Solutions to Odd Numbered End of Chapter Exercises: Chapter 2

Similar documents
Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Properties of MLE: consistency, asymptotic normality. Fisher information.

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

Chapter 7 Methods of Finding Estimators

Overview of some probability distributions.

Confidence Intervals for One Mean

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

Math C067 Sampling Distributions


THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

Output Analysis (2, Chapters 10 &11 Law)

I. Chi-squared Distributions

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

1 Computing the Standard Deviation of Sample Means

Lesson 17 Pearson s Correlation Coefficient

Descriptive Statistics

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

Incremental calculation of weighted mean and variance

1 Correlation and Regression Analysis

Convexity, Inequalities, and Norms

Sampling Distribution And Central Limit Theorem

The Stable Marriage Problem

Determining the sample size

A probabilistic proof of a binomial identity

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

THE TWO-VARIABLE LINEAR REGRESSION MODEL

Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Chapter 5: Inner Product Spaces

1. C. The formula for the confidence interval for a population mean is: x t, which was

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

Hypothesis testing. Null and alternative hypotheses

Measures of Spread and Boxplots Discrete Math, Section 9.4

Normal Distribution.

Chapter 14 Nonparametric Statistics

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

A Recursive Formula for Moments of a Binomial Distribution

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond

MARTINGALES AND A BASIC APPLICATION

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

The Bivariate Normal Distribution

Soving Recurrence Relations

3 Basic Definitions of Probability Theory

5 Boolean Decision Trees (February 11)

CONDITIONAL TAIL VARIANCE AND CONDITIONAL TAIL SKEWNESS IN FINANCE AND INSURANCE. Liang Hong *, Assistant Professor Bradley University

5: Introduction to Estimation

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

1. MATHEMATICAL INDUCTION

3. Greatest Common Divisor - Least Common Multiple

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE The absolute value of the complex number z a bi is

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING

Solution to HW - 1. Problem 1. [Points = 3] In September, Chapel Hill s daily high temperature has a mean

Chapter 7: Confidence Interval and Sample Size

Baan Service Master Data Management

Unbiased Estimation. Topic Introduction

Practice Problems for Test 3

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

PSYCHOLOGICAL STATISTICS

TI-83, TI-83 Plus or TI-84 for Non-Business Statistics

Parameter estimation for nonlinear models: Numerical approaches to solving the inverse problem. Lecture 11 04/01/2008. Sven Zenker

Confidence Intervals

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Maximum Likelihood Estimators.

Hypergeometric Distributions

Now here is the important step

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

How To Calculate The Risk-Eutral Probability Of A Log-Retur For A Time (For A Time)

Lesson 15 ANOVA (analysis of variance)

LECTURE 13: Cross-validation

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval

Central Limit Theorem and Its Applications to Baseball

Lecture 5: Span, linear independence, bases, and dimension

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

10-705/ Intermediate Statistics

A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

A Mathematical Perspective on Gambling

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Research Article Sign Data Derivative Recovery

A gentle introduction to Expectation Maximization

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN L p( ]0, 1[ ), WHERE 1 p <

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Department of Computer Science, University of Otago

S. Tanny MAT 344 Spring be the minimum number of moves required.

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

Valuing Firms in Distress

Section 11.3: The Integral Test

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

Sequences and Series

Present Values, Investment Returns and Discount Rates

Transcription:

Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd Numbered Ed of Chapter Exercises: Chapter 2 (This versio July 20, 2014)

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 1 2.1. (a) Probability distributio fuctio for Y Outcome (umber of heads) Y = 0 Y = 1 Y = 2 Probability 0.25 0.50 0.25 (b) Cumulative probability distributio fuctio for Y Outcome (umber of Y < 0 0 Y < 1 1 Y < 2 Y 2 heads) Probability 0 0.25 0.75 1.0 (c) = EY ( ) (00.25) (10.50) (20.25) 1.00 Y Usig Key Cocept 2.3: 2 2 var( Y) E( Y ) [ E( Y)], ad 2 2 2 2 EY ( ) (0 0.25) (1 0.50) (2 0.25) 1.50 so that 2 2 2 var( Y) E( Y ) [ E( Y)] 1.50 (1.00) 0.50.

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 2 2.3. For the two ew radom variables W 3 6X ad V 20 7 Y, we have: (a) EV ( ) E(207 Y) 207 EY ( ) 207078 1454, EW ( ) E(36 X) 36 E( X) 36070 72 (b) 2 W var(3 6X ) 6 2 2 X 36 021 756, 2 V var(20 7Y) (7) 2 2 Y 49 01716 84084 (c) WV cov (3 6X,207Y) 6(7)cov(X, Y) 42 0084 352 corr(w, V ) WV W V 3528 756 84084 04425

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 3 2.5. Let X deote temperature i F ad Y deote temperature i C. Recall that Y = 0 whe X = 32 ad Y =100 whe X = 212. This implies Y (100/180) ( X 32) or Y 17.78 (5/9) X. Usig Key Cocept 2.3, X = 70 o F implies that Y 17.78 (5/9) 70 21.11 C, ad X = 7 o F implies Y (5/9) 7 3.89C.

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 4 2.7. Usig obvious otatio, C M F; thus C M F ad 2 2 2 C M F 2cov( M, F). This implies (a) C 40 45 $85,000per year. (b) corr( M, F) cov( M, F ) M F, so that cov ( M, F) M Fcorr ( M, F). Thus cov ( M, F) 12180.80 172.80, where the uits are squared thousads of dollars per year. (c) 2 2 2 2 2 2 C M F 2cov( M, F), so that C 12 18 2172.80 813.60, ad 813.60 28.524 thousad dollars per year. C (d) First you eed to look up the curret Euro/dollar exchage rate i the Wall Street Joural, the Federal Reserve web page, or other fiacial data outlet. Suppose that this exchage rate is e (say e = 0.75 Euros per Dollar or 1/e = 1.33 Dollars per Euro); each 1 Eollar is therefore with e Euros. The mea is therefore e C (i uits of thousads of euros per year), ad the stadard deviatio is e C (i uits of thousads of euros per year). The correlatio is uit-free, ad is uchaged.

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 5 2.9. Value of Y Probability 14 22 30 40 65 Distributio of X Value of X 1 0.02 0.05 0.10 0.03 0.01 0.21 5 0.17 0.15 0.05 0.02 0.01 0.40 Probability distributio of Y 8 0.02 0.03 0.15 0.10 0.09 0.39 0.21 0.23 0.30 0.15 0.11 1.00 (a) The probability distributio is give i the table above. E(Y ) 14 0.21 22 0.23 30 0.30 40 0.15 65 0.11 30.15 E(Y 2 ) 14 2 0.21 22 2 0.23 30 2 0.30 40 2 0.15 65 2 0.11 1127.23 var(y ) E(Y 2 ) [E(Y)] 2 218.21 Y 14.77 (b) The coditioal probability of Y X = 8 is give i the table below Value of Y 14 22 30 40 65 0.02/0.39 0.03/0.39 0.15/0.39 0.10/0.39 0.09/0.39 EYX ( 8) 14 (0.02/0.39) 22 (0.03/0.39) 30 (0.15/0.39) 40 (0.10/0.39) 65 (0.09/0.39) 39.21 2 2 2 2 ( 8) 14 (0.02/0.39) 22 (0.03/0.39) 30 (0.15/0.39) EY X 2 2 40 (0.10/0.39) 65 (0.09/0.39) 1778.7 2 var( Y ) 1778.7 39.21 241.65 15.54 YX 8 (c) EXY ( ) (1140.02) (122 : 0.05) (8650.09) 171.7 cov( XY, ) EXY ( ) EXEY ( ) ( ) 171.7 5.3330.15 11.0 corr( XY, ) cov( XY, )/( ) 11.0 / (2.6014.77) 0.286 X Y

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 6 2.11. (a) 0.90 (b) 0.05 (c) 0.05 (d) Whe Y ~, the Y/10 ~ 10,. 2 10 F (e) Y Z 2, where Z ~ N(0,1), thus Pr ( Y 1) Pr ( 1 Z 1) 0.32.

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 7 2.13. (a) EY Y EW W 2 2 2 2 ( ) Var ( ) Y 10 1; ( ) Var ( ) W 100 0 100. (b) Y ad W are symmetric aroud 0, thus skewess is equal to 0; because their mea is zero, this meas that the third momet is zero. (c) The kurtosis of the ormal is 3, so 4 EY ( ) ; solvig yields Y 3 4 Y similar calculatio yields the results for W. 4 E( Y ) 3; a (d) First, coditio o X 0, so that S W: ESX ( 0) 0; ES ( X0) 100, ES ( X0) 0, ES ( X0) 3 100 Similarly, 2 3 4 2. ESX ES X ES X ES X 2 3 4 ( 1) 0; ( 1) 1, ( 1) 0, ( 1) 3. From the large of iterated expectatios ES ( ) ESX ( 0) Pr (X 0) ESX ( 1) Pr( X1) 0 ES ES X ES X X 2 2 2 ( ) ( 0) Pr (X 0) ( 1) Pr( 1) 1000.0110.99 1.99 ES ES X ES X X 3 3 3 ( ) ( 0) Pr (X 0) ( 1) Pr( 1) 0 ES ES X ES X X 4 4 4 ( ) ( 0) Pr (X 0) ( 1) Pr( 1) 2 3 100 0.01 3 1 0.99 302.97 (e) ES ( ) 0, thus S ES from part (d). Thus skewess = 0. 3 3 ( S ) ES ( ) 0 Similarly, ES ( ) ES ( ) 1.99, ad 2 2 2 S S 2 Thus, kurtosis 302.97 / (1.99 ) 76.5 ES 4 4 ( S ) ES ( ) 302.97.

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 8 2.15. (a) 9.6 10 Y 10 10.4 10 Pr (9.6 Y 10.4) Pr 4/ 4/ 4/ 9.6 10 10.4 10 Pr Z 4/ 4/ where Z ~ N(0, 1). Thus, (i) = 20; 9.6 10 10.4 10 Pr Z Pr ( 0.89 Z 0.89) 0.63 4/ 4/ (ii) = 100; 9.6 10 10.4 10 Pr Z Pr( 2.00 Z 2.00) 0.954 4/ 4/ (iii) = 1000; 9.6 10 10.4 10 Pr Z Pr( 6.32 Z 6.32) 1.000 4/ 4/ (b) c Y 10 c Pr (10 c Y 10 c) Pr 4/ 4/ 4/ c c Pr Z. 4/ 4/ As get large c 4/ gets large, ad the probability coverges to 1. (c) This follows from (b) ad the defiitio of covergece i probability give i Key Cocept 2.6.

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 9 2 2.17. Y = 0.4 ad 0.40.6 0.24 Y (a) (i) P(Y 0.43) = Y 0.4 0.43 0.4 Y 0.4 Pr Pr 0.61240.27 0.24/ 0.24/ 0.24/ (ii) P(Y 0.37) = Y 0.4 0.37 0.4 Y 0.4 Pr Pr 1.220.11 0.24/ 0.24/ 0.24/ b) We kow Pr( 1.96 Z 1.96) = 0.95, thus we wat to satisfy 0.41 1.96 ad 0.410.4 0.24/ 1.96. Solvig these iequalities yields 0.39 0.4 0.24/ 9220.

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 10 2.19. (a) (b) l Pr ( Y y ) Pr ( X x, Y y ) j i j i1 l Pr ( Yy Xx)Pr ( Xx) i1 j i i E ( Y) y Pr( Y y ) y Pr( Y y X x )Pr( X x ) j j j j i i j1 j1 i1 l k j j i i1 j1 y Pr ( Y y X x ) Pr ( X x) l E( Y Xx)Pr( Xx) i1 k k l (c) Whe X ad Y are idepedet, so i i Pr( X x, Y y ) Pr( X x )Pr( Y y ) E[( X )( Y )] XY X Y l k i1 j1 i1 j1 i j i j ( x )( y )Pr( Xx, Yy ) l k i X j Y i j ( x )( y )Pr( Xx)Pr( Yy ) i X j Y i j l k ( xi X) Pr ( X xi) ( yj Y) Pr ( Y yj i1 j1 EX ( ) EY ( ) 000, X Y XY 0 cor ( X, Y) 0 X Y X Y i

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 11 2. 21. (a) EX E X X EX X X X X 3 2 3 2 2 2 2 3 ( ) [( ) ( )] [ 2 2 ] E( X ) 3 E( X ) 3 E( X) E( X ) 3 E( X ) E( X) 3 E( X)[ E( X)] [ E( X)] 3 2 2 3 3 2 2 3 E( X ) 3 E( X ) E( X) 2 E( X) 3 2 3 (b) EX E X X X X 4 3 2 2 3 ( ) [( 3 3 )( )] EX X X X X X X 4 3 2 2 3 3 2 2 3 4 [ 3 3 3 3 ] EX ( ) 4 EX ( ) EX ( ) 6 EX ( ) EX ( ) 4 EXEX ( ) ( ) EX ( ) 4 3 2 2 3 4 EX ( ) 4[ EX ( )][ EX ( )] 6[ EX ( )] [ EX ( )] 3[ EX ( )] 4 3 2 2 4

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 12 2. 23. X ad Z are two idepedetly distributed stadard ormal radom variables, so 2 2 X Z 0, X Z 1, XZ 0. (a) Because of the idepedece betwee X ad Z, Pr ( Z zx x) Pr ( Z z), ad EZX ( ) EZ ( ) 0. Thus E( Y X) E( X Z X) E( X X) E( Z X) X 0 X 2 2 2 2 (b) E X ad 2 2 2 ( ) X X 1, EX Z EX Y 2 2 ( ) ( ) Z 1 0 1 (c) 3 3 E( XY) E( X ZX) E( X ) E( ZX). Usig the fact that the odd momets of 3 a stadard ormal radom variable are all zero, we have EX ( ) 0. Usig the idepedece betwee X ad Z, we have EZX ( ) 0. Thus EXY EX EZX 3 ( ) ( ) ( ) 0. Z X (d) cov ( XY ) E[( X )( Y )] E[( X 0)( Y 1)] EXY ( X) EXY ( ) EX ( ) 000 XY 0 corr ( X, Y) 0 X X Y X Y Y

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 13 2.25. (a) ax ( ax1ax2 ax3ax ) a( x1x 2 x3 x ) a x (b) i i i1 i1 i1 ( x y ) ( x y x y x y ) i i 1 1 2 2 ( x x x ) ( y y y ) 1 2 1 2 x i i1 i1 y i (c) a( aaa a) a i1 (d) 2 2 2 2 2 2 ( a bxi cyi) ( a b xi c yi 2abxi 2acyi 2 bcxiyi) i1 i1 2 2 2 2 2 i i 2 i 2 i 2 i i i1 i1 i1 i1 i1 a b x c y ab x ac y bc x y

Stock/Watso - Itroductio to Ecoometrics - 3 rd Updated Editio - Aswers to Exercises: Chapter 2 14 2.27 (a) E(W) = E[E(W Z) ] = E[E(X ) Z] = E[ E(X Z) E(X Z) ] = 0. (b) E(WZ) = E[E(WZ Z) ] = E[ZE(W) Z] = E[ Z 0] = 0 (c) Usig the hit: V = W h(z), so that E(V 2 ) = E(W 2 ) + E[h(Z) 2 ] 2 E[W h(z)]. Usig a argumet like that i (b), E[W h(z)] = 0. Thus, E(V 2 ) = E(W 2 ) + E[h(Z) 2 ], ad the result follows by recogizig that E[h(Z) 2 ] 0 because h(z) 2 0 for ay value of z.