Increasing the Multiplexing of Protein Quantitation from 6- to 10-Plex with Reporter Ion Isotopologues

Similar documents
Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests

Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping

Thermo Scientific Prelude SPLC System FPO. Making LC/MS accessible. to clinical research and toxicology labs

In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates

Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays

Simultaneous Quantitation of 43 Drugs in Human Urine with a Dilute-and-Shoot LC-MS/MS Method

Selective Testosterone Analysis in Human Serum by LC-FAIMS-MS/MS

for mass spectrometry calibration tools Thermo Scientific Pierce Controls and Standards for Mass Spectrometry

Aiping Lu. Key Laboratory of System Biology Chinese Academic Society

Mass and Resolution Calibration for New Triple-Stage Quadrupole Mass Spectrometers. Rob Grothe Thermo Fisher Scientific, San Jose, CA

Application Note # LCMS-81 Introducing New Proteomics Acquisiton Strategies with the compact Towards the Universal Proteomics Acquisition Method

Thermo Scientific ClinQuan MD Software For In Vitro Diagnostic Use. Confidence in Results With Data Integrity

ProteinPilot Report for ProteinPilot Software

Thermo Scientific Compound Discoverer Software. A New Generation. of integrated solutions for small molecule structure ID

The Scheduled MRM Algorithm Enables Intelligent Use of Retention Time During Multiple Reaction Monitoring

TargetQuan 3 Software. Leading the way in regulatory. POPs quantification. Bullet Bullet Bullet

Quick and Sensitive Analysis of Multiclass Veterinary Drug Residues in Meat, Plasma, and Milk on a Q Exactive Focus LC-MS System

Thermo Scientific SIEVE Software for Differential Expression Analysis

Thermo Scientific icap 7000 Series ICP-OES. Low cost ICP-OES analysis high quality data

HR/AM Targeted Peptide Quantitation on a Q Exactive MS: A Unique Combination of High Selectivity, Sensitivity and Throughput

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research

A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes

ProSightPC 3.0 Quick Start Guide

泛 用 蛋 白 質 體 學 之 質 譜 儀 資 料 分 析 平 台 的 建 立 與 應 用 Universal Mass Spectrometry Data Analysis Platform for Quantitative and Qualitative Proteomics

Fast, Reproducible LC-MS/MS Analysis of Dextromethorphan and Dextrorphan

High-Resolution Targeted Quantitation: Biomarker Discovery in a Mouse Transgenic Model of Myopathy

Thermo Scientific ExactFinder Software

MultiQuant Software 2.0 for Targeted Protein / Peptide Quantification

itraq Tips and Tricks

Proteomic data analysis for Orbitrap datasets using Resources available at MSI. September 28 th 2011 Pratik Jagtap

Effects of Intelligent Data Acquisition and Fast Laser Speed on Analysis of Complex Protein Digests

UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs

MRMPilot Software: Accelerating MRM Assay Development for Targeted Quantitative Proteomics

using ms based proteomics

ProteinScape. Innovation with Integrity. Proteomics Data Analysis & Management. Mass Spectrometry

A fully quantitative research method for the analysis of lead in whole blood using the Thermo Scientific icap Q ICP-MS

Application of Automated Data Collection to Surface-Enhanced Raman Scattering (SERS)

Introduction to Proteomics 1.0

HRMS in Clinical Research: from Targeted Quantification to Metabolomics

Thermo Scientific LIFECYCLE Asset & Service Management for Healthcare

Choices, choices, choices... Which sequence database? Which modifications? What mass tolerance?

Mass Spectrometry Signal Calibration for Protein Quantitation

Tutorial for Proteomics Data Submission. Katalin F. Medzihradszky Robert J. Chalkley UCSF

Error Tolerant Searching of Uninterpreted MS/MS Data

Session 1. Course Presentation: Mass spectrometry-based proteomics for molecular and cellular biologists

La Protéomique : Etat de l art et perspectives

MaxQuant User s Guide Version

Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction

Application Note # LCMS-66 Straightforward N-glycopeptide analysis combining fast ion trap data acquisition with new ProteinScape functionalities

Mass Spectrometry Based Proteomics

Thermo Scientific Mass Spectrometric Immunoassay (MSIA)

How To Control A Record System

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS

Improving the Metabolite Identification Process with Efficiency and Speed: LightSight Software for Metabolite Identification

Utilization of Rapid LC-MS for Screening and Quantitative Analysis of Pesticides in Food Matrix using an Exactive Plus Benchtop Orbitrap Platform

Retrospective Analysis of a Host Cell Protein Perfect Storm: Identifying Immunogenic Proteins and Fixing the Problem

Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances

Quantitative proteomics background

biopharmaceuticals Join the sweet revolution in Thermo Scientific Glycan Analysis for Biotherapeutics

AB SCIEX TOF/TOF 4800 PLUS SYSTEM. Cost effective flexibility for your core needs

Definition of the Measurand: CRP

Higher Resolution LC-MS and MS-MS Analysis of Lipid Extracts Using Benchtop Orbitrap-based Mass Spectrometers and LipidSearch Software

LIFECYCLE. Thermo Scientific. Enterprise Solutions

Application Note # MT-90 MALDI-TDS: A Coherent MALDI Top-Down-Sequencing Approach Applied to the ABRF-Protein Research Group Study 2008

Proteomics in Practice

Protein Hit1, a novel box C/D snornp assembly factor, controls cellular concentration of protein Rsa1p by direct interaction

Proteomic Analysis using Accurate Mass Tags. Gordon Anderson PNNL January 4-5, 2005

Agilent G2721AA/G2733AA Spectrum Mill MS Proteomics Workbench

[ Care and Use Manual ]

SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from Human Plasma

Global and Discovery Proteomics Lecture Agenda

Absolute quantification of low abundance proteins by shotgun proteomics

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water

Introduction to Proteomics

Challenges in Computational Analysis of Mass Spectrometry Data for Proteomics

MASCOT Search Results Interpretation

Analysis of protein mixtures from whole-cell extracts by single-run nanolc-ms/ms using ultralong gradients

Determination of Pesticide Residues in Drinking Water Using Automated Solid-Phase Extraction and Gas Chromatography with Nitrogen Phosphorus Detection

Mass Frontier Version 7.0

WATERS QUANTITATIVE ANALYSIS solutions

Already said. Already said. Outlook. Look at LC-MS data. A look at data for quantitative analysis using MSight and Phenyx. What data for quantitation?

Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF

Master course KEMM03 Principles of Mass Spectrometric Protein Characterization. Exam

Rapid and Reproducible Amino Acid Analysis of Physiological Fluids for Clinical Research Using LC/MS/MS with the atraq Kit

Quantitative mass spectrometry in proteomics: a critical review

Pinpointing phosphorylation sites using Selected Reaction Monitoring and Skyline

Pep-Miner: A Novel Technology for Mass Spectrometry-Based Proteomics

Shotgun Proteomic Analysis. Department of Cell Biology The Scripps Research Institute

Supplementary Materials and Methods (Metabolomics analysis)

Workshop IIc. Manual interpretation of MS/MS spectra. Ebbing de Jong. Center for Mass Spectrometry and Proteomics Phone (612) (612)

Separation of Peptides from Enzymatic Digestion on Different Acclaim Columns: A Comparative Study

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMONSTRATION. financed by the program

ProteinChip Energy Absorbing Molecules (EAM)

Bruker ToxScreener TM. Innovation with Integrity. A Comprehensive Screening Solution for Forensic Toxicology UHR-TOF MS

Thermo Scientific ConFlo IV Universal Interface

PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW

Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract

Laboration 1. Identifiering av proteiner med Mass Spektrometri. Klinisk Kemisk Diagnostik

Fast and Automatic Mapping of Disulfide Bonds in a Monoclonal Antibody using SYNAPT G2 HDMS and BiopharmaLynx 1.3

Simultaneous Metabolite Identification and Quantitation with UV Data Integration Using LightSight Software Version 2.2

Transcription:

Increasing the Multiplexing of Protein Quantitation from 6- to 1-Plex with Reporter Ion Isotopologues Rosa Viner, 1 Ryan Bomgarden, 2 Michael Blank, 1 John Rogers 2 1 Thermo Fisher Scientific, San Jose, CA, USA; 2 Thermo Fisher Scientific, Rockford, IL, USA

Overview Purpose: To develop Tandem Mass Tag (TMT ) 1-plex reagents by combining current Thermo Scientific TMTsixplex reagents with four TMT6 reagent isotope variants on multiple high-resolution mass spectrometry platforms. Methods: HeLa cell lysates and bovine serum albumin (BSA) digests were labeled with Thermo Scientific TMT1plex reagents. Aliquots from six, eight or all ten channels were mixed in different ratios and analyzed on three different Thermo Scientific Orbitrap -based instruments. Results: We have extended the multiplexing capabilities of TMT reagents from 6 to 1 without increasing the size or structure of the tag by utilizing the 6 mda mass difference between 13 C and 15 N isotopes of the mass tag reporter ions. Mass spectrometry analysis on three different Orbitrap-based instruments using FT MS2/MS3 shows no negative effect on the number of protein identifications or quality of quantification in a complex digest by increasing sample multiplexing from 6 to 1. Introduction Amine-reactive isobaric tags (TMT or itraq ) enable concurrent identification and multiplexed quantification of proteins in different samples using tandem mass spectrometry. Increasing the number of isobaric tag-labeled samples that can be compared in a single experiment is highly desirable. However, it has been reported that increasing multiplexing by using larger tagging molecules significantly decreases the number of identified and quantified proteins and peptides. 1 Here, we demonstrate that 1-plex multiplexing can be achieved with high resolution mass spectrometry utilizing the 6 mda mass difference between 15 N and 13 C stable isotopes by combining current TMTsixplex reagents with four TMT6 isotope variants without loss of protein identifications and quality of quantification in a complex digest. Methods Sample Preparation HeLa cell lysates (Thermo Scientific, Rockford, IL) and bovine serum albumin (BSA, Sigma, St.Louis, MO) were reduced, alkylated and digested with LysC and/or trypsin. Samples were then labeled with TMT1plex reagents (Figure 1) according to manufacturer s instructions. Aliquots from six, eight or all ten channels were mixed in equimolar ratios. To assess the impact of peptide co-isolation on quantification, HeLa digest labeled with Thermo Scientific TMT8plex reagents was spiked with BSA digest labeled with TMT1plex reagents mixed at fixed ratios (16:8:4:2:1:1:2:4:8:16). LC-MS A Thermo Scientific EASY-nLC 1 HPLC system and Thermo Scientific EASY- Spray source with Thermo Scientific Acclaim PepMap 1 2 cm x 75 μm trap column and Thermo Scientific EASY-Spray PepMap RSLC C18 25 or 5 cm x 75 μm ID column were used to separate peptides with a 5-25% acetonitrile gradient in.1% formic acid over 6 min for single proteins or 21 min at a flow rate of 3 nl/min for HeLa digest. Samples (5 ng injections) were analyzed on Thermo Scientific Q Exactive, Orbitrap Elite and Orbitrap Fusion Tribrid mass spectrometers using FT HCD MS2 or synchronous precursor selection (SPS) MS3 fragmentations (Orbitrap Fusion MS). Data Analysis Thermo Scientific Proteome Discoverer software version 1.4 was used to search MS/MS spectra against the Swiss-Prot human+bsa database using SEQUEST HT search engine. Static modifications included carbamidomethylation (C) and TMTsixplex (N-terminal, K). Dynamic modifications included methionine oxidation and deamidation (N,Q). Resulting peptide hits were filtered for maximum 1% FDR using the Percolator algorithm. 2 The TMT1plex quantification method within Proteome Discoverer software was used to calculate the reporter ratios with mass tolerance ±1 ppm without applying the isotopic correction factors. Only peptide spectra containing all reporter ions were designated as quantifiable spectra. A protein ratio was expressed as a median value of the ratios for all quantifiable spectra of the peptides pertaining to that protein. For spiked in BSA experiments with data originating from the MS2 HCD method, a precursor co-isolation filter of 25% was applied. This eliminated peptides where contributions from co-eluting, nearly isobaric peptide species could interfere significantly with the reporter ion signals coming from the peptide of interest. For data sets obtained with the MS3-based method which contained both MS2 and MS3 spectra, CID(MS2) spectra were used for peptide identification and HCD(MS3) that contained reporter ions were used for quantification 3. 2 Increasing the Multiplexing of Protein Quantitation from 6- to 1-Plex with Reporter Ion Isotopologues

Results Comparison of unlabeled to TMT6-, 8- or 1-plex labeled HeLa digests. We have extended the previously reported 4,5 TMT8plex set of reagents to a 1plex set for multiplex peptide quantitation without increasing the size or altering the structure of the tag (Figure 1). The TMT1plex reagents utilize the 6 mda mass difference between 13 C and 15 N isotopes which are measured by high-resolution LC-MS n. In order to accurately quantify all ten channels, all reporter ions need to be baseline resolved. We determined the minimum resolution to separate all ten channels for an MSn resolution to be 35K at m/z 2 (~5K at m/z 12) as shown in Figure 2. At this resolution, an accurate ratio calculation for the all reporter ions can be achieved using a mass tolerance window of up to 1 ppm without applying isotope correction factors. FIGURE 1. Thermo Scientific TMT1plex Reagents structures and reporter ion mass for TMT6plex tags (blue), TMT8plex (green) and TMT1plex (orange). TMT1-126 126.1277261 TMT1-127N TMT1-127C 127.124761 127.13189 TMT1-128N TMT1-128C 128.1281158 128.1344357 TMT1-129N TMT1-129C 129.131476 129.137795 TMT1-13N TMT1-13C 13.1348254 131.138182 TMT1-131 13.1411453 ETD cleavage site HCD cleavage site FIGURE 2. Optimal resolution settings to resolve isotope variants. Q Exactive MS Transient 128 ms RP 35K@m/z 2 OT Elite MS Transient 96 ms RP 3K@m/z 4 OT Fusion MS Transient 128 ms RP 6K@m/z 2 To benchmark the performance of new higher multiplexing reagents, we prepared a Lys-C, trypsin HeLa cell digest and analyzed unlabeled and TMT-labeled samples (equimolar 6-, 8- or 1-plex) on three different Orbitrap-based instruments. Acquisition methods used for Orbitrap Elite, Q Exactive and Orbitrap Fusion MS are summarized in Table 1. Compared to unlabeled HeLa digest, HCD MS2 of TMT6plex-labeled samples consistently identified at least 8% as many protein groups, with no loss in identified proteins/peptides with 8plex and 1plex samples compared to TMT6plexlabeled samples, depending on the instrument (Figure 3). All three multiplexed samples consistently quantified more than 98% of identified peptides and proteins compared to unlabeled samples. Thermo Scientific Poster Note PN ASMS13_W617_RViner_e 6/13S 3

TABLE 1. Instrument settings used for TMT experiments. FT MS1 Parameter Q Exactive MS Orbitrap Elite MS Orbitrap Fusion MS Resolution settings (FWHM at m/z 2) 14, 144, 12, Target value 3e6 1e6 2e5 Injection time 12 12 5 FT MS2 HCD HCD HCD Resolution settings (FWHM at m/z 2) 35, 36, 6, Target value 1e5 5e4 1e5 Injection time 25 25 12 Isolation width (Da) 2 2 2 Top N 1 15 3 sec FIGURE 3. Identification and quantification results for TMT experiments on three Orbitrap instruments. Number of total peptide identifications (A) and protein groups (B) are shown at 1% FDR for 5ng HeLa digest. The number of quantifiable proteins and peptides is also shown. Results represent an average of two replicate runs for each sample. A. 4 35 3 Peptides 25 2 15 1 5 Total Quantified Total Quantified Total Quantified Q Exactive MS Orbitrap OT Elite MS MS Orbitrap OT Fusion Fusion MS MS Unlabeled TMT6 TMT8 TMT1 B. Protein groups 45 4 35 3 25 2 15 1 5 Total Quantified Total Quantified Total Quantified Q Exactive MS Orbitrap OT Elite Elite MS MS Orbitrap OT Fusion Fusion MS MS Unlabeled TMT6 TMT8 TMT1 4 Increasing the Multiplexing of Protein Quantitation from 6- to 1-Plex with Reporter Ion Isotopologues

Quantitative precision and accuracy. Two main factors contribute to decreased quantitative accuracy when using isobaric tags: 1) interference in reporter ion mass regions and 2) interference from co-isolation of precursor ions. Interference from background ions in the reporter region can be addressed by scanning with high resolution (Figure 2). Co-isolation interference has been recently addressed by using a multi-notch (SPS )MS3 experiment on an LTQ Orbitrap Velos or Orbitrap Elite instrument 4,6 and by combining a narrow precursor isolation width and fragmentation at the apex of the LC. 7 FIGURE 4. Synchronous Precursor Selection MS3 TMT workflow for accurate quantification. Precursor MS2 IT CID Multi-notch isolation 5 fragments selected FTMS 3 HCD of selected notches Reporter ions FIGURE 5. Accuracy and precision of TMT1 BSA quantitation spiked into TMT8 HeLa matrix using MS2 vs MS3 methods on Orbitrap Fusion MS. Expected (A) and observed (B) ratios normalized to 126 reporter ion intensity. Results represent an average of two replicate runs for each sample. A. B. Expected BSA peptide reporter Ion ratios Observed BSA peptide reporter ion ratios 2 18 16 14 12 1 8 6 4 2 2 18 16 14 12 1 8 6 4 2 BSA (16:8:4:2:1:1:2:4:8:16) + HeLa (1:1:1::1:1:1::1:1) TMT 1 BSA, 5 fmol:129:64:32:16:8:8:16:32:64:129 TMT 8 HeLa, 5 ng 126 127N 127C 128N 128C 129N 129C 13N 13C 131 BSA alone BSA+ HeLa SPS MS3 BSA+ HeLa MS2 ( 1.2 amu isolation) 126 127N 127C 128N 128C 129N 129C 13N 13C 131 Thermo Scientific Poster Note PN ASMS13_W617_RViner_e 6/13S 5

FIGURE 6. Identification and quantification of TMT1-labeled BSA digest spiked into TMT8-labeled HeLa using MS2 vs MS3 methods on the Orbitrap Fusion MS. Number of HeLa proteins (A) and BSA peptide (B) identifications are shown at 1% FDR. Results represent an average of two replicate runs for each sample. A. B. Protein groups 45 4 35 3 25 2 15 1 HeLa MS2 MS3 Peptides 4 35 3 25 2 15 1 BSA MS2 MS3 5 5 Total Quantified Sequence coverage Total Quantified To assess the impact of peptide co-isolation on quantification, TMT8plex-labeled HeLa samples were equally mixed (1:1:1:1:1:1:1:1) and spiked with BSA labeled with TMT1plex reagents mixed at different ratios (16:8:4:2:1:1:2:4:8:16). The sample (5 fmol BSA + 5 ng HeLa digest) was then analyzed on an Orbitrap Fusion MS using narrow precursor isolation (1.2 amu) by HCD MS2 or a novel SPS MS3 fragmentation/quantification method (Figures 4 & 5). 4 The SPS( multi-notch) MS3 method significantly improved quantitative accuracy for the spiked BSA peptide digest as shown in Figure 5B. The percent of proteins quantified employing the MS3 approach was over 95% with less than 25% loss in identified proteins due to the improved scan rate of the Orbitrap Fusion MS (Figure 6). These results significantly outperform previously reported single notch MS3 acquisition methods for both number of quantified proteins and quantitative accuracy. 3,6 Conclusion Mass spectrometry analysis on three different Orbitrap-based instruments shows no negative effect on number of protein identifications or quality of quantification in complex digest by increasing TMT multiplexing from 6 to 1. Higher-resolution analysis, at least 35K@ m/z 2, is required for the accurate TMT1plex reagent reporter ion measurements. Precursor co-isolation effect in complex samples can be addressed to a large extent by relying on the reporter ion intensities extracted from MS3 spectra. The Orbitrap Fusion MS demonstrated significant improvements in the number of peptide identifications and quantifiable proteins using TMT reagents compared to the previous series of instruments. A novel FT MS3 Synchronous Precursor Selection method implemented on the Orbitrap Fusion MS showed only ~25% loss of identified proteins and an excellent 95% quantitation rate with significantly improved quantification accuracy for BSA digest peptides spiked into a complex proteome matrix. References 1. Pichler, P.; Kocher, T.; Holzmann, J.; Mazanek, M.; Taus, T.; Ammerer, G.; Mechtler, K. Anal. Chem. 21, 82: 6549 6558. 2. Kall, L. Canterbury, J, Weston, J., Noble, W.S., MacCoss, M. Nature Meth. 27, 4: 923-925. 3. Viner, R.; Scigelova, M.; Zeller, M.; Oppermann, M.; Moehring, T.; Zabrouskov, V. Thermo Fisher Scientific Application Note #566, 212 4. McAlister, G., Huttlin, E.L.; Haas, W.; Ting, L.; Jedrychowski, M.P.; Rogers, J.C.; Kuhn, K.; Pike, I.; Grothe, R.A,; Blethrow, J.D.; Gygi, S.P. Anal Chem. 212. 84: 7469-7478. 5. Werner, T., Becher, I.; Sweetman,G.; Doce,C.; Savitski, M.; Bantscheff, M. Anal Chem. 212. 84: 7188-7194. 6. Ting, L.; Rad, R.; Gygi, S. P.; Haas, W., Nature Methods 211, 8, 937-94. 7. Savitski, M. M.; Sweetman, G.; Askenazi, M.; Marto, J. A.; Lang, M.; Zinn, N.; Bantscheff, M. Anal. Chem. 211, 83: 8959 8967. 6 Increasing the Multiplexing of Protein Quantitation from 6- to 1-Plex with Reporter Ion Isotopologues

www.thermoscientific.com 213 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. itraq is a trademark of Applera Corporation. Tandem Mass Tag, TMT are trademarks of Proteome Sciences plc. SEQUEST is a registered trademark of the University of Washington. Mascot is a trademark of Matrix Science, Ltd. Swiss-Prot is a registered trademark of Institute Suisse de Bioinformatique (Sib) Foundation Switzerland. All other trademarks are the property of Thermo Fisher Scientific, Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. Thermo Fisher Scientific, San Jose, CA USA is ISO 91:28 Certified. Africa-Other +27 11 57 184 Australia +61 3 9757 43 Austria +43 1 333 5 34 Belgium +32 53 73 42 41 Canada +1 8 53 8447 China +86 1 8419 3588 Denmark +45 7 23 62 6 Europe-Other +43 1 333 5 34 Finland/Norway/Sweden +46 8 556 468 France +33 1 6 92 48 Germany +49 613 48 114 India +91 22 6742 9434 Italy +39 2 95 591 Japan +81 45 453 91 Latin America +1 561 688 87 Middle East +43 1 333 5 34 Netherlands +31 76 579 55 55 New Zealand +64 9 98 67 Russia/CIS +43 1 333 5 34 South Africa +27 11 57 184 Spain +34 914 845 965 Switzerland +41 61 716 77 UK +44 1442 233555 USA +1 8 532 4752 ASMS13_W617_RViner _E 6/13S