Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Energetics... Page 18. Respiration

Similar documents
AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

Chapter 14- RESPIRATION IN PLANTS

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

Energy Production In A Cell (Chapter 25 Metabolism)

Cellular Respiration An Overview

008 Chapter 8. Student:

Photosynthesis takes place in three stages:

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

How Cells Release Chemical Energy Cellular Respiration

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Chapter 9 Cellular Respiration

Summary of Metabolism. Mechanism of Enzyme Action

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

1. Explain the difference between fermentation and cellular respiration.

Chapter 9 Review Worksheet Cellular Respiration

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Cellular Respiration

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Cellular Respiration and Fermentation

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

Cellular Respiration

Cellular Respiration Worksheet What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

Chapter 16 The Citric Acid Cycle

Lactic Acid Dehydrogenase

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

AP Bio Photosynthesis & Respiration

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Biology for Science Majors

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63

Is ATP worth the investment?

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

1. The diagram below represents a biological process

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale

Chapter 16 The Citric Acid Cycle

Cellular Respiration Stage 4: Electron Transport Chain

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants.

Biology I. Chapter 8/9

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Metabolism Dr.kareema Amine Al-Khafaji Assistant professor in microbiology, and dermatologist Babylon University, College of Medicine, Department of

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

BCOR 011 Exam 2, 2004

Figure 5. Energy of activation with and without an enzyme.

Copyright Mark Brandt, Ph.D. 54

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Work and Energy in Muscles

AP BIOLOGY 2015 SCORING GUIDELINES

Cellular Respiration: Practice Questions #1

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

Unit 5 Photosynthesis and Cellular Respiration

Bioenergetics Module A Anchor 3

Chapter 9 Mitochondrial Structure and Function

Cell. (1) This is the most basic unit of life inside of our bodies.

pathway that involves taking in heat from the environment at each step. C.

Microbial Metabolism. Biochemical diversity

Biochemistry of Cells

Topic 3: Nutrition, Photosynthesis, and Respiration

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

Visualizing Cell Processes

What are the similarities between this equation for burning glucose and the equation for cellular respiration of glucose when oxygen is available?

The chemical energy used for most cell processes is carried by ATP.

CITRIC ACID (KREB S, TCA) CYCLE

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because:

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

Multiple Choice Identify the choice that best completes the statement or answers the question.

Advanced Subsidiary GCE Biology

Electron Transport System. May 16, 2014 Hagop Atamian

Regulation of the Citric Acid Cycle

Cellular Respiration

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica

Metabolism Poster Questions

H.W. 1 Bio 101 Prof. Fournier

MULTIPLE CHOICE QUESTIONS

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

Cellular Respiration. Chapter Outline. Before You Begin

Carbon Hydrogen Oxygen Nitrogen

b. What is/are the overall function(s) of photosystem II?

Integration of Metabolism

Know about the different energy systems used during sports performance

The Aerobic Fate of Pyruvate

Electron Transport Generates a Proton Gradient Across the Membrane

Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle

Chapter 8: Energy and Metabolism

Chloroplasts and Mitochondria

Transcription:

Energetics... Page 18 Respiration Syllabus : The importance of respiration in converting chemical energy in food to chemical energy in ATP. The sites of respiration the sites of the various biochemical pathways of respiration; the structure of mitochondrion as shown in electron micrographs. (refer to topic The cell --- organelles of cell ) Glycolysis an outline of glycolysis to show : (1) the phosphorylation of glucose; (2) the break down of hexose phosphate to triose phosphate; (3) the conversion of triose phosphate to pyruvate with the production of reduced NAD and ATP. Aerobic pathway the conversion of pyruvate to acetyl-coa; an outline of the Krebs cycle to show : (1) the combination of acetyl-coa with 4-C compound to form 6-C compound ; (2) that the 6C compound undergoes a series of reactions to regenerate the 4C compound with the release of carbon dioxide; (3) the production of reduced NAD and ATP. Lipids and proteins can be used to produce reduced NAD and ATP; the electron transport chain as a process of oxidative phosphorylation; the role of molecular oxygen as the final electron acceptor. Anaerobic pathway the fate of pyruvate under anaerobic condition; the formation of lactic acid in muscle; the oxygen debt; the formation of ethanol and carbon dioxide in yeast. Energy yield the comparison of the energy yield of aerobic and anaerobic respiration, without calculating the number of ATP produced. Role of ATP the role of ATP in energy transfer. Cellular respiration It is a process occurs in cytoplasm and mitochondria of living cells that liberate chemical energy when organic molecules are oxidized. All organisms get their energy by respiration. Respiration takes place in the cells with generally involves the breakdown of sugar. The equation below summarizes the process : C6H12O6 + 6 O2 6 CO2 + 6 H2O + energy The oxidation of food yields energy, but it cannot be used directly by the body. The chemical energy is mostly carried by the adenosine triphosphate (ATP) molecules which give an instance source of energy for the metabolic processes in the cells. Cellular respiration involves oxidation of a substrate to yield ATP. Organic compounds which are used as substrate in respiration are always carbohydrates. Carbohydrates - these are usually the first choice of most cells. - brain cells of mammals can use only glucose, this is the reason why coma occurs in the patient who has suffer from hypoglycaemia (extreme low of blood glucose) - polysaccharides are hydrolysed to monosaccharides before they enter the respiratory pathway Sites of respiration : Cellular respiration can divided into three different phases : (1) glycolysis (occurs in the cytoplasm of cell), (2) Krebs cycle (occurs in the matrix of mitochondrion) (3) electron transport chain (carried out by the enzyme on the cristae of the mitochondrion)

Energetics... Page 19 Fig. 11 Summary of respiration. BSI 3 rd ed. p267 fig 9.4 p268 fig 9.5 The biochemical pathways : A. Glycolysis :- - Represents a series of reactions in which a 6C glucose is broken down into two molecules of triose phosphate (3C) then pyruvate (3C) with the production of reduced NAD and ATP. - This process does not require the presence of oxygen (anaerobic process) (i) Phosphorylation of glucose into 6C compound : : glycolysis begins with the phosphorylation of a glucose : this step requires energy from ATP : this initial phosphorylation is extremely important because it raises the energy level of the glucose molecules (activation of the glucose) (ii) Splitting up of the 6C compound into two triose phosphate : : the 6C compound splits up to give two molecules of triose phosphate which are later converted to pyruvate (pyruvic acid) : in this conversion, two ATP and two hydrogen atoms per triose phosphate are released (total 4 ATP and 4 H released per glucose molecule) - the hydrogen atom released from the glycolysis would be carried by NAD to form NADH 2 and carried into mitochondria to carry out oxidative phosphorylation to yield ATP - the overall equation of glycolysis : glucose + 2 ATP 6C compound 6C compound 2 triose phosphate 2 triose phosphate 2 pyruvic acid + 4 ATP + 4 H 2 NAD + 4 H 2 NADH2 glucose + 2 NAD 2 pyruvic acid + 2 NADH2 + 2 ATP

Energetics... Page 20 (iii) Biological significance of glycolysis : : glycolysis neither require oxygen nor mitochondrial enzymes, it occurs in cytoplasm anaerobically : it can provide a small amount of energy to maintain the cellular activities in emergency, i.e. yeast live anaerobically or muscle cells after prolonged vigorous activities Fig. 12 Glycolysis in outline. Only the three key stages are shown. BSI 3 rd ed. p268 fig 9.5 B. Aerobic pathway :- - If there is oxygen, the pyruvate passes directly into the Krebs cycle which take place in the mitochondrion only (a) oxidation of pyruvate : : before entering the Krebs cycle, pyruvate is both oxidized and decarboxylated into a 2C acetyl group : a molecule of NADH 2 is produced and the acetyl group is temporarily attached to coenzyme A (CoA) : acetyl -CoA is formed and act as the starting substrate for the Krebs cycle pyruvic acid (3C) + coenzyme A + NAD acetyl-coa (2C) + CO2 + NADH2 (b) In the matrix of mitochondrion (Krebs cycle) : : acetyl-coa enters into the mitochondrion : after the entry of mitochondrion, the acetyl-coa combines with 4C compound to form 6C compound and liberates coenzyme A out of mitochondrion acetyl-coa (2C) + oxaloacetic acid (4C) citric acid (6C) + coenzyme A : the citric acid will go through a cyclic reaction, in the course of the cycle, decarboxylation occur to yield two molecules of carbon dioxide, and 4C compound is regenerated : at the same time, dehydrogenation is also occur and NADH 2 and FADH 2 are formed and energy is released to form ATP : for each molecule of acetyl-coa entering the cycle, four pairs of hydrogen atoms (3 pairs are carried by NAD to form NADH 2, one pair are carried by FAD to form FADH 2 ), two molecules of CO 2 and one molecule of ATP are produced

Energetics... Page 21 Fig.13 Simplified diagram of the Krebs cycle. The link reaction between glycolysis and the Krebs cycle (pyruvate to acetylcoenzyme A) is also shown. This diagram joins to fig 12. BSI 3 rd ed. p 268 fig 9.6 Importance of Krebs cycle : it provides H atoms which ultimately yield the major part of the energy derived from the oxidation of a glucose molecules through the electron transport chain it is a valuable source of intermediates which are used to manufacture other substances e.g. fatty acid, amino acids etc. (c) Electron transport chain / oxidative phosphorylation : : the hydrogen atoms produced in glycolysis and Krebs cycle are carried by NAD or FAD as NADH 2 and FADH 2 respectively, they are at a high energy level : in the course of the electron transport chain / oxidative phosphorylation, hydrogen or electrons are passed down hill to the oxygen (electron acceptor) to form water : and the energy released in the process is used to form ATP from ADP : electron transport chain contains different carriers, but at the end the hydrogen will combine with O 2 to form water : as the hydrogen atoms / electrons are moved from one carrier to another, it is a oxidative process; since it also involves the synthesis of ATP, the whole process of electron transport is known as oxidative phosphorylation : one molecule of NADH 2 passes the electron transport chain yielding 3 ATP, while one molecule of FADH 2 only yield 2 ATP : the number of ATP produced in the cellular aerobic respiration from one molecule of glucose is calculated as below : Process Intermediates / products glycolysis 2 ATPs 2 NADH 2 conversion of pyruvic acid to acetyl-coa 2 NADH 2 aerobic Krebs cycle 2 ATPs 6 NADH 2 2 FADH 2 amount of ATP produced 4 ATPs 10 x 3 ATPs 2 x 2 ATPs amount of ATP produced from one glucose Total = 38 ATPs

Energetics... Page 22 Exercise : (91 I 4) By means of a flow diagram, briefly outline the three main stages of aerobic respiration with a carbohydrate substrate. Annotate your diagram to show the essential features of each of the three main stages. <N.B. Chemical formulae of individual compounds are NOT required.> [7 marks] (94 II 2) (a) Describe the three stages of cellular respiration for carbohydrate metabolism.[10 marks] (b) Compare and contrast the products of the metabolic process in (a) in the presence and absence of free oxygen. [3 marks] (d) Oxidation of other organic molecules : : sugars are not the only material which can be oxidized by cells to release energy. : both fats and protein may also be used as respiratory substrates. Fats - they form the first reserve and are mainly used when carbohydrates reserves have been exhausted - but in skeletal muscle cells, if glucose and fatty acids are available, these cells respire the acids in preference to glucose Proteins - they have many other essential functions, they are only used when all carbohydrates and fat reserves have been used up, as during prolonged starvation Fig. 14 Summary of respiratory pathway. BS p 380 fig 26.5

Energetics... Page 23 C. Anaerobic condition :- - if there is no oxygen, the pyruvate convert to alcohol in yeast and plant cells, and lactic acid in animal cells (e.g. muscle cells in human) - the lactic acid will return to the liver via bloodstream for the resynthesis of carbohydrates or oxidation to carbon dioxide and water (a) Alcoholic fermentation : : carried out by yeast and some plant cells : only 2 ATP is gained in the glycolysis : the pyruvic acid is reduced by the NADH 2 and produce alcohol (ethanol) and carbon dioxide which both are toxic to the cells : it is occurred only when the cell is shortage of O 2 glucose 2 pyruvic acid 2 ethanol + 2 CO2 glycolysis, release 2 ATP (b) Lactic acid fermentation : : carried out by muscle cells in the animals in the absence of oxygen during vigorous activity : only 2 ATP is gained in glycolysis : lactic acid is produced and accumulated in the muscle cells : this is what happens in mammalian cells when they have an oxygen debt : later it will diffuses into the blood and is carried to the liver where it is oxidised into carbon dioxide and water or rebuilt of glucose or glycogen in the presence of oxygen glucose 2 pyruvic acid 2 lactic acid resynthesis to glucose / glycolysis, release 2 ATP oxidized to CO2 and H2O (if oxygen is present) Oxygen debt : to satisfy the energy demands of the exercise aerobically, 3 dm 3 of oxygen of oxygen per minute must be supplied (see graph below). this is not achieved until 6 minutes after exercise began. So the oxygen debt (the amount of oxygen that was needed, but not supplied from outside the body by breathing, region A) is built up. the debt (region B in the graph) is repaid by continued rapid and deep breathing when the period of exercise ends. the extra oxygen then absorbed by the blood corresponds to the oxygen debt and is used to oxidize the lactic acid produced in anaerobic respiration to CO 2 and H 2 O or converted the lactic acid to glucose / glycogen in liver. BS I 3 rd Ed. P273 fig 9.10 Fig. 15 Oxygen uptake during exercise and recovery. This shows the principle of oxygen debt.

Energetics... Page 24 Importance of anaerobic respiration to everyday life : 1. alcoholic fermentation alcohol produced in yeast can be used to produce beer (substrate used is partially germinated barley grain) and wine (substrate used is grapes) production of carbon dioxide in yeast is used in bread making, to make dough rise in sewage treatment plant, anaerobes can be used to decompose the wastes, the ethanol produced can be collected to make gasohol (a kind of fuel can be used in car) or used directly as fuel 2. Lactic acid fermentation lactic acid bacteria in milk break down lactose anaerobically this can be used to produce dairy products? yogurt = substrate : whole milk? cheese = substrate : solid part of milk, known as curd? butter = substrate : cream of fresh milk [NOTE] Anaerobic respiration is not common in higher living organisms because : 1. the small amount of energy is not enough to meet the demand of the organisms, this is especially true in active animals 2. the by-products from anaerobic respiration are toxic to the organisms if accumulated to high concentration, i.e. alcohol or lactic acid Exercise : (90 I 1a) What is oxygen debt? Explain its physiological significance. [5 marks] (96 I 8b) Name and describe the major physiological process that takes place at matrix of cytoplasm during prolonged vigorous exercise. [4½ marks] Comparison of aerobic and anaerobic respiration : A. Differences : Item Aerobic respiration Anaerobic respiration oxygen requirement yes no oxidation of substrate complete oxidation incomplete oxidation end products carbon dioxide and water plant cell: CO 2 and alcohol animal cell : lactic acid energy released per glucose more (38 ATPs) less (2 ATPs) occurrence in most organisms in lower organisms, e.g. yeast, bacteria and muscle cells after prolonged contraction B. Similarity : (1) Both aerobic and anaerobic respiration yield ATP (energy) ; (2) Both require complex organic compound as substrate ; (3) Both are oxidative process ; (4) Both have the same initial stage (glycolysis) ; (5) Both take place in living cells.

Energetics... Page 25 Role of ATP : A. Structure of ATP :- - it is a nucleotide consisting of adenosine (adenine + ribose) and attach with three phosphate groups - the two end phosphate bonds are often known as high energy bond since energy is liberated when ATP is hydrolysed high energy bond Adenine ribose phosphate phosphate phosphate B. Liberation of energy from ATP:- - when hydrolysis of the high energy bond of ATP occurs, the free energy yield is about 30.6 KJ ATPase ATP + H2O ADP + H3PO4 + 30.6 KJ ATPase ADP + H2O AMP + H3PO4 + 30.6 KJ ATPase AMP + H2O Adenosine + H3PO4 + 13.8 KJ - ADP may be rephosphorylated to ATP by respiratory activity AMP + 30.6 KJ ADP + 30.6 KJ ATP C. Importance of ATP :- (a) As universal energy carrier : : since all the chemical energy is in one form (ATP), the energy consuming processes need only one system that accept chemical energy from ATP : found in all living cells and is an instant source of energy within the cell : it transports chemical energy to energy consuming processes within the cell : when the cell requires energy, hydrolysis of ATP is all that has to occur for the energy to be made available Examples (1) Biosynthesis of protein from amino acids; (2) Muscle contraction. (3) Active transport. (b) As an intermediate in the metabolic reaction : : it is a common intermediate between respiration and energy requiring process, with phosphate being removed or replaces : ATP can donate the phosphate group to activate substances to initiate the reaction, e.g. phosphorylation of glucose in glycolysis Exercise : (97 II 1a) Explain the role of ATP in cellular metabolism. [3½ marks]