Stochastic Processes and Advanced Mathematical Finance. Laws of Large Numbers

Similar documents
Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models

Stochastic Processes and Advanced Mathematical Finance. Duration of the Gambler s Ruin

Stochastic Processes and Advanced Mathematical Finance. Ruin Probabilities

Stochastic Processes and Advanced Mathematical Finance. The Definition of Brownian Motion and the Wiener Process

THE CENTRAL LIMIT THEOREM TORONTO

Lecture 7: Continuous Random Variables

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

Lecture 13: Martingales

Random variables, probability distributions, binomial random variable

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Chapter 4 Lecture Notes

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

E3: PROBABILITY AND STATISTICS lecture notes

WHERE DOES THE 10% CONDITION COME FROM?

10.2 Series and Convergence

Introduction to Probability

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Law of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev

AMS 5 CHANCE VARIABILITY

Taylor and Maclaurin Series

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

Master s Theory Exam Spring 2006

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100

Notes on Continuous Random Variables

3. INNER PRODUCT SPACES

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

Sums of Independent Random Variables

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Section 5 Part 2. Probability Distributions for Discrete Random Variables

Math 461 Fall 2006 Test 2 Solutions

Lies My Calculator and Computer Told Me

Section 1.3 P 1 = 1 2. = P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., =

BANACH AND HILBERT SPACE REVIEW

Stochastic Processes and Advanced Mathematical Finance. Solution of the Black-Scholes Equation

Regular Languages and Finite Automata

MULTIVARIATE PROBABILITY DISTRIBUTIONS

Math 4310 Handout - Quotient Vector Spaces

Chapter 3. Distribution Problems. 3.1 The idea of a distribution The twenty-fold way

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Probability Distribution for Discrete Random Variables

MATHEMATICAL METHODS OF STATISTICS

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

3. Mathematical Induction

5. Continuous Random Variables

THE BANACH CONTRACTION PRINCIPLE. Contents

9.2 Summation Notation

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

1 if 1 x 0 1 if 0 x 1

The Exponential Distribution

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

STAT 830 Convergence in Distribution

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1

CHAPTER 5 Round-off errors

6 Scalar, Stochastic, Discrete Dynamic Systems

4. Continuous Random Variables, the Pareto and Normal Distributions

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

MATH4427 Notebook 2 Spring MATH4427 Notebook Definitions and Examples Performance Measures for Estimators...

Math/Stats 342: Solutions to Homework

Topic 8. Chi Square Tests

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

Basic Probability Concepts

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Mathematical goals. Starting points. Materials required. Time needed

Unit 4 The Bernoulli and Binomial Distributions

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)

CHAPTER 2 Estimating Probabilities

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Continued Fractions and the Euclidean Algorithm

arxiv: v1 [math.pr] 5 Dec 2011

Hydrodynamic Limits of Randomized Load Balancing Networks

Lecture 8: More Continuous Random Variables

Probability and statistics; Rehearsal for pattern recognition

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

1 The Brownian bridge construction

Metric Spaces. Chapter Metrics

2WB05 Simulation Lecture 8: Generating random variables

Chapter 11 Number Theory

Modeling and Performance Evaluation of Computer Systems Security Operation 1

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools

Normal distribution. ) 2 /2σ. 2π σ

Linear Programming Notes V Problem Transformations

Lecture Note 1 Set and Probability Theory. MIT Spring 2006 Herman Bennett

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

x a x 2 (1 + x 2 ) n.

CS 3719 (Theory of Computation and Algorithms) Lecture 4

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Review of Random Variables

Mathematical finance and linear programming (optimization)

Transcription:

Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced Mathematical Finance Laws of Large Numbers Rating Mathematically Mature: proofs. may contain mathematics beyond calculus with 1

Section Starter Question Consider a fair (p = 1/2 = q) coin tossing game carried out for 1000 tosses. Explain in a sentence what the law of averages says about the outcomes of this game. Key Concepts 1. The precise statement, meaning and proof of the Weak Law of Large Numbers. 2. The precise statement and meaning of the Strong Law of Large Numbers. Vocabulary 1. The Weak Law of Large Numbers is a precise mathematical statement of what is usually loosely referred to as the law of averages. Precisely, let X 1,..., X n be independent, identically distributed random variables each with mean µ and variance σ 2. Let S n = X 1 + +X n and consider the sample mean or more loosely, the average S n /n. Then the Weak Law of Large Numbers says that the sample mean S n /n converges in probability to the population mean µ. That is: lim P n [ S n /n µ > ɛ] = 0. n 2

In words, the proportion of those samples whose sample mean differs significantly from the population mean diminishes to zero as the sample size increases. 2. The Strong Law of Large Numbers says that S n /n converges to µ with probability 1. That is: [ ] P lim S n/n = µ = 1. n In words, the Strong Law of Large Numbers almost every sample mean approaches the population mean as the sample size increases. Mathematical Ideas The Weak Law of Large Numbers Lemma 1 (Markov s Inequality). If X is a random variable that takes only nonnegative values, then for any a > 0: P [X a] E [X] /a Proof. Here is a proof for the case where X is a continuous random variable 3

with probability density f: E [X] = = = a 0 a 0 a a a xf(x) dx xf(x) dx + xf(x) dx af(x) dx f(x) dx = ap [X a]. a xf(x) dx (The proof for the case where X is a purely discrete random variable is similar with summations replacing integrals. The proof for the general case is exactly as given with df (x) replacing f(x) dx and interpreting the integrals as Riemann-Stieltjes integrals.) Lemma 2 (Chebyshev s Inequality). If X is a random variable with finite mean µ and variance σ 2, then for any value k > 0: P [ X µ k] σ 2 /k 2. Proof. Since (X µ) 2 is a nonnegative random variable, we can apply Markov s inequality (with a = k 2 ) to obtain P [ (X µ) 2 k 2] E [ (X µ) 2] /k 2. But since (X µ) 2 k 2 if and only if X µ k, the inequality above is equivalent to: P [ X µ k] σ 2 /k 2 and the proof is complete. Theorem 3 (Weak Law of Large Numbers). Let X 1, X 2, X 3,..., be independent, identically distributed random variables each with mean µ and variance σ 2. Let S n = X 1 + + X n. Then S n /n converges in probability to µ. That is: lim n P n [ S n /n µ > ɛ] = 0. 4

Proof. Since the mean of a sum of random variables is the sum of the means, and scalars factor out of expectations: n E [S n /n] = (1/n) E [X i ] = (1/n)(nµ) = µ. i=1 Since the variance of a sum of independent random variables is the sum of the variances, and scalars factor out of variances as squares: n Var [S n /n] = (1/n 2 ) Var [X i ] = (1/n 2 )(nσ 2 ) = σ 2 /n. i=1 Fix a value ɛ > 0. Then using elementary definitions for probability measure and Chebyshev s Inequality: 0 P n [ S n /n µ > ɛ] P n [ S n /n µ ɛ] σ 2 /(nɛ 2 ). Then by the squeeze theorem for limits lim P n [ S n /n µ > ɛ] = 0. n Jacob Bernoulli originally proved the Weak Law of Large Numbers in 1713 for the special case when the X i are binomial random variables. Bernoulli had to create an ingenious proof to establish the result, since Chebyshev s inequality was not known at the time. The theorem then became known as Bernoulli s Theorem. Simeon Poisson proved a generalization of Bernoulli s binomial Weak Law and first called it the Law of Large Numbers. In 1929 the Russian mathematician Aleksandr Khinchin proved the general form of the Weak Law of Large Numbers presented here. Many other versions of the Weak Law are known, with hypotheses that do not require such stringent requirements as being identically distributed, and having finite variance. The Strong Law of Large Numbers Theorem 4 (Strong Law of Large Numbers). Let X 1, X 2, X 3,..., be independent, identically distributed random variables each with mean µ and variance E [ ] Xj 2 <. Let Sn = X 1 + + X n. Then S n /n converges with probability 1 to µ, [ ] S n P lim n n = µ = 1. 5

The proof of this theorem is beautiful and deep, but would take us too far afield to prove it. The Russian mathematician Andrey Kolmogorov proved the Strong Law in the generality stated here, culminating a long series of investigations through the first half of the 20th century. Discussion of the Weak and Strong Laws of Large Numbers In probability theory a theorem that tells us how a sequence of probabilities converges is called a weak law. For coin tossing, the sequence of probabilities is the sequence of binomial probabilities associated with the first n tosses. The Weak Law of Large Numbers says that if we take n large enough, then the binomial probability of the mean over the first n tosses differing much from the theoretical mean should be small. This is what is usually popularly referred to as the law of averages. However, this is a limit statement and the Weak law of Large Numbers above does not indicate the rate of convergence, nor the dependence of the rate of convergence on the difference ɛ. Note furthermore that the Weak Law of Large Numbers in no way justifies the false notion called the Gambler s Fallacy, namely that a long string of successive Heads indicates a Tail is due to occur soon. The independence of the random variables completely eliminates that sort of prescience. A strong law tells how the sequence of random variables as a sample path behaves in the limit. That is, among the infinitely many sequences (or paths) of coin tosses we select one at random and then evaluate the sequence of means along that path. The Strong Law of Large Numbers says that with probability 1 that sequence of means along that path will converge to the theoretical mean. The formulation of the notion of probability on an infinite (in fact an uncountably infinite) sample space requires mathematics beyond the scope of the course, partially accounting for the lack of a proof for the Strong Law here. Note carefully the difference between the Weak Law of Large Numbers and the Strong Law. We do not simply move the limit inside the probability. These two results express different limits. The Weak Law is a statement that the group of finite-length experiments whose sample mean is close to the population mean approaches all of the possible experiments as the length increases. The Strong Law is an experiment-by-experiment statement, it says (almost every) sequence has a sample mean that approaches the population 6

mean. This is reflected in the subtle difference in notation here. In the Weak Law the probabilities are written with a subscript: P n [ ] indicating this is a binomial probability distribution with parameter n (and p). In the Strong Law, the probability is written without a subscript, indicating this is a probability measure on a sample space. Weak laws are usually much easier to prove than strong laws. Sources This section is adapted from Chapter 8, Limit Theorems, A First Course in Probability, by Sheldon Ross, Macmillan, 1976. Algorithms, Scripts, Simulations Algorithm The experiment is flipping a coin n times, and repeat the experiment k times. Then compute the proportion for which the sample mean deviates from p by more than ɛ. Scripts Geogebra GeoGebra R R script for the Law of Large Numbers 1 p <- 0.5 2 n <- 10000 3 k <- 1000 4 coinflips <- array ( 0+( runif (n*k) <= p), dim =c(n,k)) 5 # 0+ coerces Boolean to numeric 6 headstotal <- colsums ( coinflips ) 7 # 0.. n binomial rv sample, size k 8 9 epsilon <- 0. 01 10 mu <- p 11 prob <- sum ( 0+( abs ( headstotal / n - mu ) > epsilon ) )/ k 7

12 cat ( sprintf (" Empirical probability : %f \n", prob )) Octave Octave script for the Law of Large Numbers 1 p = 0. 5; 2 n = 10000; 3 k = 1000; 4 5 coinflips = rand (n,k) <= p; 6 headstotal = sum ( coinflips ); 7 # 0.. n binomial rv sample, size k 8 9 epsilon = 0. 01 10 mu = p; 11 prob = sum ( abs ( headstotal / n - mu ) > epsilon )/ k; 12 disp (" Empirical probability :"), disp ( prob ) Perl Perl PDL script for the Law of Large Numbers 1 use PDL :: NiceSlice ; 2 3 $p = 0. 5; 4 $n = 10000; 5 $k = 1000; 6 7 $coinflips = random ( $k, $n ) <= $p; 8 9 # note order of dims!! 10 $headstotal = $coinflips - > transpose - > sumover ; 11 12 # 0.. n binomial r. v. sample, size k 13 # note transpose, PDL likes x ( row ) direction for 14 # implicitly threaded operations 15 16 $epsilon = 0. 01; 17 $mu = $p; 18 19 $prob = ( ( abs ( ( $headstotal / $n ) - $mu ) > $epsilon ) -> sumover ) / $k; 20 21 print " Empirical probability : ", $prob, "\n"; 8

SciPy Scientific Python script for the Law of Large Numbers 1 import scipy 2 3 p = 0.5 4 n = 10000 5 k = 1000 6 7 coinflips = scipy. random. random ((n,k)) <= p 8 # Note Booleans True for Heads and False for Tails 9 headstotal = scipy. sum ( coinflips, axis = 0) 10 # 0.. n binomial r. v. sample, size k 11 # Note how Booleans act as 0 ( False ) and 1 ( True ) 12 13 epsilon = 0. 01 14 mu = p 15 16 prob = ( scipy. sum ( abs ( headstotal. astype ( float )/n - mu ) > epsilon )). astype ( float )/k 17 # Note the casting of integer types to float to get floats 18 19 print " Empirical probability : ", prob Problems to Work for Understanding 1. Suppose X is a continuous random variable with mean and variance both equal to 20. What can be said about P [0 X 40]? 2. Suppose X is an exponentially distributed random variable with mean E [X] = 1. For x = 0.5, 1, and 2, compare P [X x] with the Markov Inequality bound. 9

3. Suppose X is a Bernoulli random variable with P [X = 1] = p and P [X = 0] = 1 p = q. Compare P [X 1] with the Markov Inequality bound. 4. Make a sequence of 100 coin tosses and keep a record as in Experiment. How typical was your coin flip sequence? All 2 100 coin flip sequences are equally likely of course, so yours is neither more nor less typical than any other in that way. However, some sets or events of coin flip sequences are more or less typical when measured by the probability of a corresponding event. What is your value of S 100, and the number of heads and the number of tails in your record? Using your value of S 100 let ɛ = S 100 and use Chebyshev s Inequality as in the proof of the Weak Law of Large Numbers to provide an upper bound on the probability that for all possible records S 100 > ɛ. 5. Let X 1, X 2,..., X 10 be independent Poisson random variables with mean 1. First use the Markov Inequality to get a bound on P [X 1 + + X 10 > 15]. Next find the exact probability that P [X 1 + + X 10 > 15] using that the fact that the sum of independent Poisson random variables with parameters λ 1, λ 2 is again Poisson with parameter λ 1 + λ 2. 6. Write a proof of Markov s Inequality for a random variable taking positive integer values. 7. Modify the scripts to compute the proportion of sample means which deviate from p by more than ɛ for increasing values of n. Do the proportions decrease with increasing values of n? If so, at what rate do the proportions decrease? 10

Reading Suggestion: References [1] Emmanuel Lesigne. Heads or Tails: An Introduction to Limit Theorems in Probability, volume 28 of Student Mathematical Library. American Mathematical Society, 2005. [2] Sheldon Ross. A First Course in Probability. Macmillan, 1976. [3] Sheldon M. Ross. Introduction to Probability Models. Elsevier, 8th edition, 2003. Outside Readings and Links: 1. Virtual Laboratories in Probability and Statistics. Search the page for Simulation Exercises and then run the Binomial Coin Experiment and the Matching Experiment. 2. I check all the information on each page for correctness and typographical errors. Nevertheless, some errors may occur and I would be grateful if you would alert me to such errors. I make every reasonable effort to present current and accurate information for public use, however I do not guarantee the accuracy or timeliness of information on this website. Your use of the information from this website is strictly voluntary and at your risk. I have checked the links to external sites for usefulness. Links to external websites are provided as a convenience. I do not endorse, control, monitor, or guarantee the information contained in any external website. I don t guarantee that the links are active at all times. Use the links here with the same caution as 11

you would all information on the Internet. This website reflects the thoughts, interests and opinions of its author. They do not explicitly represent official positions or policies of my employer. Information on this website is subject to change without notice. Steve Dunbar s Home Page, http://www.math.unl.edu/~sdunbar1 Email to Steve Dunbar, sdunbar1 at unl dot edu Last modified: Processed from L A TEX source on July 21, 2016 12