Probability and statistics; Rehearsal for pattern recognition
|
|
|
- Bertha French
- 10 years ago
- Views:
Transcription
1 Probability and statistics; Rehearsal for pattern recognition Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception hlavac, Courtesy: T. Brox, V. Franc, M. Navara, M. Urban. Probability vs. statistics. Random events. Outline of the talk: Bayes theorem. Distribution function, density. Probability, joint, conditional. Characteristics of a random variable.
2 Recommended reading 2/29 A. Papoulis: Probability, Random Variables and Stochastic Processes, McGraw Hill, Edition 4,
3 Probability, motivating example A lottery ticket is sold for the price EUR 2. 3/29 1 lottery ticket out of 1000 wins EUR Other lottery tickets win nothing. This gives the value of the lottery ticket after the draw. For what price should the lottery ticket be sold before the draw? Only a fool would by the lottery ticket for EUR 2. (Or not?) 1 The value of the lottery ticket before the draw is = EUR 1 = the average value after the draw. The probability theory is used here.. A lottery question: Why are the lottery tickets being bought? Why do lotteries prosper?
4 Statistics, motivating example 4/29 We have assumed so far that the parameters of the probability model are known. However, this is seldom fulfilled. Example Lotto: One typically looses while playing Lotto because the winnings are set according to the number of winners. It is of advantage to bet differently than others. For doing so, it is needed what model do the other use. Example Roulette: Both parties are interested if all the numbers occur with the same probability. More precisely said, what are the differences from the uniform probability distribution. How to learn it? What is the risk of wrong conclusions? Statistics is used here.
5 Probability, statistics Probability: probabilistic model = future behavior. It is a theory (tool) for purposeful decisions when the outcome of future events depends on circumstances we know only partially and the randomness plays a role. An abstract model of uncertainty description and quantification of the results. Statistics: behavior of the system = probabilistic representation. It is a tool for seeking a probabilistic description of real systems based on observing them and testing them. It provides more: a tool for investigating the world, seeking and testing dependencies which are not apparent. Two types: descriptive and inference statistics. Collection, organization and analysis of data. Generalization from restricted / finite samples. 5/29
6 Random events, concepts 6/29 An experiment with random outcome states of nature, possibilities, experimental results, etc. A sample space is an nonempty set Ω of all possible outcomes of the experiment. An elementary event ω Ω are elements of the sample space (outcomes of the experiment). A space of events A is composed of the system of all subsets of the sample space Ω. A random event A A is and element of the space of events. Note: The concept of a random event was introduced in order to be able to define the probability, probability distribution, etc.
7 Probability, introduction 7/29 Classic. P.S. Laplace, It is not regarded to be the definition of the probability any more. It is merely an estimate of the probability. P (A) N A N Limit (frequency) definition P (A) = lim N N A N z histogram vs. continuous pdf Axiomatic definition (Andrey Kolmogorov 1930)
8 Axiomatic definition of the probability 8/29 Ω - the sample space. A - the space of events. 1. P (A) 0, A A. 2. P (Ω) = If A B = then P (A B) = P (A) + P (B), A A, B B.
9 Probability is a function P, which assigns number from the interval 0, 1 to events and fulfils the following two conditions: 9/29 P (true) = 1, ( ) P A n n N exclusive. = n N P (A n ), if the events A n, n N, are mutually From these conditions, it follows: P (false) = 0, P ( A) = 1 P (A), if A B then P (A) P (B). Note: Strictly speaking, the space of events have to fulfil some additional conditions.
10 Derived relations 10/29 If A B then P (B \ A) = P (B) P (A). The symbol \ denotes the set difference. P (A B) = P (A) + P (B) P (A B).
11 Joint probability, marginalization 11/29 The joint probability P (A, B), also sometimes denoted P (A B), is the probability that events A, B co-occur. The joint probability is symmetric: P (A, B) = P (B, A). Marginalization (the sum rule): P (A) = P (A, B) allows computing the B probability of a single event by summing the joint probabilities over all possible events B. The probability P (A) is called the marginal probability.
12 Contingency table, marginalization Example: orienteering race 12/29 Orienteering competition example, participants Age <= >= 76 Sum Men Women Sum Orienteering competition example, frequency Age <= >= 76 Sum Men 0,061 0,100 0,125 0,092 0,081 0,058 0,033 0,006 0,556 Women 0,053 0,089 0,103 0,083 0,064 0,039 0,014 0,000 0,444 Sum 0,114 0,189 0,228 0,175 0,144 0,097 0,047 0, ,300 Marginal probability P(sex) 0,200 0,100 0, Marginal probability P(Age_group)
13 The conditional probability Let us have the probability representation of a system given by the joint probability P (A, B). 13/29 If an additional information is available that the event B occurred then our knowledge about the probability of the event A changes to P (A B) = P (A, B) P (B), which is the conditional probability of the event A under the condition B. The conditional probability is defined only for P (B) 0. Product rule: P (A, B) = P (A B) P (B) = P (B A) P (A). From the symmetry of the joint probability and the product rule, the Bayes theorem can be derived (to come in a more general formulation for more than two events).
14 Properties of the conditional probability P (true B) = 1, P (false B) = 0. If A = A n and events A 1, A 2,... are mutually exclusive then n N P (A B) = n N P (A n B). 14/29 Events A, B are independent, if and only if P (A B) = P (A). If B A then P (A B) = 1. If B A then P (A B) = 0. Events Bi, i I, constitute a complete system of events if they are mutually exclusive and B i = true. i I A complete system of events has such property that one and only one event of them occurs.
15 Example: conditional probability 15/29 Consider rolling a single dice. What is the probability that the number higher than three comes up (event A) under the conditions that the odd number came up (event B)? Ω = {1, 2, 3, 4, 5, 6}, A = {4, 5, 6}, B = {1, 3, 5} P (A) = P (B) = 1 2 P (A, B) = P ({5}) = 1 6 P (A B) = P (A, B) P (B) = = 1 3
16 The total probability theorem Let B i, i I, be a complete system of events and let it hold i I : P (B i ) 0. 16/29 Then for every event A holds P (A) = i I P (B i ) P (A B i ). Proof: (( ) ( ) P (A) = P B i ) A = P (B i A) i I i I = i I P (B i A) = i I P (B i ) P (A B i ).
17 Bayes theorem Let B i, i I, be a complete system of events and i I : P (B i ) 0. 17/29 For each event A fulfilling the condition P (A) 0 the following holds P (B i A) = P (B i ) P (A B i ) i I P (B i) P (A B i ), where P (B i A) is the posterior probability; P (B i ) is the prior probability; and P (A B i ) are known conditional probabilities of A having observed B i. Proof (exploring the total probability theorem): P (B i A) = P (B i A) P (A) = P (B i ) P (A B i ) i I P (B i) P (A B i ).
18 The importance of the Bayes theorem Bayes theorem is a fundamental rule for machine learning (pattern recognition) as it allows to compute the probability of an output A given observations B i. The conditional probabilities (also likelihoods) P (A Bi) are estimated from experiments or from a statistical model. Having P (A Bi), the aposteriori probabilities P (Bi A) are determined, which serve to estimate optimally which event from B i occurred. It is needed to know the apriori probability P (Bi) to determine aposteriori probability P (B i A). Informally: posterior prior conditional probability of the event having some observations. 18/29 In a similar manner, we define the conditional probability distribution, conditional density of the continuous random variable, etc.
19 Conditional independence 19/29 Random events A, B are conditionally independent under the condition C, if P (A B C) = P (A C) P (B C). Similarly, a conditional independence of more events, random variables, etc. is defined.
20 Independent events Event A, B are independent P (A B) = P (A) P (B). 20/29 Example The dice is rolled once. Events are: A > 3, event B is an odd number. Are these events independent? Ω = {1, 2, 3, 4, 5, 6}, A = {4, 5, 6}, B = {1, 3, 5} P (A) = P (B) = 1 2 P (A B) = P ({5}) = 1 6 P (A) P (B) = = 1 4 P (A B) P (A) P (B) The events are dependent.
21 The random variable The random variable is an arbitrary function X : Ω R, where Ω is a sample space. 21/29 Why is the concept of the random variable introduced? It allows to work with concepts as the distribution function, probability density, expectation (mean value), etc. There are two basic types of random variables: Discrete a countable number of values. Examples: rolling a dice, the count of number of cars passing through a street in a hour. The discrete probability is given as P (X = a i ) = p(a i ), i = 1,..., i p(a i) = 1. Continuous values from some interval, i.e. infinite number of values. Example: the height persons. The continuous probability is given by the distribution function or the probability density function.
22 Distribution function of a random variable Distribution function of the random variable X is a function F : X [0, 1] defined as F (x) = P (X x), where P is a probability. 22/29 Properties: 1. F (x) is a non-decreasing function, i.e. pair x 1 < x 2 it holds F (x 1 ) F (x 2 ). 2. F (X) is continuous from the right, i.e. it holds lim F (x + h) = F (x). h It holds for every distribution function lim F (x) = 0 a x F (x) = 1. Written more concisely: F ( ) = 0, F ( ) = 1. lim x If the possible values of F (x) are from the interval (a, b) then F (a) = 0, F (b) = 1. Any function fulfilling the above three properties can be understood as a distribution function.
23 Continuous distribution function The distribution function F is called (absolutely) continuous if a nonnegative function f (probability density) exists and it holds 23/29 F (x) = x f(u) du for every x X. The probability density fulfills f(x) dx = 1. f(x) Area = 1 x If the derivative of F (x) exists in the point x then F (x) = f(x). For a, b R, a < b, it holds P (a < X < b) = b a f(x) dx = F (b) F (a).
24 Example, normal distribution 24/29 F (x) f(x) = 1 2πσ 2 e x2 2σ 2 Distribution function Probability density
25 The law of large numbers 25/29 The law of large numbers says that if very many independent experiments can be made then it is almost certain that the relative frequency will converge to the theoretical value of the probability density. Jakob Bernoulli, Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis, 1713, Chapter 4.
26 Expectation 26/29 (Mathematical) expectation = the average of a variable under the probability distribution. Continuous definition: E(x) = x f(x) dx. Discrete definition: E(x) = x P (x). x The expectation can be estimated from a number of samples by E(x) 1 N x i. The approximation becomes exact for N. i Expectation over multiple variables: Ex(x, y) = Conditional expectation: E(x y) = x f(x y) dx. (x, y) f(x) dx
27 Basic characteristics of a random variable 27/29 Continuous distribution Discrete distribution Expectation E(x) = x f(x) dx E(x) = x k-th (general) moment E(x k ) = x k f(x) dx E(x) = x k-th central moment E(x k ) = E(x)) (x k f(x) dx E(x) = x Dispersion D(x) = E(x)) (x 2 f(x) dx E(x) = x x P (x) x k P (x) (x E(x)) k P (x) (x E(x)) 2 P (x)
28 Covariance 28/29 The mutual covariance σ xy of two random variables X, Y is σ xy = E ((X µ x )(Y µ y )). The covariance matrix Σ of n variables X 1,..., X n is Σ = σ σ 1n.... σ n1... σ 2 n The covariance matrix is symmetric (i.e. Σ = Σ ) and positive-semidefinite (as the covariance matrix is real valued, the positive-semidefinite means that xmx 0 for all x R).
29 Quantiles, median 29/29 The p-quantile Qp: P (X < Qp) = p. The median is the p-quantile for p = 12, i.e. P (X < Qp) = 12. Note: Median is often used as a replacement for the mean value in robust statistics.
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
Introduction to Probability
Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence
Chapter ML:IV. IV. Statistical Learning. Probability Basics Bayes Classification Maximum a-posteriori Hypotheses
Chapter ML:IV IV. Statistical Learning Probability Basics Bayes Classification Maximum a-posteriori Hypotheses ML:IV-1 Statistical Learning STEIN 2005-2015 Area Overview Mathematics Statistics...... Stochastics
AMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
Probability for Estimation (review)
Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear
Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1
Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
A Tutorial on Probability Theory
Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
Exploratory Data Analysis
Exploratory Data Analysis Johannes Schauer [email protected] Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
THE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..
Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION
IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics
10-601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html
Probability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
Fuzzy Probability Distributions in Bayesian Analysis
Fuzzy Probability Distributions in Bayesian Analysis Reinhard Viertl and Owat Sunanta Department of Statistics and Probability Theory Vienna University of Technology, Vienna, Austria Corresponding author:
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I
Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
2.6. Probability. In general the probability density of a random variable satisfies two conditions:
2.6. PROBABILITY 66 2.6. Probability 2.6.. Continuous Random Variables. A random variable a real-valued function defined on some set of possible outcomes of a random experiment; e.g. the number of points
Basic Probability Concepts
page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
Chapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
What Is Probability?
1 What Is Probability? The idea: Uncertainty can often be "quantified" i.e., we can talk about degrees of certainty or uncertainty. This is the idea of probability: a higher probability expresses a higher
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
Random Variate Generation (Part 3)
Random Variate Generation (Part 3) Dr.Çağatay ÜNDEĞER Öğretim Görevlisi Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü &... e-mail : [email protected] [email protected] Bilgisayar Mühendisliği
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Statistics 100A Homework 4 Solutions
Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics
International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics Lecturer: Mikhail Zhitlukhin. 1. Course description Probability Theory and Introductory Statistics
STA 371G: Statistics and Modeling
STA 371G: Statistics and Modeling Decision Making Under Uncertainty: Probability, Betting Odds and Bayes Theorem Mingyuan Zhou McCombs School of Business The University of Texas at Austin http://mingyuanzhou.github.io/sta371g
Lecture 13. Understanding Probability and Long-Term Expectations
Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Sums of Independent Random Variables
Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables
Law of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev
Law of Large Numbers Alexandra Barbato and Craig O Connell Honors 391A Mathematical Gems Jenia Tevelev Jacob Bernoulli Life of Jacob Bernoulli Born into a family of important citizens in Basel, Switzerland
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
How To Find The Sample Space Of A Random Experiment In R (Programming)
Probability 4.1 Sample Spaces For a random experiment E, the set of all possible outcomes of E is called the sample space and is denoted by the letter S. For the coin-toss experiment, S would be the results
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
In the situations that we will encounter, we may generally calculate the probability of an event
What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead
Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined
Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris [email protected] Department of Mathematics University of Michigan February 9, 2009 When a large
( ) is proportional to ( 10 + x)!2. Calculate the
PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers
6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
How to Gamble If You Must
How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games
M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung
M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS
Collatz Sequence. Fibbonacci Sequence. n is even; Recurrence Relation: a n+1 = a n + a n 1.
Fibonacci Roulette In this game you will be constructing a recurrence relation, that is, a sequence of numbers where you find the next number by looking at the previous numbers in the sequence. Your job
Lecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
Chapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)
2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
Inaugural Lecture. Jan Vecer
Inaugural Lecture Frankfurt School of Finance and Management March 22nd, 2012 Abstract In this talk we investigate the possibilities of adopting a profitable strategy in two games: betting on a roulette
Lecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
Probability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
Sample Space and Probability
1 Sample Space and Probability Contents 1.1. Sets........................... p. 3 1.2. Probabilistic Models.................... p. 6 1.3. Conditional Probability................. p. 18 1.4. Total Probability
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could
MBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100
Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,
MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson
MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson Statistics is concerned with making inferences about the way the world is, based upon
MULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
The Kelly Betting System for Favorable Games.
The Kelly Betting System for Favorable Games. Thomas Ferguson, Statistics Department, UCLA A Simple Example. Suppose that each day you are offered a gamble with probability 2/3 of winning and probability
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)
Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you
Lecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
Gambling and Data Compression
Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction
Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations
56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Florin-Cătălin ENACHE
Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
Mathematical Expectation
Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the
Stat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
Bayes and Naïve Bayes. cs534-machine Learning
Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule
Lecture 13: Martingales
Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of
Responsible Gambling Education Unit: Mathematics A & B
The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability
CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces
Martingale Ideas in Elementary Probability. Lecture course Higher Mathematics College, Independent University of Moscow Spring 1996
Martingale Ideas in Elementary Probability Lecture course Higher Mathematics College, Independent University of Moscow Spring 1996 William Faris University of Arizona Fulbright Lecturer, IUM, 1995 1996
Introduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Master s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang
Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space
Recursive Estimation
Recursive Estimation Raffaello D Andrea Spring 04 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March 8, 05 Notes: Notation: Unlessotherwisenoted,x, y,andz denoterandomvariables, f x
Economics 1011a: Intermediate Microeconomics
Lecture 11: Choice Under Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 11: Choice Under Uncertainty Tuesday, October 21, 2008 Last class we wrapped up consumption over time. Today we
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 [email protected] Genomics A genome is an organism s
