836 HOW TO BIAS AN OP-AMP

AMC1100: Replacement of Input Main Sensing Transformer in Inverters with Isolated Amplifier

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

CUSTOM GOOGLE SEARCH PRO. User Guide. User Guide Page 1

Design Note DN004. Folded Dipole Antenna for CC25xx By Audun Andersen. Keywords. 1 Introduction CC2500 CC2550 CC2510 CC2511

Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC kω AREF.

TSL250, TSL251, TLS252 LIGHT-TO-VOLTAGE OPTICAL SENSORS

Texas Instruments. FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA

A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers

THE RIGHT-HALF-PLANE ZERO --A SIMPLIFIED EXPLANATION

RETRIEVING DATA FROM THE DDC112

Understanding the Terms and Definitions of LDO Voltage Regulators

Motor Speed Measurement Considerations When Using TMS320C24x DSPs

PCIe XMC x8 Lane Adapter

LM337. Three-terminal adjustable negative voltage regulators. Features. Description

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT

How To Make A Two Series Cell Battery Pack Supervisor Module

Multi-Transformer LED TV Power User Guide. Anderson Hsiao

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

TVP5146 SCART and OSD

Wireless Subwoofer TI Design Tests

OPERATIONAL AMPLIFIER

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

LM556 LM556 Dual Timer

How To Calculate The Power Gain Of An Opamp

Chapter 19 Operational Amplifiers

Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate

Chapter 12: The Operational Amplifier

AP-1 Application Note on Remote Control of UltraVolt HVPS

Application Note 142 August New Linear Regulators Solve Old Problems AN142-1

TS321 Low Power Single Operational Amplifier

Operational Amplifier - IC 741

AAV003-10E Current Sensor

Conversion Between Analog and Digital Signals

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Application of Rail-to-Rail Operational Amplifiers

Description. Table 1. Device summary

School of Engineering Department of Electrical and Computer Engineering

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

6 Output With 1 kω in Series Between the Output and Analyzer Output With RC Low-Pass Filter (1 kω and 4.7 nf) in Series Between the Output

Transistor Amplifiers

V OUT. I o+ & I o- (typical) 2.3A & 3.3A. Package Type

Application Report SLOA024B

µa7800 SERIES POSITIVE-VOLTAGE REGULATORS

SN54HC157, SN74HC157 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

Basic Op Amp Circuits

LM709 LM709 Operational Amplifier

Application Note AN107


Data sheet acquired from Harris Semiconductor SCHS067B Revised July 2003

APPLICATION BULLETIN

TI and ibiquity Introduce Industry s Lowest Cost Single-Chip AM/FM and HD Radio Baseband John Gardner Digital Radio Marketing Manager

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial

TSL INTEGRATED OPTO SENSOR

Using C to Access Data Stored in Program Space Memory on the TMS320C24x DSP

Optical Implementation Using IEEE-1394.b

bq2114 NiCd or NiMH Gas Gauge Module with Charge-Control Output Features General Description Pin Descriptions

AN SMSC Design Guide for Power Over Ethernet Applications. 1 Introduction. 1.1 Power Over Ethernet

FREQUENCY RESPONSE ANALYZERS

Building the AMP Amplifier

Reading: HH Sections , (pgs , )

Lab 5 Operational Amplifiers

Obsolete Product(s) - Obsolete Product(s)

Karaoke Circuit Building Instructions


Smart Battery Module with LEDs and Pack Supervisor

Bipolar Transistor Amplifiers

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

Transcription:

Application Note SLOA07 September 00 Differential Op Amp Single-Supply Design Techniques Bruce Carter High Performance Linear ABSTRACT There is a lot of confusion about how to operate a fully differential op amp from a single power supply. This application note describes how to select the correct dc operating point of a fully differential op amp. Introduction Fully differential op amps are often misapplied. The presence of the V OCM pin lures a lot of designers into a sense of complacency. They believe mistakenly that injecting the dc operating point at the V OCM pin is all that is required to set the dc operating point. Nothing could be further from the truth. An incorrect dc operating point is just as bad with fully differential op amps as it is with single ended op amps. While the circuit may operate, it will consume more power than is necessary. Bipolar Operation Simple to Understand Circuits where bipolar power supplies are available are the easiest to understand. The example shown in Figure is a unity gain stage, operating from a ±5-V power supply. The input is ±7 V AC, which was selected because it is close to clipping the output. In this way, any abnormalities in the circuit operating point that contribute to clipping will be apparent in subsequent variations of the circuit. Termination resistors are not shown in these examples, because they are irrelevant for the analysis of the examples. Figure, and other circuit diagrams in this document, are a bit busy. PSpice simulation circuits are not as nice for presentation as the output of other CAD programs, but it is important to show the voltages and currents. For those viewing the document in color, brown flags show voltages, red flags show currents. The op amp used, a THS43, is drawing slightly over 4 ma on its two power pins. The dc operating point of the circuit is very close to zero volts, and there is very little current being drawn from the source, or flowing through the feedback and gain resistors. Total power dissipation of the circuit is 0.4 W.

SLOA07 V VOFF = 0 VAMPL = 7 FREQ = 000 R R3 3.547uA R -3.54mV -3.54mV 3.547uA R4 4.6mA 8-4.9mA 3 - + 5.00-4.637mV U THS43 4 5 6-4.637mV -5.00 V3 OUT+ OUT- C.u V Figure. Bipolar Operation of a Fully Differential Op Amp The transient response of the circuit shown in Figure requires a bit of explanation. Data collection is delayed until 0 ms to allow turnon transients to settle out. This delay is more important in later examples, when capacitors must be charged for ac-coupled applications. The input amplitude, which is ±7 V AC, is mirrored in the output. The common mode point of the amplifier is zero volts. Because the input is also centered on zero volts, the output is centered on zero volts. Although the output appears to violate the voltage rails (4 V PP from a ten-volt power supply), it actually does not because the plotted function is ( V OUT + ) ( VOUT ). Individual outputs will have a swing of ±3.5 V AC, 80 out of phase. Figure. Transient Response for Circuit of Figure 3 A Very Common Misapplication The circuit in Figure 3, traditionally used for single-supply fully differential op amps, is not correct. It will work, which is why it is commonly employed. Differential Op Amp Single-Supply Design Techniques

SLOA07 6.40mA V VOFF = 0 VAMPL = 7 FREQ = 000 6.40mA R R.497V.497V 0.0 6.406mA.47mA 8 3 - + U THS43 4 5 OUT+ OUT- V dc R4-8.869mA 6 5.00 6.40mA R3 6.406mA C.u V3 Figure 3. A Common Misapplication There are some real problems with this circuit: The connections from the op amp outputs through R and R, and through R3 and R4 to ground (and virtual ground), form voltage dividers to ground. These voltage dividers put approximately.5 V on the op amp inputs, instead of the common mode point of the amplifier, which is 5 V. Direct current flows through the two feedback pathways, amounting to 6.4 ma of additional circuit current through each feedback path. The op amp draws approximately.5 ma of current from the positive supply, and 8.7 ma from the negative supply. This means that the internal portions of the op amp supporting the positive voltage swing are consuming.5 times the current of the negative portions to pull the output towards 0 V. They will correspondingly heat up more, unbalancing the thermal characteristics of the die itself. While this will probably not burn out the chip, the thermal gradients cannot possibly help stability and accuracy of the circuit. The input voltage source driving the circuit must source 6.4 ma of current. This is a substantial load, and it may require an additional buffer to supply the current. Total power dissipation of the circuit is 0.5 W instead of 0.4 W. This is a 50% increase over the bipolar case. Beware of the power rating of very small resistors such as 040 and 00. While the currents may appear small, the current values shown in the schematic are only at dc. Currents will change with the ac waveform. Circuits employing gain, with smaller values of input resistor combined with thermal derating may exceed the power rating of the resistor. Regardless of the power rating, heating resistors will change value according to their thermal drift, reducing accuracy. Hot resistors also contribute more thermal noise to the circuit. Differential Op Amp Single-Supply Design Techniques 3

SLOA07 The output is the same as before, showing the full output swing ±7 V AC. The 5-V DC common mode point of the amplifier is subtracted out of the graph in Figure 4 by the function ( V OUT + ) ( VOUT ), leaving only the ac response. Individual outputs will have a 5-V offset and a swing of ±3.5 V AC, 80 out of phase. Future examples are similar, and this comment applies to them as well. Figure 4. Transient Response for Circuit of Figure 3 4 Correct AC-Coupled Application The circuit of Figure 3 can be modified easily to balance the currents and establish the correct dc operating point. All that is required is to place coupling capacitors in two locations as shown in Figure 5. The capacitor value shown is rather large but only because the frequency is low. V VOFF = 0 VAMPL = 7 FREQ = 000 C 0u 4.994V R 4.994V 4.994V R 0.0 4.797uA 4.7mA U THS43-4 8 + 5 3 OUT+ OUT- V dc R3 R4 4.797uA -4.8mA 6 5.00 C.u V3 4.994V C3 0u Figure 5. Correct AC-Coupled Application 4 Differential Op Amp Single-Supply Design Techniques

SLOA07 Advantages of this configuration include: The common mode point is again 5 VDC, and now both the inverting and noninverting inputs are also at the common mode point. Both the positive and negative power pins of the IC now draw the same amount of current, which is about 4. ma. This is the same current level as the bipolar power supply case. No current is drawn from the input source. Currents through feedback and input resistors are very low. Total power dissipation of the circuit is down to 0.4 W, the same as the bipolar power supply case. The transient response again shows the same voltage swing, except that it is slightly changed in phase. This is due to the coupling capacitors. Figure 6. Transient Response for Circuit of Figure 5 5 DC-Coupled Applications AC-coupling is fine for communication systems that do not have to include dc in the frequency response. The coupling capacitors produce high-pass characteristics, blocking dc. The situation becomes more complicated when the system has to be dc accurate. DC op amp applications are notoriously problematic, because the designer has to include dc gain as well as ac gain in their calculations. This example is a unity gain circuit, which simplifies things considerably. The key to balancing the dc operating point of the circuit is to supply a potential equal to V OCM to both the source and input to the second feedback path. This is accomplished in Figure 7 by assuming a dc offset of 5 V on the input. In other applications, single-ended op amp offset circuits may be required to shift the dc level of the signal to the correct V OCM level. Differential Op Amp Single-Supply Design Techniques 5

SLOA07 The other feedback circuit is connected to the same source of V OCM that is connected to the V OCM input of the op amp circuit. This is problematical, because the circuit will draw current from this source of V OCM. Figure 9 shows the current drawn as a function of the output voltage level (Figure 8). Data converter V REF outputs are not designed for this level of current, and they must be buffered by an op amp buffer. The Texas Instruments Rail Splitter IC, the TLE 46, is an excellent way to set the dc reference point of this circuit. If the TLE46 (or some other independent source) is employed as a source of V OCM and dc reference, it should be connected to the V OCM input of the fully differential op amp, it should be connected to the indicated feedback path, and it should also be used as an external reference source for the data converter. 3.547uA 0.0 V VOFF = 5 VAMPL = 7 FREQ = 000 5.00 R R3 R 4.997V 4.997V 3.547uA R4 4.6mA 8-4.9mA 3 - + U THS43 4 5 6 5.00 OUT+ OUT- C.u V dc V3 Figure 7. DC Coupled Application Total power dissipation of the circuit is 0.4E-0 W, the same as the bipolar case. The circuit current will be increased, however, by the contribution from the source of V OCM. The transient response, shown in Figure 8, shows the same output response as the examples above. Figure 8. Transient Response for Circuit of Figure 7 6 Differential Op Amp Single-Supply Design Techniques

SLOA07 Figure 9. Current Draw From V OCM 6 Conclusions Setting the correct dc operating point of a circuit containing a fully differential op amp does not need to be any more complex than for a single-ended op amp. The presence of a V OCM input, however, has served to confuse the issue and caused otherwise savvy designers to misapply fully differential op amps, causing an increase in current. This misapplication is hidden in the fact that the circuit appears to work, although it is likely that performance is compromised in subtle ways. The only clue that something is wrong is that the current will increase when compared to the same op amp used with bipolar supplies. Setting the proper dc operating point requires ac coupling capacitors or attention to the dc level of both input points of the circuit. Differential Op Amp Single-Supply Design Techniques 7

IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 7565 Copyright 00, Texas Instruments Incorporated