1 TEX 2 TEX. test.tex. \documentclass{jarticle} \begin{document} \LaTeXe \end{document} platex test.tex. TEX xdvik test.dvi



Similar documents
Using Keystrokes to Write Equations In Microsoft Office 2007 Equation Editor

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

How To Write Equations In Openoffice.Org (For Free)

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi \Delta Ξ \Xi Υ \Upsilon Ω \Omega Θ \Theta Π \Pi Φ \Phi. Table 1: Greek Letters. Table 2: Binary Operation Symbols

ASCII CODES WITH GREEK CHARACTERS

The Word 2007/2010 Equation Editor


What is Beamer?! Introduction to Beamer Beamer is a LATEX class for creating slides for presentations. Commands for Header and the Title Page

Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Table of Contents Appendix 4-9

AST 114 Spring 2016 Introduction to the Night Sky INTRODUCTION TO THE NIGHT SKY

XMGrace Fancy characters and stuff

Please contact HQ with any questions about this information.

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

How To Volunteer At The Big Event At Uni

User Guide LabelManager 420P

A Guide to Presentations in L A TEX-beamer. Trinity University

An exact formula for default swaptions pricing in the SSRJD stochastic intensity model

AIMMS Function Reference - Arithmetic Functions

Integration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla

Math Placement Test Practice Problems

OHIO REGION PHI THETA KAPPA

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

INTEGRATING FACTOR METHOD

Package tikzdevice. February 20, 2015

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Mechanical Properties - Stresses & Strains

WASHINGTON STATE UNIVERSITY Payroll Services COMPOSED ADDRESSES FOR RESIDENCE HALLS RM NO. RESIDENCE HALL NAME CITY STATE ZIP + 4

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

! # %!&% ( % )% & % + %, )./

FIELD THEORY OF ISING PERCOLATING CLUSTERS

Additional questions for chapter 4

Useful Mathematical Symbols

IEEE-HKN Chapters By Chapter Name (as of 11 August 2014)

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

Social Registration Form

Core Maths C3. Revision Notes

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

Metric Spaces. Lecture Notes and Exercises, Fall M.van den Berg

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan , Fall 2010

Old myths & recent realities

How To Write A College Essay

Differentiation and Integration

Function minimization

Stirling s formula, n-spheres and the Gamma Function

A Brief introduction into the world of TEX/L A TEX

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

MATH 381 HOMEWORK 2 SOLUTIONS

GREEK COURSEPACK TABLE OF CONTENTS

The 2016 Penn State IFC/Panhellenic Dance Marathon Communications Committee. Organization Pairings Summary Prepared on June 13, 2015

MathCad Basics (Dr. Tom Co 9/18/2008)

A Classical Monetary Model - Money in the Utility Function

Recent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago

TOPIC 4: DERIVATIVES

Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation with nonsmooth potential. 1 Introduction


The Math Circle, Spring 2004

University Scholarship Application Panhellenic Alumnae South Bay Association


Credit Risk Models: An Overview

Sample Problems. Practice Problems

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B)

6.1 Basic Right Triangle Trigonometry

CONTINUOUS REINHARDT DOMAINS PROBLEMS ON PARTIAL JB*-TRIPLES

Unified Lecture # 4 Vectors

APPENDIX D. VECTOR ANALYSIS 1. The following conventions are used in this appendix and throughout the book:

CDPM CDPM X

Differentiation of vectors

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

Macroeconomic Effects of Financial Shocks Online Appendix

14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

minimal polyonomial Example

EXERCISES PDE v(x)

An Internal Model for Operational Risk Computation

Getting Started with L A TEX

Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes

INSURANCE RISK THEORY (Problems)

PLANE TRUSSES. Definitions

Second Order Linear Differential Equations

PRODUCER OR RATE PRODUCER OR MARKETING REP. INSURANCE COMPANY 2015 AUTO GROUP DEV. MARKETING REP. CONTACT INFORMATION GEICO/GEICO General Insurance

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Perfect Fluids: From Nano to Tera

Contrôle dynamique de méthodes d approximation

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n

9231 FURTHER MATHEMATICS

Classification of Probability of Default and Rating Philosophies. Persa Gobeljić

Math into L A TEX. An Introduction to L A TEX and AMS-L A TEX

Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x)

Transcription:

I 18 5 11 TEX 1 TEX TEX( ) Donald E. Knuth TEX TEX TEX L A TEX( ) L A TEX DEC Leslie Lamport TEX L A TEX 1993 L A TEX 2ε L A TEX L A TEX 2ε 2 TEX TEX test.tex \documentclass{jarticle} \begin{document} \LaTeXe \end{document} TEX platex test.tex TEX test.dvi test.dvi test.tex TEX xdvik test.dvi 1

TEX 3 TEX 7 1..tex 2. \documentclass{jarticle} \begin{document} 3. \end{document} 4. 5. # $ % & _ { } < > \ ^ ~ 6. 7. \documentclass{...} jarticle jbook jreport jarticle 4 TEX Word TEX $$a + b$ a+b $ $x^2$ x 2 $x_{ij}$ x ij 2 {} x j i \[ \] \[ y = x^2 \] y = x 2 2

\begin{equation} \end{equation} \begin{equation} y = ax^2 + bx + c \end{equation} y = ax 2 + bx + c (1) \begin{eqnarray} \end{eqnarray} & & \begin{eqnarray} y &=& ax^2 + bx + c \\ &=& a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a^2} \nonumber \end{eqnarray} y = ax 2 + bx + c (2) = a(x + b 2a )2 + c b2 4a \frac L A TEX \\\nonumber $\frac{}{}$ $\frac{1}{2}$ 1 2 \[ \frac{1}{1 + e^{-x}} \] 1 1 + e x \sum \[ \sum_{i=0}^{k} ar^i = \frac{a - ar^{k+1}}{1 - r}\] k i=0 \int \[ \int_{0}^{\infty} e^x dx \] ar i = a ark+1 1 r 0 e x dx 3

5 L A TEX L A TEX 5.1 \# # \copyright c \l l \, \$ $ \pounds \L L \, \% % Y\llap= Y= \ss ß * * \& & \oe œ? - - \_ \OE Œ! -- \{ { \ae æ \i ı --- \} } \AE Æ \j j \TeX TEX \S \aa å \LaTeX L A TEX \P \AA Å \LaTeXe L A TEX 2ε \dag \o ø \ddag \O Ø 5.2 \ {o} ò \~{o} õ \v{o} ǒ \d{o ọ \ {o} ó \={o} ō \H{o} ő \b{o ō \^{o} ô \.{o} ȯ \t{oo} oo \"{o} ö \u{o} ŏ \c{o} o 5.3 (x) (x) \{ x \} {x} \lceil x \rceil x [x] [x] \lfloor x \rfloor x \langle x \rangle x / / \uparrow \updownarrow \backslash \ \Uparrow \Updownarrow \downarrow \ \Downarrow 4

5.4 \alpha α \eta η \nu ν \tau τ \beta β \theta θ \xi ξ \upsilon υ \gamma γ \iota ι \o ø \phi φ \delta δ \kappa κ \pi π \chi χ \epsilon ɛ \lambda λ \rho ρ \psi ψ \zeta ζ \mu µ \sigma σ \omega ω \varepsilon ε \varpi ϖ \varsigma ς \vartheta ϑ \varrho ϱ \varphi ϕ \Gamma Γ \Lambda Λ \Sigma Σ \Psi Ψ \Delta \Xi Ξ \Upsilon Υ \Omega Ω \Theta Θ \Pi Π \Phi Φ 5.5 2 \pm ± \uplus \triangleright \mp \sqcap \oplus \times \sqcup \ominus \div \vee \otimes \ast \wedge \oslash \star \setminus \ \odot \circ \wr \bigcirc \bullet \diamond \dagger \cdot \bigtriangleup \ddagger \cap \bigtriangledown \amalg \cup \triangleleft 5

5.6 \leq \geq \prec \succ \preceq \succeq \ll \gg \subset \supset \sqsubseteq \sqsupseteq \vdash \dashv \in \ni \notin / \equiv \approx \propto \parallel \sim \cong = \models = \bowtie \simeq \neq \perp \smile. \asymp \doteq = \mid \frown $x \not\equiv y$ x y 5.7 \leftarrow \longleftarrow \Leftarrow \Longleftarrow = \rightarrow \longrightarrow \Rightarrow \Longrightarrow = \leftrightarrow \longleftrightarrow \Leftrightarrow \Longleftrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow \leftharpoonup \rightharpoonup \leftharpoondown \rightharpoondown \nearrow \swarrow \rightleftharpoons \searrow \nwarrow 6

5.8 \aleph ℵ \prime \neg \hbar h \emptyset \flat \imath ı \nabla \natural \jmath j \surd \sharp \ell l \top \clubsuit \wp \bot \diamondsuit \Re R \angle \heartsuit \Im I \triangle \spadesuit \partial \forall \infty \exists 5.9 \sum \bigcap \bigodot \prod \bigcup \bigotimes \coprod \bigsqcup \bigoplus \int \bigvee \gibuplus \oint \bigwedge 5.10 log mod \arccos arccos \dim dim \log log \arcsin arcsin \exp exp \max max \arctan arctan \gcd gcd \min min \arg arg \hom hom \Pr Pr \cos cos \inf inf \sec sec \cosh cosh \ker ker \sin sin \cot cot \lg lg \sinh sinh \coth coth \lim lim \sup sup \csc csc \liminf lim inf \tan tan \deg deg \limsp lim sup \tanh tanh \det det \ln ln $m \bmod n$ m mod n $a \equiv b \pmod{n}$ a b (mod n) 7

5.11 \hat{a} â \grave{a} à \dot{a} ȧ \check{a} ǎ \tilde{a} ã \ddot{a} ä \breve{a} ă \bar{a} ā \acute{a} á \vec{a} a {}}{ \overline{x+y} x + y \overbrace{x+y) x + y \underline{x+y} x + y \underbrace{x+y} x + y }{{} \widehat{xyz} xyz \overrightarrow{oa} OA \widetilde{xyz} xyz \overleftarrow{\mathrm{oa}} OA \overbrace{a + \cdots + z}^{26} \underbrace{a + \cdots + z}_{26} 26 {}}{ a + + z a + + z }{{} 26 \stackrel{f}{\to} f \stackrel{\mathrm{def}}{=} def = 6 6.1 TEX \begin{verbatim} \end{verbatim} Hello, World! C L A TEX \begin{verbatim} #include <stdio.h> int main(void){ printf("hello, World!\n"); return(0); } \end{verbatim} 8

6.2 YaTeX L A TEX L A TEX YaTeX YaTeX Emacs L A TEX YaTeX YaTeX TEX TEX platex xdvik platex C-c t jemacs L A TEX xdvik C-c t p Emacs xdvi pxdvik C-c b c C-c b d C-c b D C-c b e C-c b E C-c b i C-c b l C-c b m C-c b T C-c b T C-c b C-t C-c b p C-c b q C-c b Q C-c b r C-c b v C-c b V \begin{center}...\end{cneter} \begin{document}...\end{document} \begin{description}...\end{description} \begin{enumerate}...\end{enumerate} \begin{equation}...\end{equation} \begin{itemize}...\end{itemize} \begin{flushleft}...\end{flushleft} \begin{minipage}...\end{minipage} \begin{tabbing}...\end{tabbing} \begin{tabular}...\end{tabular} \begin{table}...\end{table} \begin{picture}...\end{picture} \begin{quote}...\end{quote} \begin{quotation}...\end{quotation} \begin{flushright}...\end{flushright} \begin{verbatim}...\end{verbatim} \begin{verse}...\end{verse} C-c s \section{} \section{}\begin{} \end{} 7 L A TEX L A TEX 2ε L A TEX Leslie Lamport L A TEX 2ε L A TEX 2ε 9

8 1. TEX (a) 1 x log xdx (b) a 1 = 1, a 2 = 2, a n+2 4a n+1 + 3a n = 0 2. L A TEX 2ε dvi ().dvi 10