U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center
|
|
|
- Teresa Jocelin Randall
- 10 years ago
- Views:
Transcription
1 U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center World Data Center for Remotely Sensed Land Data
2 USGS EROS DATA CENTER Land Remote Sensing from Space: Acquisition to Applications Earth Observation Satellites USGS National Archive Challenge Data Applications Declassified Systems Preserve Landsat 1-5,7 Provide Access NOAA - POES Process Shuttle Radar Reproduce TERRA (1999) Distribute NASA-EOS (1999) Hold in Trust High Resolution Systems Expanding to over 18 million images of the earth! Land Cover Environmental Monitoring Emergency Response Fire Danger Rating DOI Land Management Natural Hazards Coastal Zones
3 USGS EDC Data Holdings ¾ Aerial Photographs ¾ 1940-present ¾ U.S. coverage ¾ > 9 million frames ¾ Scale: 1-2 meter Natl. Aerial Photography Program (NAPP), Dallas/Fort Worth Airport
4 USGS EDC Data Holdings ¾ Landsat Satellite Images ¾ 1972-present ¾ > 18 million frames ¾ Global coverage ¾ meter Landsat 5 MSS
5 USGS EDC Data Holdings ¾ AVHRR Satellite Images ¾ 1987-present ¾ Global coverage ¾ 1 km resolution AVHRR Time Series
6 Using Landsat satellite imagery to estimate agricultural chemical exposure in an epidemiological study Susan Maxwell, PhD (USGS EROS Data Center) Interface 2002, Montreal, Canada Collaborators: Dr. Jay Nuckols, EHASL, Colorado State University Dr. Mary Ward, National Cancer Institute Eric Smith, EHASL, Colorado State University Leanne Small, EHASL, Colorado State University Fort Collins, Colorado - Landsat 7 - July 26, 1999
7 Why use satellite imagery? ¾ Traditional methods of collecting chemical exposure data don t work well (environmental/biological sampling, questionnaires) Spray drift Dust Agriculture Chemicals ¾Fertilizers ¾Pesticides Drinking water
8 Why use satellite imagery? ¾ Cancers generally take several years to develop, therefore need to reconstruct historical exposure ¾ Our approach: use Landsat imagery to create historical land use/crop type maps integrate with other data (chemical use, soils, wind, etc.) to estimate exposure
9 Metric Development Transport Modeling # Residence with 500 Meter Buffer U.S. Census Bureau Place Areas Cultivated with Sorghum # # No Data N 0 1 Mile (Ward et al. Environmental Health Perspectives, 2000)
10 Why Landsat? ¾ Longest running satellite sensor (1972-current) ¾ Successful crop type mapping applications (AGRISTARS, etc.) ¾ Appropriate spectral bands (visible, near infrared, middle infrared) ¾ Appropriate spatial resolution (30-80 meter) ¾ Inexpensive (compared to higher resolution data sets)
11 Crop Type Classification - Sheldon, NE
12 Case Study Mapping Corn ¾ Chemicals used on corn (nitrogen, atrazine) have been associated with several cancers and birth defects Ground-water contamination risk From: USGS 1225, The quality of our nation s waters
13 Traditional classification methods are not appropriate ¾ Only want CORN ¾ BIG Data Sets Large geographical regions File size ~500 Mb/image Multi-year 30 years
14 Traditional classification methods are not appropriate (cont.) ¾ Usually need ground reference data expensive, difficult to get for historical data ¾ Time-consuming process
15 Crop characteristics ¾ Corn dominates corn soybeans sorghum dry beans sugarbeets corn soybeans sorghum dry beans sugarbeets Hectares (m illion) Landsat Path Number Proportion (% ) Landsat Path Number
16 Crop characteristics ¾ Large, homogeneous fields ¾ Spectral characteristics differ from other major crops (soybeans, alfalfa, winter wheat, etc.) ¾ Spectrally similar to deciduous trees, riparian area
17 Case Study Mapping Corn ¾ Initial method software was developed to. ¾ Use existing land cover maps (NLCD) to eliminate non-row crop classes (spring grains, hay/pasture, trees, urban, wetland, etc.) ¾ Use existing USDA acreage estimates to target specific geographic region (i.e., county) to collect training statistics ¾ Use maximum likelihood algorithm to classify the entire image ¾ Use the Mahalanobis distance image in combination with USDA acreage estimates to identify cut-off for highly likely corn, likely corn and unlikely corn
18 Method cont. ¾ Use existing land cover maps (NLCD) to eliminate non-row crop classes (spring grains, hay/pasture, trees, urban, wetland, etc.)
19 Method cont. ¾ Use USDA acreage estimates to target specific geographic region (i.e., county) to collect training signature 80 Hall 1000's of Hect Corn Sorghum Soybeans All Hay Winter Wheat
20 Method cont. ¾ Use the Mahalanobis distance image in combination with USDA acreage estimates to identify cut-off for highly likely corn, likely corn and unlikely corn Mahalanobis distance image Highly Likely Corn Likely Corn
21 Mahalanobis Distance Threshold Mahalanobis Distance Value Land Area (Hectares) Cumulative Total (Hectares) Cumulative Total (% of NASS) Classification Code
22 Results ¾ >80% average accuracy ¾ Higher errors occur when Spectrally similar cover types in same area (millet, sorghum) Image date is too early in growing season Non-parametric signature (clouds/haze, irrigated/nonirrigated corn)
23 Thank You Susan Maxwell
Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed
Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Kansas Biological Survey Kansas Applied Remote Sensing Program April 2008 Previous Kansas LULC Projects Kansas LULC Map
Monitoring Overview with a Focus on Land Use Sustainability Metrics
Monitoring Overview with a Focus on Land Use Sustainability Metrics Canadian Roundtable for Sustainable Crops. Nov 26, 2014 Agriclimate, Geomatics, and Earth Observation Division (ACGEO). Presentation
APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED
APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED S. J. GOETZ Woods Hole Research Center Woods Hole, Massachusetts 054-096 USA
Review for Introduction to Remote Sensing: Science Concepts and Technology
Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director [email protected] Funded by National Science Foundation Advanced Technological Education program [DUE
Spatial Distribution of Precision Farming Technologies in Tennessee. Burton C. English Roland K. Roberts David E. Sleigh
Spatial Distribution of Precision Farming Technologies in Tennessee Burton C. English Roland K. Roberts David E. Sleigh Research Report 00-08 February 2000 Department of Agricultural Economics and Rural
ArcGIS Agricultural Land Use Maps from the Mississippi Cropland Data Layer
ArcGIS Agricultural Land Use Maps from the Mississippi Cropland Data Layer Fred L. Shore, Ph.D. Mississippi Department of Agriculture and Commerce Jackson, MS, USA [email protected] Rick Mueller
VISUALIZATION OF A CROP SEASON THE INTEGRATION OF REMOTELY SENSED DATA AND SURVEY DATA
VISUALIZATION OF A CROP SEASON THE INTEGRATION OF REMOTELY SENSED DATA AND SURVEY DATA Gail Wade GIS Analyst, Spatial Analysis Research Section George Hanuschak Chief, Geospatial Information Branch Research
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University
Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch
Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Introduction In this time of large-scale planning and land management on public lands, managers are increasingly
Remote sensing is the collection of data without directly measuring the object it relies on the
Chapter 8 Remote Sensing Chapter Overview Remote sensing is the collection of data without directly measuring the object it relies on the reflectance of natural or emitted electromagnetic radiation (EMR).
OBJECT BASED IMAGE CLASSIFICATION AND WEB-MAPPING TECHNIQUES FOR FLOOD DAMAGE ASSESSMENT
OBJECT BASED IMAGE CLASSIFICATION AND WEB-MAPPING TECHNIQUES FOR FLOOD DAMAGE ASSESSMENT Ejaz Hussain, KyoHyouk Kim, Jie Shan {ehussain, kim458, jshan}@ecn.purdue.edu Geomatics Engineering, School of Civil
Using Remote Sensing to Monitor Soil Carbon Sequestration
Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview
COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change?
Coastal Change Analysis Lesson Plan COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change? NOS Topic Coastal Monitoring and Observations Theme Coastal Change Analysis Links to Overview Essays
Remote Sensing Applications for Precision Agriculture
Remote Sensing Applications for Precision Agriculture Farm Progress Show Chris J. Johannsen, Paul G. Carter and Larry L. Biehl Department of Agronomy and Laboratory for Applications of Remote Sensing (LARS)
Site-specific management at Bowles Farming Company. UC Davis Precision Ag Workshop 7/14/2010 Cannon Michael Bowles Farming Company, Inc.
Site-specific management at Bowles Farming Company UC Davis Precision Ag Workshop 7/14/2010 Cannon Michael Bowles Farming Company, Inc. Bowles Farming Company, Inc. Family owned and operated 150+ years
AERIAL PHOTOGRAPHS. For a map of this information, in paper or digital format, contact the Tompkins County Planning Department.
AERIAL PHOTOGRAPHS What are Aerial Photographs? Aerial photographs are images of the land taken from an airplane and printed on 9 x9 photographic paper. Why are Aerial Photographs Important? Aerial photographs
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY M. Erdogan, H.H. Maras, A. Yilmaz, Ö.T. Özerbil General Command of Mapping 06100 Dikimevi, Ankara, TURKEY - (mustafa.erdogan;
The USGS Landsat Big Data Challenge
The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS [email protected] U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation
FLOOD DAMAGE LOSSES TO AGRICULTURAL CROPS IN COLORADO. Norman L. Dalsted, John Deering, Rebecca Hill, and Martha Sullins 1
FLOOD DAMAGE LOSSES TO AGRICULTURAL CROPS IN COLORADO by Norman L. Dalsted, John Deering, Rebecca Hill, and Martha Sullins 1 The period from September 9 16, 2013 saw unprecedented rainfall in many parts
A remote sensing instrument collects information about an object or phenomenon within the
Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information
APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***
APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** *National Institute for Agro-Environmental Sciences 3-1-3 Kannondai Tsukuba
APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA
APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA Abineh Tilahun Department of Geography and environmental studies, Adigrat University,
SAMPLE MIDTERM QUESTIONS
Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7
High Resolution Information from Seven Years of ASTER Data
High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra
RESULTS. that remain following use of the 3x3 and 5x5 homogeneity filters is also reported.
RESULTS Land Cover and Accuracy for Each Landsat Scene All 14 scenes were successfully classified. The following section displays the results of the land cover classification, the homogenous filtering,
Resolutions of Remote Sensing
Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how
Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette.
Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette. Science & Technology Branch. Agriculture and Agri-Food Canada. 1. Introduction Space-Based Crop Mapping at
Field Techniques Manual: GIS, GPS and Remote Sensing
Field Techniques Manual: GIS, GPS and Remote Sensing Section A: Introduction Chapter 1: GIS, GPS, Remote Sensing and Fieldwork 1 GIS, GPS, Remote Sensing and Fieldwork The widespread use of computers
Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES
CHAPTER 16 Image Analysis 16.1 ANALYSIS PROCEDURES Studies for various disciplines require different technical approaches, but there is a generalized pattern for geology, soils, range, wetlands, archeology,
GEOGRAPHICAL INFORMATION SYSTEM (GIS) AS A TOOL FOR CERTIFICATION OF BIOFUELS IN ARGENTINA
GEOGRAPHICAL INFORMATION SYSTEM (GIS) AS A TOOL FOR CERTIFICATION OF BIOFUELS IN ARGENTINA International Workshop CHALLENGES AND SOCIAL AND ENVIRONMENTAL IMPACTS OF THE BIOFUEL PRODUCTION IN AMERICA. Buenos
Partitioning the Conterminous United States into Mapping Zones for Landsat TM Land Cover Mapping
Partitioning the Conterminous United States into Mapping Zones for Landsat TM Land Cover Mapping Collin Homer Raytheon, EROS Data Center, Sioux Falls, South Dakota 605-594-2714 [email protected] Alisa Gallant
A Fresh Approach to Agricultural Statistics: Data Mining and Remote Sensing
A Fresh Approach to Agricultural Statistics: Data Mining and Remote Sensing Abstract Darcy Miller, Jaki McCarthy, Audra Zakzeski National Agricultural Statistics Service 3251 Old Lee Highway, Fairfax,
The Use of Geographic Information Systems in Risk Assessment
The Use of Geographic Information Systems in Risk Assessment With Specific Focus on the RiVAMP Methodology Presented by Nadine Brown August 27, 2012 Climate Studies Group Mona Climate Change Workshop Presentation
Tennessee Agricultural Production and Rural Infrastructure
Tennessee Trends in Agricultural Production and Infrastructure Highlights - In many states the percentage of the state population designated by the U.S. Census Bureau as living in rural areas has declined,
Landsat Monitoring our Earth s Condition for over 40 years
Landsat Monitoring our Earth s Condition for over 40 years Thomas Cecere Land Remote Sensing Program USGS ISPRS:Earth Observing Data and Tools for Health Studies Arlington, VA August 28, 2013 U.S. Department
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models
River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models Steven M. de Jong & Raymond Sluiter Utrecht University Corné van der Sande Netherlands Earth Observation
MAPPING MINNEAPOLIS URBAN TREE CANOPY. Why is Tree Canopy Important? Project Background. Mapping Minneapolis Urban Tree Canopy.
MAPPING MINNEAPOLIS URBAN TREE CANOPY Why is Tree Canopy Important? Trees are an important component of urban environments. In addition to their aesthetic value, trees have significant economic and environmental
A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared.
A Geographic Information System (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. GIS allows us to view,
SatelliteRemoteSensing for Precision Agriculture
SatelliteRemoteSensing for Precision Agriculture Managing Director WasatSp. z o.o. Copernicus the road to economic development Warsaw, 26-27 February 2015 Activitiesof WasatSp. z o.o. The company provides
INVESTIGA I+D+i 2013/2014
INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better
TerraColor White Paper
TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)
How To Plan A Buffer Zone
Backyard Buffers Protecting Habitat and Water Quality What is a buffer? A buffer (also called a riparian buffer area or zone) is the strip of natural vegetation along the bank of a stream, lake or other
The use of Earth Observation technology to support the implementation of the Ramsar Convention
Wetlands: water, life, and culture 8th Meeting of the Conference of the Contracting Parties to the Convention on Wetlands (Ramsar, Iran, 1971) Valencia, Spain, 18-26 November 2002 COP8 DOC. 35 Information
Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery
Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in the visible to near-infrared
The Supplementary Insurance Coverage Option: A New Risk Management Tool for Wyoming Producers
The Supplementary Insurance Coverage Option: A New Risk Management Tool for Wyoming Producers Agricultural Marketing Policy Center Linfield Hall P.O. Box 172920 Montana State University Bozeman, MT 59717-2920
ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES
ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES Joon Mook Kang, Professor Joon Kyu Park, Ph.D Min Gyu Kim, Ph.D._Candidate Dept of Civil Engineering, Chungnam National University 220
Some elements of photo. interpretation
Some elements of photo Shape Size Pattern Color (tone, hue) Texture Shadows Site Association interpretation Olson, C. E., Jr. 1960. Elements of photographic interpretation common to several sensors. Photogrammetric
TAMARISK MAPPING & MONITORING USING HIGH RESOLUTION SATELLITE IMAGERY. Jason W. San Souci 1. John T. Doyle 2
TAMARISK MAPPING & MONITORING USING HIGH RESOLUTION SATELLITE IMAGERY Jason W. San Souci 1 John T. Doyle 2 ABSTRACT QuickBird high resolution multispectral satellite imagery (60 cm GSD, 4 spectral bands)
Global environmental information Examples of EIS Data sets and applications
METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets
Source Water Assessment Report
Source Water Assessment Report Public Water Supply: TROY, CITY OF Assessment Areas Include: 516, 517 Kansas Department of Health and Environment Bureau of Water Watershed Management Section 1000 SW Jackson
Remote sensing and GIS applications in coastal zone monitoring
Remote sensing and GIS applications in coastal zone monitoring T. Alexandridis, C. Topaloglou, S. Monachou, G.Tsakoumis, A. Dimitrakos, D. Stavridou Lab of Remote Sensing and GIS School of Agriculture
SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS
SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS KEY CONCEPTS: In this session we will look at: Geographic information systems and Map projections. Content that needs to be covered for examination
Comparison of Satellite Imagery and Conventional Aerial Photography in Evaluating a Large Forest Fire
Purdue University Purdue e-pubs LARS Symposia Laboratory for Applications of Remote Sensing --98 Comparison of Satellite Imagery and Conventional Aerial Photography in Evaluating a Large Forest Fire G.
GROUNDWATER QUALITY MANAGEMENT CONTROLS
GROUNDWATER QUALITY MANAGEMENT CONTROLS The following controls shall be utilized in the appropriate phase areas in order to manage those activities having an effect on groundwater quality. 1. PHASE I AREAS:
Spectral Response for DigitalGlobe Earth Imaging Instruments
Spectral Response for DigitalGlobe Earth Imaging Instruments IKONOS The IKONOS satellite carries a high resolution panchromatic band covering most of the silicon response and four lower resolution spectral
Agricultural Production and Research in Heilongjiang Province, China. Jiang Enchen. Professor, Department of Agricultural Engineering, Northeast
1 Agricultural Production and Research in Heilongjiang Province, China Jiang Enchen Professor, Department of Agricultural Engineering, Northeast Agricultural University, Harbin, China. Post code: 150030
Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California
Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
Precision Farming Technology Systems and Federal Crop Insurance
Risk Management Agency Precision Farming Technology Systems and Federal Crop Insurance This presentation highlights specific features of Risk Management Agency programs, policy and procedure and is not
Understanding Raster Data
Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed
Joint Polar Satellite System (JPSS)
Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration
Urban Ecosystem Analysis Atlanta Metro Area Calculating the Value of Nature
August 2001 Urban Ecosystem Analysis Atlanta Metro Area Calculating the Value of Nature Report Contents 2 Project Overview and Major Findings 3 Regional Analysis 4 Local Analysis 6 Using Regional Data
Beasley Lake Watershed National Sedimentation Laboratory Water Quality & Ecology Research Unit USDA ARS Oxford, Mississippi
Beasley Lake Watershed National Sedimentation Laboratory Water Quality & Ecology Research Unit USDA ARS Oxford, Mississippi M. A. Locke, S. S. Knight, C. M. Cooper, S. Smith, Jr., M. T. Moore, F. D. Shields,
Digital Agriculture: Leveraging Technology and Information into Profitable Decisions
Digital Agriculture: Leveraging Technology and Information into Profitable Decisions Dr. Matt Darr, Ag & Biosystems Engineering Advancing Agricultural Performance and Environmental Stewardship Some material
2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003
2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT Final Report by Michael Lackner, B.A. Geography, 2003 February 2004 - page 1 of 17 - TABLE OF CONTENTS Abstract 3 Introduction 4 Study
Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery
Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery Joseph P. Spruce Science Systems and Applications, Inc. John C., MS 39529 Rodney McKellip NASA Project Integration
The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories
The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories Dr. Farrag Ali FARRAG Assistant Prof. at Civil Engineering Dept. Faculty of Engineering Assiut University Assiut, Egypt.
UPPER COLUMBIA BASIN NETWORK VEGETATION CLASSIFICATION AND MAPPING PROGRAM
UPPER COLUMBIA BASIN NETWORK VEGETATION CLASSIFICATION AND MAPPING PROGRAM The Upper Columbia Basin Network (UCBN) includes nine parks with significant natural resources in the states of Idaho, Montana,
Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data
1:50,000 Basemap Generation From Satellite Imagery Lisbeth Heuse, Product Engineer, Image Applications Dave Hawkins, Product Manager, Image Applications MacDonald Dettwiler, 3751 Shell Road, Richmond B.C.
Flood Zone Investigation by using Satellite and Aerial Imagery
Flood Zone Investigation by using Satellite and Aerial Imagery Younes Daneshbod Islamic Azad University-Arsanjan branch Daneshgah Boulevard, Islamid Azad University, Arsnjan, Iran Email: [email protected]
Rain on Planting Protection. Help Guide
Rain on Planting Protection Help Guide overview Rain on Planting Protection allows growers to protect themselves from losses if rain prevents planting from being completed on schedule. Coverage is highly
Earth Data Science in The Era of Big Data and Compute
Earth Data Science in The Era of Big Data and Compute E. Lynn Usery U.S. Geological Survey [email protected] http://cegis.usgs.gov U.S. Department of the Interior U.S. Geological Survey Board on Earth Sciences
ABSTRACT INTRODUCTION PURPOSE
EVALUATION OF TSUNAMI DISASTER BY THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE IN JAPAN BY USING TIME SERIES SATELLITE IMAGES WITH MULTI RESOLUTION Hideki Hashiba Associate Professor Department
MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA
MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA Li-Yu Chang and Chi-Farn Chen Center for Space and Remote Sensing Research, National Central University, No. 300, Zhongda Rd., Zhongli
Geospatial intelligence and data fusion techniques for sustainable development problems
Geospatial intelligence and data fusion techniques for sustainable development problems Nataliia Kussul 1,2, Andrii Shelestov 1,2,4, Ruslan Basarab 1,4, Sergii Skakun 1, Olga Kussul 2 and Mykola Lavreniuk
EcoInformatics International Inc.
1 von 10 03.08.2010 14:25 EcoInformatics International Inc. Home Services - solutions Projects Concepts Tools Links Contact EXPLORING BEAVER HABITAT AND DISTRIBUTION WITH GOOGLE EARTH: THE LONGEST BEAVER
How Crop Insurance Works. The Basics
How Crop Insurance Works The Basics Behind the Policy Federal Crop Insurance Corporation Board of Directors Approve Policies Policy changes General direction of program Risk Management Agency Administers
.FOR. Forest inventory and monitoring quality
.FOR Forest inventory and monitoring quality FOR : the asset to manage your forest patrimony 2 1..FOR Presentation.FOR is an association of Belgian companies, created in 2010 and supported by a university
Generation of Cloud-free Imagery Using Landsat-8
Generation of Cloud-free Imagery Using Landsat-8 Byeonghee Kim 1, Youkyung Han 2, Yonghyun Kim 3, Yongil Kim 4 Department of Civil and Environmental Engineering, Seoul National University (SNU), Seoul,
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,
Index. Aridosols, 94, 95, 97, 98, 99
Index Accessory information, satellite imagery, 68-69, 73-78 Aerial photography, Aero-neg film, 133 black and white film, 132-33 black and white infra-red film, 132-133 colour film, 133 colour infra-red
A Web Service based U.S. Cropland Visualization, Dissemination and Querying System
A Web Service based U.S. Cropland Visualization, Dissemination and Querying System Rick Mueller, Zhengwei Yang, and Dave Johnson USDA/National Agricultural Statistics Service Weiguo Han and Liping Di GMU/Center
Mapping Forest-Fire Damage with Envisat
Mapping Forest-Fire Damage with Envisat Mapping Forest-Fire Damage Federico González-Alonso, S. Merino-de-Miguel, S. García-Gigorro, A. Roldán-Zamarrón & J.M. Cuevas Remote Sensing Laboratory, INIA, Ministry
Remote Sensing in Natural Resources Mapping
Remote Sensing in Natural Resources Mapping NRS 516, Spring 2016 Overview of Remote Sensing in Natural Resources Mapping What is remote sensing? Why remote sensing? Examples of remote sensing in natural
Information Contents of High Resolution Satellite Images
Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,
