AQUATIC VEGETATION SURVEYS USING HIGH-RESOLUTION IKONOS IMAGERY INTRODUCTION



Similar documents
Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery

Digital image processing

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003

Spectral Response for DigitalGlobe Earth Imaging Instruments

Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery

Review for Introduction to Remote Sensing: Science Concepts and Technology

MAPPING MINNEAPOLIS URBAN TREE CANOPY. Why is Tree Canopy Important? Project Background. Mapping Minneapolis Urban Tree Canopy.

The Idiots Guide to GIS and Remote Sensing

Resolutions of Remote Sensing

JACIE Science Applications of High Resolution Imagery at the USGS EROS Data Center

SAMPLE MIDTERM QUESTIONS

TAMARISK MAPPING & MONITORING USING HIGH RESOLUTION SATELLITE IMAGERY. Jason W. San Souci 1. John T. Doyle 2

Michigan Tech Research Institute Wetland Mitigation Site Suitability Tool

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch

Lake Monitoring in Wisconsin using Satellite Remote Sensing

INVESTIGATION OF EFFECTS OF SPATIAL RESOLUTION ON IMAGE CLASSIFICATION

How To Update A Vegetation And Land Cover Map For Florida

Texas Prairie Wetlands Project (TPWP) Performance Monitoring

COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change?

Understanding Raster Data

RESOLUTION MERGE OF 1: SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed

APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED

Conducting a Land Use Inventory

WHAT IS GIS - AN INRODUCTION

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

Selecting the appropriate band combination for an RGB image using Landsat imagery

Coastal Engineering Indices to Inform Regional Management

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

DYNAMICS OF EMERGENT MACROPHYTES OVERGROWTH IN LAKE ENGURES

Pixel-based and object-oriented change detection analysis using high-resolution imagery

Applying High-resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications

Image Analysis CHAPTER ANALYSIS PROCEDURES

Digital Classification and Mapping of Urban Tree Cover: City of Minneapolis

Generation of Cloud-free Imagery Using Landsat-8

Remote Sensing in Natural Resources Mapping

Remote sensing is the collection of data without directly measuring the object it relies on the

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery

Vegetation Resources Inventory

Urban Ecosystem Analysis Atlanta Metro Area Calculating the Value of Nature

Remote sensing and GIS applications in coastal zone monitoring

Landsat Monitoring our Earth s Condition for over 40 years

DETECTING LANDUSE/LANDCOVER CHANGES ALONG THE RING ROAD IN PESHAWAR CITY USING SATELLITE REMOTE SENSING AND GIS TECHNIQUES

Information Contents of High Resolution Satellite Images

Partitioning the Conterminous United States into Mapping Zones for Landsat TM Land Cover Mapping

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Environmental Remote Sensing GEOG 2021

UPPER COLUMBIA BASIN NETWORK VEGETATION CLASSIFICATION AND MAPPING PROGRAM

EVALUATION OF AIRBORNE LIDAR DIGITAL TERRAIN MAPPING FOR HIGHWAY CORRIDOR PLANNING AND DESIGN

Introduction to Imagery and Raster Data in ArcGIS

ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND

Pamela Birak, Jordan Lake State Park, Chatham County, NC

KEYWORDS: image classification, multispectral data, panchromatic data, data accuracy, remote sensing, archival data

Description of Simandou Archaeological Potential Model. 13A.1 Overview

IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES. Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T.

Natural Resource-Based Planning*

Urban Ecosystem Analysis San Antonio, TX Region

Comparison of Satellite Imagery and Conventional Aerial Photography in Evaluating a Large Forest Fire

Mapping Solar Energy Potential Through LiDAR Feature Extraction

EcoInformatics International Inc.

Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule

The Wildland-Urban Interface in the United States

.FOR. Forest inventory and monitoring quality

Review of the Availability and Accuracy. of Information about Forests: Phase I Report

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR Review the raster data model

Ring grave detection in high resolution satellite images of agricultural land

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models

Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features

TerraColor White Paper

Hydrographic Surveying using High Resolution Satellite Images

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA

ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln

Sustainability Brief: Water Quality and Watershed Integrity

The USGS Landsat Big Data Challenge

Land-Cover and Imperviousness Data for Regional Areas near Denver, Colorado; Dallas- Fort Worth, Texas; and Milwaukee-Green Bay, Wisconsin

Mapping Land Cover Patterns of Gunma Prefecture, Japan, by Using Remote Sensing ABSTRACT

Urban Ecosystem Analysis For the Houston Gulf Coast Region Calculating the Value of Nature

APPLICATION OF GEOSPATIAL TECHNOLOGIES FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT

Frequently Asked Questions: Wetlands Mapper

CIESIN Columbia University

A HIERARCHICAL APPROACH TO LAND USE AND LAND COVER MAPPING USING MULTIPLE IMAGE TYPES ABSTRACT INTRODUCTION

Wetland Mapping using High resolution Satellite Images in the Jaffna Peninsula

'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone

Wildlife Habitat Conservation and Management Program

Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data

Accuracy Assessment of Land Use Land Cover Classification using Google Earth

U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite

The use of Earth Observation technology to support the implementation of the Ramsar Convention

A KNOWLEDGE-BASED APPROACH FOR REDUCING CLOUD AND SHADOW ABSTRACT

Recognizing Wetlands. For additional information contact your local U.S. Army Corps of Engineers office. Pitcher plant.

Development of an Impervious-Surface Database for the Little Blackwater River Watershed, Dorchester County, Maryland

Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing

Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008

Land Cover Mapping of the Comoros Islands: Methods and Results. February ECDD, BCSF & Durrell Lead author: Katie Green

ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES

One Major Six Concentrations. Department of Environmental Conservation University of Massachusetts Amherst

Mapping coastal landscapes in Sri Lanka - Report -

OBJECT BASED IMAGE CLASSIFICATION AND WEB-MAPPING TECHNIQUES FOR FLOOD DAMAGE ASSESSMENT

GULF COASTAL URBAN FOREST HAZARD ASSESSMENT AND REMOTE SENSING EFFORTS AFTER HURRICANES KATRINA AND RITA 1

Transcription:

AQUATIC VEGETATION SURVEYS USING HIGH-RESOLUTION IKONOS IMAGERY Leif G. Olmanson, Marvin E. Bauer, and Patrick L. Brezonik Water Resources Center & Remote Sensing and Geospatial Analysis Laboratory University of Minnesota - St. Paul, Minnesota, USA 55108 olman002@umn.edu, mbauer@umn.edu, brezo001@umn.edu ABSTRACT Aquatic plant diversity and abundance is an important indication of lake and wetland health, but accurate maps and data are difficult to acquire. IKONOS imagery with four multispectral bands similar to Landsat TM bands 1-4 and high spatial resolution (4-m multispectral and 1-m panchromatic) is potentially well suited for aquatic plant surveys in lakes and wetlands. To explore the capabilities of IKONOS imagery for aquatic plant surveys, we acquired several IKONOS images for surface water bodies, including a September 1, 2001 image for Swan Lake in Nicollet County, Minnesota. Swan Lake is a large (over 3600 ha) type-4 wetland with an abundance of aquatic vegetation. Results based on analysis and classification of a pan-sharpened multispectral IKONOS image demonstrated the potential to identify and map different aquatic plant groups throughout the image. With further research we expect to identify more specific aquatic plant types. This study indicates that the use of IKONOS imagery for aquatic plant surveys is promising. We also are conducting analyses of imagery from several other areas with a variety of landscapes and aquatic vegetation. The high spatial resolution of the IKONOS imagery enables the assessment of aquatic vegetation variation within lakes and wetlands that cannot be obtained from Landsat data and the multispectral data enable classification beyond what is commonly done with aerial photography. INTRODUCTION Minnesota is known for its more than 10,000 lakes, but it also has more than 4 million hectares of wetlands. Although the recreational and aesthetic value of lakes is widely accepted, wetlands traditionally have been considered a nuisance and wastelands that need to be drained. Statewide, over half of Minnesota s original wetlands (around 4.5 million ha) have been drained for agricultural and urban development, and many of the remaining wetlands have been degraded. A frequent cause of wetland degradation is increased storm water discharge resulting from changes in hydrology, such as increases in impervious surface area, installation of storm water systems in urban and suburban areas, and increased tiling and ditching systems in agricultural areas. Changes in hydrology affect water quality and quantity and may severely impact the structure and function of wetlands. For example, unimpacted wetland plant communities usually are composed of a diverse group of native species, but impacted wetlands are dominated by a less diverse group of more opportunistic native and non-native plants such as cattail, purple loosestrife and reed canary grass. In recent decades, aquatic plants in lakes and wetlands have been recognized as important ecosystem features that should to be protected. These plants are important because they help protect water quality and provide habitat for fish and wildlife while also providing economic and aesthetic benefits. With this greater appreciation for aquatic plants in wetland and lake environments, aquatic plants surveys and assessments are becoming part of routine monitoring efforts conducted by consultants, citizen groups, and state and local agencies. Aquatic plant diversity and abundance is therefore an important indication of lake or wetland health, but accurate maps and data are difficult to acquire. Because of expense and time requirements for ground-based monitoring, it is impractical to map and monitor more than a small fraction of this large resource by conventional field methods. The use of high resolution satellite-based sensing has the potential to be a cost-effective way to gather the information needed for aquatic plant assessments in many of Minnesota s lakes and wetlands. Özesmi and Bauer (2002), in their review of the methods and results on satellite remote sensing of wetlands, found that accurately mapping wetlands is a very challenging task, but their paper was written before the launch of the high-resolution IKONOS system. The principal objective of the study reported here is to evaluate and demonstrate the capability of highresolution satellite imagery for use by natural resource agencies to classify aquatic plant groups and thus gain a better understanding of these complex ecosystems. We investigated the use of IKONOS imagery for aquatic plant

survey of Swan Lake in Nicollet County, Minnesota. Swan Lake is a large (over 3600 ha) type-4 wetland (i.e., a deep marsh with standing water and abundant aquatic vegetation). METHODS The methods used for this preliminary assessment were adapted from methods typically used for land cover classification (Lillesand et al., 1998) and methods developed for water quality assessments (Olmanson et al., 2001). The aquatic plant classification methods consist of two major procedures: separation of image features into discrete units and classification of the pixels in each unit. Procedures used for this project are preliminary and presented here as a first step to evaluate the potential of high-resolution imagery for aquatic plant surveys. We expect they will evolve as the methodology is refined with further research. Aquatic Vegetation Reference Data Because of the size of Swan Lake and the abundance of its aquatic plants, collection of reference data would be very difficult without the aid of modern technology. For this study we took advantage of Global Positioning System (GPS) technology and the advanced GPS tracking software available with ERDAS Imagine 8.5 software. Field reference data were collected using GPS tracking software on a Fujitsu pen-based field computer (Kerns, et. al, 2001). Different types of aquatic vegetation were identified in the field and located directly on the IKONOS image using the field computer. Being able to accurately identify location on the image while in the field was especially useful on this large wetland. Having the image available quickly after its acquisition for use in reference data collection also was a big advantage in field sampling because areas with unique spectral-radiometric responses could be identified on the image and targeted for field identification. For this preliminary assessment, emergent vegetation was targeted, but the abundance of thick submerged vegetation appearing at the surface also was noted. Satellite Image Data The IKONOS image of Swan Lake in Nicollet County, Minnesota was acquired on September 1, 2001. The image is of high quality with only minor cloud cover on the southern portion. The 4-m multispectral bands were pan-sharpened using the 1-m panchromatic band data. Fig. 1 displays the false color composite of raw data over the study area and shows distinct differences throughout Swan Lake that are caused largely by variations in aquatic vegetation. Classification Procedures The first step was to separate wetland features from terrestrial features. This was accomplished by digitizing the aquatic terrestrial boundary around the entire wetland and all islands. This boundary was identified using spectralradiometric differences visible on the image. With the wetland polygon the image was subset to mask out all terrestrial features and create a wetland image. Because Swan Lake is only two meters deep and has clear water and an abundance of aquatic vegetation, we assumed that aquatic vegetation was present throughout the wetland. Therefore, the next step was to stratify the wetland into emergent and submergent vegetation features. This was accomplished by performing an unsupervised classification. Emergent vegetation features had very different spectral characteristics than submerged vegetation features. Submerged vegetation features were masked out to create an emergent vegetation image and emergent vegetation features were masked to create a submerged vegetation map. A second unsupervised classification was performed on the emergent vegetation image specifying 100 classes. The submergent image was clustered into 10 classes to identify different variations of submergent aquatic vegetation. The next step, using the reference data, was to identify what the different classes were. For the emergent vegetation image this was performed by color-coding identified plant groups, e.g., all identified cattail classes were color-coded red. This created a map of the entire wetland identifying the locations of all cattail. This procedure was repeated for all plant types and an emergent vegetation map was created. Because of the difficulty in separating some plant types, for this preliminary study, plant groups were used to improve accuracy at the expense of categorical detail in the final map.

Figure 1. September 1, 2001 IKONOS Satellite image of Swan Lake in Nicollet County, Minnesota, USA. For the submerged vegetation map, classes of different aquatic plant densities were identified using a graph of the spectral-radiometric signatures of the different classes and the reference data. Fig. 2 shows the signatures of the different submerged aquatic plant groups. Assuming that water clarity is similar throughout the wetland and that aquatic plants are located throughout the wetland, we attributed the differences in spectral response to differences in submerged aquatic plant depth and densities. Classes with higher radiometric response were identified as areas where the submerged vegetation was very dense and topped at the surface. Areas with lower radiometric response were identified as areas where submerged vegetation was less dense or deeper. Recoding the map into four submerged plant density classes created the submerged vegetation map. The final aquatic plant classification map was created by overlaying the submerged aquatic plant map and the emergent aquatic plant map over the multispectral image Fig. 3.

DN 70 60 50 40 30 20 10 0 Band 1 Band 2 Band 3 Band 4 Figure 2. Swan Lake Submergent Vegetation Signatures Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Emergent Aquatic Vegetation Cattail, Sedge or bulrush Mud Flat with dead sedge or cattail Water-Lily, Floating-Leaved Pondweed or Arrowhead Submerged Aquatic Vegetation Vegetation at surface (Thick) Vegetation at surface Vegetation below surface Vegetation below surface (Thinner or deeper) Figure 3. Aquatic Vegetation Classification of Swan Lake in Nicollet County, Minnesota, USA.

RESULTS AND DISCUSSION Stratification and unsupervised classification of a pan-sharpened multispectral IKONOS image was able to provide a map identifying different aquatic vegetation groups throughout a large type-4 wetland. We also are conducting analyses of imagery from several other areas throughout Minnesota with a variety of landscapes and aquatic vegetation. With further research, additional field reference data, and processing we expect to identify more specific aquatic plant types. Future plans also include application of appropriate accuracy assessments techniques. This preliminary study has indicated that the use of IKONOS imagery for aquatic plant surveys is promising. The high spatial resolution of the IKONOS imagery enables the assessment of aquatic vegetation variation at a reasonably fine scale (1 meter) within lakes and wetlands that cannot be obtained from Landsat data and the multispectral data enable classification beyond what is commonly done with aerial photography. ACKNOWLEDGEMENTS The support of the Minnesota Department of Natural Resources, the NASA Upper Great Lakes Regional Earth Science Applications Center and the University of Minnesota Water Resources Center and Agricultural Experiment Station is gratefully acknowledged. REFERENCES Kerns, R.R., T.E. Burk, and M.E. Bauer, 2001. Taking GIS/remote sensing into the field. Proceedings, 2001 Precision Forestry Symposium. Seattle, Washington, June 18. 24 pp. Lillesand, T., J. Chipman,, D. Nagel, H. Reese, M. Bobo, and R. Goldman, (1998). Upper Midwest gap analysis program image processing protocol. Report prepared for the U.S. Geological Survey, Environmental Management Technical Center, Onalaska, Wisconsin, EMTC 98-G001. 25 pp. + Appendixes A-C Olmanson, L.G., S.M. Kloiber, M.E. Bauer, P.L. Brezonik, (2001). Image processing protocol for regional assessment of lake water quality. Water Resources Center Tech. Rept. # 14, University of Minnesota, St. Paul, Minnesota. 19 pp. Özesmi, S. L. and M.E. Bauer, 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management (in press).