Laplace Transforms Circuit Analysis Passive element equivalents Review of ECE 221 methods in s domain Many examples J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 1
Example 1: Circuit Analysis We can use the Laplace transform for circuit analysis if we can define the circuit behavior in terms of a linear ODE. For example, solve for v(t). Check your answer using the initial and final value theorems and the methods discussed in Chapter 7. i(0-) = -2 ma 5kΩ + 10 u(t) 5 mh v(t) - J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 2
Example 1:Workspace Hint: [r,p,k] = residue([-2e-3 2e3],[1 1e6 0]) r = -0.0040, 0.0020, p = -1000000, 0 k=[] J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 3
Example 1:Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 4
Laplace Transform Circuit Analysis Overview LPT is useful for circuit analysis because it transforms differential equations into an algebra problem Our approach will be similar to the phasor transform 1. Solve for the initial conditions Current flowing through each inductor Voltage across each capacitor 2. Transform all of the circuit elements to the s domain 3. Solve for the s domain voltages and currents of interest 4. Apply the inverse Laplace transform to find time domain expressions How do we know this will work? J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 5
N v k (t) =0 k=1 M i k (t) =0 k=1 Kirchhoff s Laws N V k (s) =0 k=1 M I k (s) =0 k=1 Kirchhoff s laws are the foundation of circuit analysis KVL: The sum of voltages around a closed path is zero KCL: The sum of currents entering a node is equal to the sum of currents leaving a node If Kirchhoff s laws apply in the s domain, we can use the same techniques that you learned last term (ECE 221) Apply the LPT to both sides of the time domain expression for these laws Thelawsholdinthesdomain J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 6
Defining s Domain Equations: Resistors i(t) R I(s) R + v(t) - + V(s) - v(t) =Ri(t) V (s) =RI(s) Generalization of Ohm s Law As with KCL & KVL, the relationship is the same in the s domain as in the time domain Note that we used the linearity property of the LPT for both Ohm s law and Kirchhoff s laws J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 7
Defining s Domain Equations: Inductors i(t) + L v(t) - I 0 s I(s) Ls L I 0 I(s) Ls + V(s) - + V(s) - v(t) =L di(t) dt i(t) = 1 L t 0 - v(τ)dτ + I 0 V (s) =L [si(s) I 0 ] I(s) = 1 sl V (s)+1 s I 0 V (s) =sli(s) LI 0 Where I 0 i(0 - ) J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 8
Defining s Domain Equations: Capacitors i(t) C CV 0 + v(t) - I(s) 1 sc V 0 s 1 I(s) sc + V(s) - + V(s) - i(t) =C dv(t) dt I(s) =C [sv (s) V 0 ] v(t) = 1 C V (s) = 1 C t i(τ)dτ + V 0 0 [ - ] 1 s I(s) + 1 s V 0 I(s) =scv (s) CV 0 V (s) = 1 sc I(s)+V 0 s Where V 0 v(0 - ) J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 9
s Domain Impedance and Admittance Impedance: Admittance: Z(s) = V (s) I(s) Y (s) = I(s) V (s) The s domain impedance of a circuit element is defined for zero initial conditions This is also true for the s domain admittance We will see that circuit s domain circuit analysis is easier when we can assume zero initial conditions J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 10
s Domain Circuit Element Summary Resistor V (s) = RI(s) V = RI R Inductor V (s) = sli(s) V = sli Ls Capacitor V (s) = 1 sc I(s) V = 1 sc I sc 1 AlloftheseareintheformV (s) =ZI(s) Note similarity to phasor transform Identical if s = jω Will discuss further later Equations only hold for zero initial conditions J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 11
Example 2: Circuit Analysis i(0-) = -2 ma 5kΩ + 10 u(t) 5 mh v(t) - Solve for v(t) using s-domain circuit analysis. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 12
Example 2: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 13
Example 3: Circuit Analysis t = 0 1kΩ + sin(1000t) 1 μf v o - Given v o (0) = 0, solve for v o (t) for t 0. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 14
Hint: Example 3: Workspace [r,p,k] = residue([1e6],conv([1 0 1e6],[1 1e3])) r = [ 0.5000, -0.2500-0.2500i, -0.2500 + 0.2500i] p = 1.0e+003 *[ -1.0000, 0.0000 + 1.0000i, 0.0000-1.0000i] k=[] [abs(r) angle(r)*180/pi] ans = [ 0.5000 0, 0.3536-135.0000, 0.3536 135.0000] J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 15
Example 3: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 16
Example 3: Plot of Results 1 Total Transient 0.8 Steady State 0.6 vo(t) (V) 0.4 0.2 0 0.2 0.4 0.6 0.8 0 5 10 15 20 25 Time (ms) J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 17
Example 4: Circuit Analysis 50 Ω 50 Ω 100 Ω t = 0 10 mf 175 Ω 40 V + v - 175 Ω 10 mh Solve for v(t). J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 18
Hint: Example 4: Workspace [r,p,k] = residue([1e-3 20 0],[1 21.25e3 10e3]) r = [-1.2496, -0.0004] p = [-21250,-0.4706] k = [0.0010] J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 19
Example 4: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 20
Example 5: Parallel RLC Circuits + i(t) C L R v(t) - Find an expression for V (s). Assume zero initial conditions. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 21
Example 6: Circuit Analysis 0.125 μf i L + 8 H v 20 kω - Given v(0) = 0 V and the current through the inductor is i L (0 - )= 12.25 ma, solve for v(t). J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 22
Hint: Example 6: Workspace [r,p,k] = residue([98e3],[1 400 1e6]) r = [ 0-50.0104i, 0 +50.0104i] p = 1.0e+002 * [ -2.0000 + 9.7980i, -2.0000-9.7980i] k=[] [abs(r) angle(r)*180/pi] ans =[ 50.0104-90.0000, 50.0104 90.0000] J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 23
Example 6: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 24
Example 6: Plot of v(t) 80 60 40 (volts) 20 0 20 40 0 5 10 15 20 25 30 35 40 Time (ms) J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 25
t = 0:0.01e-3:40e-3; v = 50*exp(-200*t).*sin(979.8*t); t = t*1000; h = plot(t,v, b ); set(h, LineWidth,1.2); xlim([0 max(t)]); ylim([-23 40]); box off; xlabel( Time (ms) ); ylabel( (volts) ); title( ); Example 6: MATLAB Code J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 26
Example 7: Series RLC Circuits + v R (t) - + v L (t) - R L + v(t) C v C (t) - Find an expression for V R (s), V L (s), and V C (s). Assume zero initial conditions. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 27
Example 7: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 28
Example 8: Circuit Analysis 20 kω t = 0 + v 1 (t) 50 nf 80 V + v 2 (t) - - 10 nf 2.5 nf There is no energy stored in the circuit at t =0. Solve for v 2 (t). J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 29
Example 8: Workspace Hint: [r,p,k] = residue([320e3],[1 5e3 0]) r = [-64, 64] p = [-5000,0] k=[] J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 30
Example 8: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 31
Example 9: Circuit Analysis 0.25 v 1 10 Ω v 1 20 H v 2 600 u(t) 0.1 F 140 Ω Solve for V 2 (s). Assume zero initial conditions. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 32
Example 9: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 33
Example 9: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 34
Example 10: Circuit Analysis 10 mf u(t) i(t) 100 Ω 9 i(t) a b Find the Thevenin equivalent of the circuit above. Assume that the capacitor is initially uncharged. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 35
Example 10: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 36
Example 10: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 37
Example 11: Circuit Analysis v(t) R + v o (t) - i L L Find an expression for v o (t) given that v(t) =e αt u(t) and i L (0) = I 0 ma. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 38
Example 11: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 39
Example 11: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 40
Example 12: Circuit Analysis 200 Ω 100 mh 1 μf 1kΩ v s (t) + v o (t) - Find an expression for V o (s) in terms of V s (s). Assume there is no energy stored in the circuit initially. What is v o (t) if v s (t) =u(t)? J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 41
Hint: Example 12: Workspace [r,p,k] = residue([-0.2 0],conv([1 2e3],[1 1e3])) r = [-0.4000, 0.2000] p = [-2000, -1000] k=[] J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 42
Example 12: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 43
Example 13: Circuit Analysis C B C A R B R A v s (t) R L + v o (t) - Find an expression for V o (s) in terms of V s (s). Assume there is no energy stored in the circuit initially. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 44
Example 13: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 45
Example 13: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 46
Example 14: Circuit Analysis C R v s (t) R L + v o (t) - Find an expression for V o (s) in terms of V s (s). Assume there is no energy stored in the circuit initially. J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 47
Example 14: Workspace J. McNames Portland State University ECE 222 Laplace Circuits Ver. 1.63 48