Rail Flash-Butt Welding Technology



Similar documents
Development of Power Supply System with Hybrid Turbocharger for Marine Application

SMARTY 160 POWER page 4-5 SMARTY 180 / 220 XL page 4-6 SMARTY TX 250 page 4-7. SMARTY TX 160 Alu page 4-8 SMARTY TX 220 Alu page 4-9

A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars

TIG INVERTER INSTRUCTION MANUAL

Current Measurement of Resistance Spot Welding Using DSP

Product Specification

Estimation of electrical losses in Network Rail Electrification Systems

Wear-resistant steels. Technical terms of delivery for heavy plates. voestalpine Grobblech GmbH

Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"

Maintenance and Management of JR East Civil Engineering Structures

TANK FABRICATION. Automated Solutions for Your Tank Fabrication Project. Bug-o Systems

Development of Chemical Recycling Process for Post- Consumer PET Bottles by Methanolysis in Supercritical Methanol

Veraview IC5 HD High definition, digital imaging excellence. Thinking ahead. Focused on life.

Energy efficiency and fuel consumption of fuel cells powered test railway vehicle

Flash Butt Welding Machines

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

With the background of fulfilling public commitments for ECONO-PILOT ENERGY-SAVING SYSTEM FOR WATER PUMPS

Lenze drives reduce running costs for corrugated board production.

BRUSHLESS MOTOR. GP series. MINAS-BL KV series (Will be released soon) Panasonic Corporation, Appliances Company, Motor Business Unit

Tokyo Steel s Views to Global Warming revised on June 25, 2010 with the latest data

Japan s Largest Photovoltaic Power Plant

Development of Low-cost Filling System Indispensable to Beverage Industry

Wear-resistant steel grades. Hot-rolled steel strip and heavy plate. voestalpine Steel Division

Steel Industry Systems with Integrated Mechanical and Electrical Control for High-quality Production and Energy Efficiency

About Sintered Products. Products for: - Resistance Welding Electrodes - Electrical Contact Materials. Product Definition & Uses.

Power Electronics Technologies for Railway Traction Systems

The TransCut 300 plasma cutting system - Plasmacutting with liquid working medium

The India Thermit Corporation

DIETRISOL SOLAR WATER HEATING SYSTEMS ENERGY SAVINGS AND ECOLOGICAL BENEFITS SUSTAINED COMFORT SIMPLICITY AND RELIABILITY INNOVATIVE, MODULAR SYSTEMS

MITSUBISHI ELECTRIC ANNOUNCES PHOTOVOLTAIC INVERTER FOR EUROPEAN MARKET

Laundry Hot Water Systems

EML 2322L MAE Design and Manufacturing Laboratory. Welding

Butt Fusion Welding of HDPE Pipes Work Procedure

October 14 th, 2010 Global Business Dialogue on e Society Shinsuke Ito Infrastructure and Advanced Systems Promotion Office Manufacturing Industries

Present Status and Future Outlook for Smart Communities

Shinkansen Investment before and after JNR Reform. Institute of Transportation Economics in Japan Fumio KUROSAKI, Ph.D.

WELDING & CUTTING MAIN EQUIPMENT

General Trading Companies

HSR THE TRAIN OF THE FUTURE New technologies and research trends

TECHNICAL SPECIFICATION FOR PROJECTION WELDING MACHINE (Qty. 2 Nos.)

contents Leading the way in intelligent automation INELS Wireless? Why Click Accessories Complete control

Hybrid shunter locomotive

High Efficient Casting Machine for Biaxially Oriented Film Manufacturing Plant

Chapter 5 - Aircraft Welding

SERVICE INSTRUCTION R410A. WALL MOUNTEDtype INVERTER SPLIT TYPE ROOM AIR CONDITIONER. Models Indoor unit Outdoor unit

Cross-beam scanning system to detect slim objects. 100 mm in

Manufacturing process

WORD DEFINITION WORD (NATIONAL LANGUAGE)

Operating Performance and Latest Technology of DeNOx Plants for Coal-Fired Boilers

2. Research and Development on the Autonomic Operation. Control Infrastructure Technologies in the Cloud Computing Environment

Opening of Tohoku Shinkansen Extension to Shin Aomori and Development of New Faster Carriages Overview of Series E5/E6 Shinichiro Tajima

AN INTRODUCTION TO TIG WELDING. wws group

Implementing a Long Term Asset Management Strategy with the PI System

FTQ. Daikin Inverter Ducted Heat Pump

TBi Industries RoboMIG TBi Robot welding torches 1 YEAR ON TCP. Air and water cooled. Also for robots with integrated cable assemblies

Application of Welding Standards in Hong Kong. S. K. Babu Laboratory Manager - Foundation Techniques Ltd

POLIMAT C series palletizers

FRENIC5000MS5 for Machine Tool Spindle Drives

Technological Initiatives for Water-resistant and Thin Smartphones

Railway Business Strategy and R&D in Europe

IoRW Meeting in Derby 11 th of May Schlatter Industries AG Rail Flash Butt Welding Machines. Speaker: Jürg Wahrenberger

Train scheduling of Shinkansen and relationship to reliable train operation

Zakład Metalowy ALEM. Kołobrzeska 19, Trzebiatów, Poland

EE 1452 ELECTRIC ENERGY GENERATION, UTILIZATION & CONSERVATION KINGS COLLEGE OF ENGINEERING

Boom and fly capacities for this machine are listed by the following sections:

Australian/New Zealand Standard

Brake module AX5021. Documentation. Please read this document carefully before installing and commissioning the brake module!

Development of Combined Automatic Blade Control for Snow-Removing Grader

POROUS BURNER - A New Approach to Infrared

Square Wave TIG 200 TIG WELDING MACHINE

MICRO WELDER INSTRUCTION MANUAL

SP 4K/5K Efecto & SP 5K Brilliant Parallel Installation Guide 1. Introduction

4KVA/5KVA Parallel Installation Guide

Offer No: 156/2010. Date: December 17, Dear gentlemen,

Heat-Pipe Heat Exchanger

RT-CAD Tiefenböck GmbH, Uttendorf, Austria Technologically sophisticated plastic parts all the way from the idea to series production from RT-CAD

525-MVA Generator-motor and Thyristor Starter Put into Service at the Tokyo Electric Power Co., Inc. s Kannagawa Hydroelectric Power Station

April 12, To: Verified by Visa Merchants Verified by Visa Acquirers Verified by Visa Merchant Service Providers

Rating Methodology by Sector. Electric Power

Diagram of components 2. Reducer..3

SECTION 1 COMPANY OVERVIEW

Natural geothermal energy.

System Solutions for Boiler Air Preheating

Step 1: Hydraulics Flow. Refining System Optimization A Simple Six-Step Process

Questions to be responded to by the firm submitting the application. Why do you think this project should receive an award? How does it demonstrate:

HySTAT HYDROGEN GENERATORS

New Direct Core Monitoring Fusion Splicer TYPE-71C+

GAO Peng PetroChina Planning & Engineering Institute September 24th - 26th, 2013 Xi An

High-strength and ultrahigh-strength. Cut sheet from hot-rolled steel strip and heavy plate. voestalpine Steel Division

PC BASED PID TEMPERATURE CONTROLLER

Modular Systems wind portfolio overview Power Collection and Grid Connection products

Investigation of the Residual-charge Technique for Diagnosis of Water-tree Deteriorated Cross-linked Polyethylene Cable

Obayashi Group Medium-Term Business Plan 2015

BMEI BMEI CO., LTD. Environmental Total Solution Vender.

Fokus: PLAST Lund 4-5 maj Lunds Tekniske Högskola

Transcription:

JFE TECHNICAL REPORT No. 20 (Mar. 2015) Rail Flash-Butt Welding Technology FUJII Mitsuru *1 NAKANOWATARI Hiroaki *2 NARIAI Kiyoshi *3 Abstract: New rail flash-butt welding technology with JFE feedback flashing rate control and direct current (DC) inverter type power supply system was developed. This welder also employed preheating system for continuous welding which had been adopted in overseas, achieving high efficiency and energy saving operation along with the reduction of weight and size of the machine. The welder has been delivered to East Japan Railway Company with successful operation. Outline of the development, delivered machines and applications at the construction site are introduced. 1. Introduction Welding of railway rails is not easy, as rails have a unique profile and large cross section, and also have a high carbon content because wear resistance and damage resistance are priorities in this application. Four methods are used to join rails, namely, flash-butt welding, gas pressure welding, almino-thermic welding, and enclosed arc welding. Of these, flash-butt welding has the highest welding efficiency (welding time: approximately 1.5 4 min) among the rail welding methods used in Japan and other countries and is also an excellent method from the viewpoints of quality stability and control. Figure 1 shows the principle of flash-butt welding. In flash-butt welding, electric power is applied between the end faces of the rails being joined, the free rail is moved forward at low speed, and flash and arc are generated by the resistance heating and local heating caused by the contact of the rail ends. This contact electrification and flash generation is repeated a number of times until a melt layer is formed over the entire joint surface, and a weld joint is then obtained by rapidly Fig. 1 Principle of the flash welding advance and pressurization. The following reports a new flash-butt welding technology developed by JFE Rail Link and the results of its application in Japan. 2. JFE Rail Flash-Butt Welding Technology Figure 2 shows the power supply systems used in flash-butt welding. Alternating current (AC) systems are mainly used as a mobile type in field welding, and welding is performed by a continuous flash-butt welding process using low electric power (Fig. 3(2)). Because low power is used in this type of system, the power supply is compact, but the welding time is long (2.5 4 min). A lightweight (Weight: 2.5 5 tons) welding machine with a simple structure is possible. On the other hand, direct current (DC) systems are used in shop welding, where large-scale power source equipment can be secured. The power supply equipment for flash-butt welders for shop use manufactured by foreign makers is all of this type. The preheated flash-butt welding method (Fig. 3(1)) is applied with this type of power system. With DC systems, the welding time is short (1.5 2 min), but since large electric power is necessary, the power supply equipment is large, and the welding machine is a large- Originally published in JFE GIHO No. 34 (Aug. 2014), p. 109 113 *2 Staff, Engineering Sec., Engineering Dept., *1 General Manager, Engineering Dept., *3 General Manager, Constraction Dept., 159 Copyright 2015 JFE Steel Corporation. All Rights Reserved.

Fig. 3 Flash welding method Fig. 4 Feedback flashing rate control Fig. 2 Power supply system scale device (Weight: approx. 30 tons). uses feedback flashing rate control (Fig. 4) 1) with the flash-butt welders. As a result, excessive peak power is eliminated, and an energy saving type welding machine with a low power capacity can be used. The flashing rate is controlled so that primary electric power is always equal to the setting value. If deviation electric power is detected, an electro hydraulic servo valve activates and the member being joined is immediately advanced or retracted, thereby maintaining a stable flashing rate. In this research, the authors developed a rail flash-butt welding technology which can realize high efficiency, power saving, compact size, and light weight by combining the advantages of feedback flashing rate control and the INV-DC system (DC inverter power supply system), together with the merits of the preheating welding process used in other countries in the conventional continuous flash-butt welding process. 3. Record of Application of JFE Rail Flash-Butt Welding Technology 3.1 Welder for Tokyo Rail Center, East Japan Railway Company In 2013, the foreign-made rail flash-butt welding machine which had been introduced at Tokyo Rail Center of East Japan Railway Company in 1998 was due for renewal. As a successor welding machine, a flash-butt welder manufactured by was adopted. This welder was delivered in January 2014, and continuous-welding rail production was begun in February. The features of this welder are as follows: 160 JFE TECHNICAL REPORT No. 20 (Mar. 2015)

Fig. 5 Welding data of East Japan Railway Company Photo 2 Welding machine of Central Japan Railway Company Photo 1 Welding machine of East Japan Railway Company (1) Achieves high efficiency utilization of the welding power source and downsizing of the welding machine by adoption of the INV-DC (DC inverter) power supply system shown in Fig. 2 as the power supply system and adoption of feedback flashing rate control as the control method. (2) Achieves the required efficiency (welding time: 1.5 2 min) by adding some preheating processes to the base process of continuous flash-butt welding used with mobile flash-butt welders, as shown in the welding data in Fig. 5. This new welder has dimensions of 4.5W 1.8D 2.4H (m) and weight of 18 tons. In comparison with the welding machine before improvement, which had a maximum output of 310 kva, the new welder realized a space saving of about 35%, weight reduction of about 40%, and reduction of electric power consumption of about 50%. Photo 1 shows the welding machine. 3.2 Welder for Hamamatsu Rail Center, Central Japan Railway Company In 1990, shortly after the breakup and privatization of Japan National Railways, a rail flash-butt welding Fig. 6 Welding data of Central Japan Railway Company machine manufactured was introduced at Hamamatsu Rail Center of Central Japan Railway Company. In this welding machine, a compact stationary-type flash-butt welding machine and small power capacity requirement were realized by adopting a continuous flash-butt welding process with an AC power supply. This equipment is operating stably, and is contributing to a compact production line and reduction of electric power costs at Hamamatsu Rail Center of Central Japan Railway Company. Average annual welding production is 3 000 joints (200 km). A cumulative total of 5 000 km of rails has been produced to date, supporting safe and stable operation of the Tokaido Shinkansen, which is the main artery of rail traffic in Japan. Photo 2 shows the welding machine, and Fig. 6 shows the welding data. 3.3 Portable Flash-butt Welding Machines In 1992, a welding machine (Weight: 1.9 tons) for field base welding construction by reducing the weight of the welding head was developed. The welding method and control were basically the same as those used in the JFE TECHNICAL REPORT No. 20 (Mar. 2015) 161

Photo 4 Picture of welding monitor Photo 3 Portable flash welding machine stationary-type machine introduced by Hamamatsu Rail Center of Central Japan Railway Company. This welding machine has been supplied to line construction projects in various parts of Japan, beginning with Hokuetsu Hokusen Construction Project of 1993. In particular, in Hokuriku Shinkansen Construction Project, which began in July 1994, work was carried out in preparation for Olympic Winter Games held in Nagano in February 1998, and a high level of quality and construction at a rapid pace were required. Field welding was performed with this welding machine at a pace of more than 30 joints per day, contributing to the opening of the Nagano Shinkansen in December 1997. Photo 3 shows the appearance of the portable flash-butt welding machine. Photo 5 Picture of trouble diagnosis 3.4 Improvement of Welder Control 2) for West Japan Railway Company Mukomachi Rail Center of West Japan Railway Company introduced various types of welding machines, beginning with a rail flash-butt welding machinery manufactured by a foreign maker in 1999, and welds an annual average of 5 000 6 000 joints, including conventional rail lines and Shinkansen lines. From 2009 to 2012, the center carried out improvement of its main welders and a partial changeover to domestically manufactured machines., which was the only company in Japan with a record of deliveries of rail flash-butt welding machines, received the order for replacement of the control system of the flash-butt welder. In this replacement project, the following work was carried out for continuing use of the existing foreign-made welding machine: (1) analysis of the control program, (2) listing of component parts, and (3) selection of alternate parts, etc. Various new functions were also added to the control system, including a trouble Photo 6 Welding machine of West Japan Railway Company diagnosis function for designating the part where trouble has occurred, and a monitor display which shows the welding part and welding parameters such as the welding heat input, etc. These improvements have enabled quick designation of the cause of trouble, and have also realized improved maintainability and a higher operat- 162 JFE TECHNICAL REPORT No. 20 (Mar. 2015)

ure 7 shows the welding data. 4. Conclusion The rail flash-butt welding systems of and their record of application were introduced. In the future, the company is targeting sales of rail welding systems in Japan and other countries, beginning with stationary-type welding machines and also including portable machines, as well as application to field construction. Fig. 7 Welding data of West Japan Railway Company ing rate. Photos 4 6 show the welding monitor screen of the control system, the trouble diagnosis screen, and the welding machine after renewal, respectively. Fig- References 1) Fujii, Mitsuru et al. Computer Control Compact-type Flash Welding Equipment for Rails. 5th International Heavy Railway Conference. 1993-06-07. 2) Morita, Mitsugu et al. Japan society of Civil Engineers. 2013-09- 05. JFE TECHNICAL REPORT No. 20 (Mar. 2015) 163 Copyright 2015 JFE Steel Corporation. All Rights Reserved. Unauthorized reproduction prohibited.