Work and Energy in Muscles
|
|
|
- Clarence Dickerson
- 9 years ago
- Views:
Transcription
1 Work and Energy in Muscles Why can't I sprint forever? I'll start this section with that silly question. What lies behind the undisputable observation that we must reduce speed if we want to run longer and longer distances? Even the most motivated athletes are bound by this simple rule. We can see this in the following graph. These data are from the 1964 Olympic competitions. Running speed is plotted against the duration of the race. Competitors running more than seconds reduced their velocity markedly and a continual and gradual decrease occurred after about 2 minutes. Marathon runners ran approximately half as fast as sprinters. The explanation for this phenomena is that differing energy sources are used by working muscles, the choice being related to the rate of usage. Stored highenergy phosphates energy (ATP-ADP and phosphocreatine) give the most rapid regeneration of utilized ATP. A 100 meter sprint takes less than 10 seconds. During this very short period the driving force is stored high-energy phosphate. The runners can perform almost without breathing, using energy stored as ATP or creatine phosphate (~P) or glycogen in the active muscles. In contrast to longdistance runners, sprinters are often large, very muscular people. They are "specially equipped" for explosive function for very short periods.
2 The energy supply for those who run from about 60 seconds to three minutes is also stored energy, but in this case it is primarily glycogen stored in muscles (and blood glucose) that provides energy. Glycogen must be oxidized to pyruvate, lactate and CO 2 to provide the ATP required for muscle activity. Metabolism of carbohydrates in muscle. Energy production, that is ATP synthesis from ADP and P i, can occur anaerobically (without the use of oxygen) or aerobically (using mitochondrial reactions and oxygen). These reactions, especially anaerobic metabolism, are quite rapid. Use of ATP usually does not lead to a decrease in ATP levels, due to the very rapid resynthesis. Extreme muscle activity leads to no more than a 20% reduction in ATP concentration in muscles. Only carbohydrates (glycogen or blood sugar) can be used anaerobically. Neither amino acids nor fatty acids can be processed without use of oxygen. Muscles differ in their ability to produce ATP through anaerobic and aerobic reactions. Fast-twitch white muscles with few mitochondria are the "anaerobic" fibers. Those with many mitochondria are the aerobic, slow, red fibers. Anaerobic ATP synthesis is coupled to formation of lactic acid from glucose. Three ATPs are produced during oxidation of each glucosyl group in glycogen and only two are produced during oxidation of of glucose to lactate. This is in contrast to aerobic oxidation where between 36 and 38 ATPs are formed for every glucose molecule that is oxidized to CO 2. Why do people burning glycogen anaerobically run faster than those who use aerobic metabolism? The answer is simply that anaerobic oxidation is exceedingly rapid. Large quantities of ATP are
3 synthesized during the three minutes or so that this process dominates muscle metabolism. However, glycogen reserves are rapidly exhausted and lactic acid accumulation quickly leads to muscle stiffness and pain. Continuing highperformance work after muscle glycogen is exhausted leads to massive uptake of glucose from the blood with a resulting fall in blood glucose levels. This leads to central effects, with a "black out" as the final consequence. Races between 100 and 2000 meters are a balance between too high and too little energy use; run slowly and lose, run fast and pass out! Lactate, energy metabolism's "blind way". Why do anaerobically active muscles spew out lactate and pyruvate? The answer is that glycolysis is completely dependent on a stable supply of NAD + to oxidize glucose and glycogen to pyruvate. Remember, conversion of 1 glucose to 2 pyruvate molecules requires 2 ADP and 2 NAD + ( check the figure at the left). So, in order to run anaerobic metabolism while the substrate is still there, muscles must use lactic dehydrogenase to restore NAD + levels. There is no other rapid source for NAD +! Production of lactate is not to form an acid byproduct. If it were not for the need for oxidation of NADH we could just pump out pyruvate. We do, in fact excrete pyruvate from working muscles, but the ratio of pyruvate to lactate is determined of the ratio between NAD + and NADH + +H +. There is much more NAD + than NADH + in cytosol, so lactate dominates the picture. Now, there are two forms of lactate dehydrogenase, so-called isoenzymes. Skeletal muscle has the M 4 isoenzyme while heart muscle has the H 4 isoenzyme.
4 Liver has a mixture of these. What is the functional difference between these? Well, both forms of LDH are inhibited by pyruvate, but the M 4 enzyme is less affected. This allows the M 4 enzyme to form lactate from pyruvate in anaerobically active muscles and keeps the NAD + production going. In the heart and liver, the H 4 and H 2 M 2 forms may allow more rapid uptake of lactate which then can serve as a substrate for energy production. Whole body lactate metabolism is more complicated than that which is described above. Click here for a more complete discussion of lactate metabolism. Aerobic Energy Metabolism Events that persist for more than roughly three minutes are powered by aerobic metabolism. Glucose goes through anaerobic glycolysis and the pyruvate formed is taken up by mitochondria and oxidized to CO 2. The total ATP produced per glucose molecule is over 10 times that produced in anaerobic metabolism. However, the rate of aerobic ATP production is much lower than that of direct phosphorylation of ADP or anaerobic glycolysis. Muscle activity must therefore be adjusted to the reduced tempo of high-energy phosphate synthesis. This is summarized in the table to the left. Activity lasting over many minutes and hours cannot be supported by the limited bodily reserves of glucose and glycogen. Fatty acids from food and adipose tissue, therefore, supply most of the substrate used by muscle tissue working over time. Branched-chain amino acids can also serve as substrates for mitochondrial ATP synthesis. It is striking that the substrates we have least of are metabolized swiftly, while those present in large amounts are slowly
5 metabolized. These facts are directly related to the speed at which muscles can operate. Short intervals, high speed, long intervals, low speed! Energy substrates in the human body are either carbohydrates, fat or proteins. Protein degradation yields amino acid residues which can be converted to carbohydrates and used in energy production. Carbohydrates (sugars) and amino acids from proteins give approximately 4 kcal/gram dry weight when burned in the body. Fatty acids from adipose tissue or food give 9 kcal/gram. Fat stores are anhydrous, that is, they do not bind water. Proteins, amino acids and carbohydrates do bind water and are therefore both heaver and less energy-rich than stored fat. The storage form of fats, triacylglycerol, is approximately 9 times more energy-rich than proteins and carbohydrates. It is not so surprising that we store fat instead of the storage form of carbohydrates (glycogen). Proteins are mainly converted to carbohydrates before serving as energy substrates. The "skin-and-bone" appearance of prisoners is clear evidence of the conversion of muscle protein to blood sugar which holds life in such unfortunates. Consciousness and muscle activity Muscle activity and running speed is closely coupled to the rate of synthesis of ATP in muscles. Fuels giving the most rapid rates of energy production are found in limited amounts. Long-term exercise must be supported through the use of fat as an energy source. Since lipid metabolism is relatively slow, long-term activities must progress at at slower rate than high speed short-term activities.
6 The following figure shows the change in oxidative substrate during exercise which continues for several hours. We assume that the person described here starts the work period eagerly, using stored glycogen at the beginning of the work session. Muscle glycogen remains is the major source of energy during the first half-hour. After this period we see that fatty acids and blood glucose takes over as important energy sources. There are approximately 20 grams of glucose in blood and extracellular fluids. Most of the glucose measured in the blood comes from breakdown of liver glycogen. Adrenalin, noradrenalin and glucagon activate liver phosphorylase and initiate this release. These same hormones activate hormone-sensitive lipase in adipose tissue, leading to a gradual increase in the fatty acid concentration in blood. In the model shown here we see that stabilizing of energy metabolism in time depends increasingly upon fatty acids as the source of fuel. Blood glucose rises and falls thereafter to a stable level which is somewhat higher than that seen at rest. Blood sugar levels remain adequate for brain metabolism so long as glycogen is available in muscle and liver. However, at some point "something happens" (the red line). We are built such that muscle activity can exhaust blood sugar. The brain is totally dependent on blood sugar for function. When blood glucose levels fall below about 2-3mmol/l we miss consciousness (comatose before being eaten?). Recovery does occur, but this takes time: amino acids must be converted to glucose to normalize blood sugar levels. Click here for the next sections.
AP BIOLOGY CHAPTER 7 Cellular Respiration Outline
AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other
Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1
23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell
Integration of Metabolism
I. Central Themes of Metabolism 1. ATP is the universal energy carrier. Integration of Metabolism Bryant Miles 2. ATP is generated by the oxidation of metabolic fuels Glucose Fatty Acids Amino Acids 3.
Interval Training. Interval Training
Interval Training Interval Training More work can be performed at higher exercise intensities with same or less fatigue than in continuous training Fitness Weight Loss Competition Baechle and Earle, Essentials
Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8
Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The
Understanding energy systems
Understanding energy systems Key terms & definitions: Anaerobic: A process that does not require oxygen. Aerobic: A process that requires oxygen. ATP Yield: The total amount of ATP produced by an energy
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch23_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following statements concerning digestion are correct except A) The major physical
The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism.
Regulation of carbohydrate metabolism Intracellular metabolic regulators Each of the control point steps in the carbohydrate metabolic pathways in effect regulates itself by responding to molecules that
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
Know about the different energy systems used during sports performance
Learning aim B Know about the different energy systems used during sports performance Assessment criteria 2B.P5 2B.M5 2B.D2 Describe the function of the three energy systems in the production and release
The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.
1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source
1. Explain the difference between fermentation and cellular respiration.
: Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular
Energy Production In A Cell (Chapter 25 Metabolism)
Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need
Exercise Metabolism II
Exercise Metabolism II Oxygen debt & deficit Lactate threshold --------------------------------------------------------------- VO2max, VO2max and Lactate threshold CHO and fat metabolism during exercise
Copyright 2000-2003 Mark Brandt, Ph.D. 54
Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,
Chapter 7 Active Reading Guide Cellular Respiration and Fermentation
Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second
CHAPTER 15: ANSWERS TO SELECTED PROBLEMS
CHAPTER 15: ANSWERS T SELECTED PRBLEMS SAMPLE PRBLEMS ( Try it yourself ) 15.1 ur bodies can carry out the second reaction, because it requires less energy than we get from breaking down a molecule of
What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.
CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by
- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.
Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood
008 Chapter 8. Student:
008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of
Photosynthesis takes place in three stages:
Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and
Training our energy systems
Training our energy systems By: Kelly Mackenzie, MSC, BPE, AFLCA trainer Regardless of what mode of exercise we are using, we can train all three of our energy systems. There are physiological adaptations
Chapter 16 The Citric Acid Cycle
Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.
Chapter 7 Cellular Respiration
Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic
How Cells Release Chemical Energy Cellular Respiration
How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates
Rowing Physiology. Intermediate. Editors: Ted Daigneault (CAN), Matt Smith (USA) Author: Thor S. Nilsen (NOR)
2 Intermediate Rowing Physiology Author: Thor S. Nilsen (NOR) Editors: Ted Daigneault (CAN), Matt Smith (USA) 34 1.0 INTRODUCTION The FISA CDP booklet titled BASIC ROWING PHYSIOLOGY provided information
1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes
Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the
Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?
Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,
GLUCOSE HOMEOSTASIS-II: An Overview
GLUCOSE HOMEOSTASIS-II: An Overview University of Papua New Guinea School of Medicine & Health Sciences, Division of Basic Medical Sciences Discipline of Biochemistry & Molecular Biology, M Med Part I
This very important area is often the least understood or completely ignored by some coaches when designing a fitness program for their athletes.
This very important area is often the least understood or completely ignored by some coaches when designing a fitness program for their athletes. An understanding of the various energy systems of our body
Cellular Respiration An Overview
Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary
Chapter 16 The Citric Acid Cycle
Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Production of acetyl-coa (activated acetate) Page: 603 Difficulty: 2 Ans: A Which of the following is not true of the reaction catalyzed by
Summary of Metabolism. Mechanism of Enzyme Action
Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the
AP Bio Photosynthesis & Respiration
AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which
Carbon Hydrogen Oxygen Nitrogen
Concept 1 - Thinking Practice 1. If the following molecules were to undergo a dehydration synthesis reaction, what molecules would result? Circle the parts of each amino acid that will interact and draw
Chapter 25: Metabolism and Nutrition
Chapter 25: Metabolism and Nutrition Chapter Objectives INTRODUCTION 1. Generalize the way in which nutrients are processed through the three major metabolic fates in order to perform various energetic
RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6
RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For
Metabolic Fate of Glucose. Metabolic Fate of Fatty Acids
Metabolic Fate of Glucose Each class of biomolecule has alternative fates depending on the metabolic state of the body. Glucose: The intracellular form of glucose is glucose-6- phosphate. Only liver cells
Is ATP worth the investment?
Is ATP worth the investment? ATP (adenosine tri-phosphate) can be thought of as the currency of the cell. Most cellular metabolic processes cost a certain amount of ATP in order to happen. Furthermore,
BCOR 011 Exam 2, 2004
BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe
Cellular Respiration Stage 4: Electron Transport Chain
Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes
Regulation of the Citric Acid Cycle
Regulation of the itric Acid ycle I. hanges in Free Energy February 17, 2003 Bryant Miles kj/mol 40 20 0 20 40 60 80 Reaction DGo' DG TA Free Energy hanges 1 2 3 4 5 6 7 8 9 1.) itrate Synthase 2.) Aconitase
Muscle Fibres. Anatomy and Physiology Advanced Diploma Course Sample Pages Page 1
Muscle Fibres Muscles are composed of thousands of individual muscle fibres, which are held together by connective tissue. However, muscle fibres may differ in physiological makeup. Anatomy and Physiology
Chapter 9 Review Worksheet Cellular Respiration
1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes
Management of Fibromyalgia: Rationale for the use of Magnesium and Malic Acid. Journal of Nutritional Medicine
Management of Fibromyalgia: Rationale for the use of Magnesium and Malic Acid 1 Journal of Nutritional Medicine Guy E. Abraham MD and Jorge D. Flechas MD, MPH FROM ABSTRACT: Primary Fibromyalgia (FM) is
Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:
and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways
1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain.
Lipid Metabolism 1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain. 2. How can excess acetyl CoA trapped in the mitochondria, be utilized as a substrate for fatty
Lactic Acid Dehydrogenase
Lactic Acid Dehydrogenase Pyruvic Acid Dehydrogenase Complex Pyruvate to ACETYL coa CC CoA + CO 2 Mitochondria 3 carbon Pyruvate to 2 carbon ACETYL Coenzyme A Pyruvate Acetyl CoA + CO 2 + NADH + H + CO2
Does Lactic Acid Cause Muscular Fatigue?
Does Lactic Acid Cause Muscular Fatigue? Ernest W. Maglischo, Ph.D. 1970 Lazy Meadow Lane Prescott, AZ 86303 USA [email protected] Abstract. Until recently, lactic acid accumulation and the acidosis
1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because:
Section 10 Multiple Choice 1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: A) acyl-carnitines readily cross the mitochondrial inner membrane, but
Anaerobic and Aerobic Training Adaptations. Chapters 5 & 6
Anaerobic and Aerobic Training Adaptations Chapters 5 & 6 Adaptations to Training Chronic exercise provides stimulus for the systems of the body to change Systems will adapt according to level, intensity,
Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms
Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:
Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle
Chapter 14 Glycolysis Requires mitochondria and O 2 Glucose glycolysis anaerobic respiration 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) pyruvate dehydrogenase acetyl-coa TCA Cycle
Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):
Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?
Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )
The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate
Heart Monitor Training for the Compleat Idiot By John L. Parker, Jr.
Estimating Your Max Heart Rate There are a number of ways to estimate your maximum heart rate. The best way is to get on a treadmill and slowly increase the speed or the incline until your heart rate is
Cellular Respiration
Cellular Respiration Cellular Respiration Text, Diagrams, Assessments, and Link to Standards Focus Questions 1) What is cellular respiration? 2) How is cellular respiration connected to breathing? 3) If
Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica
Electron transport chain, oxidative phosphorylation & mitochondrial transport systems Joško Ivica Electron transport chain & oxidative phosphorylation collects e - & -H Oxidation of foodstuffs oxidizes
Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction:
Glycolysis Glucose is a valuable molecule. It can be used to generate energy (in red blood cells and in brain under normal conditions, glucose is the sole energy source), and it can be used to generate
Cellular Respiration: Practice Questions #1
Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation
Teppe Treppe: A staircase increase in tension production after repeated simulation, even though the muscle is allowed to relax between twitches.
Part II, Muscle: Mechanisms of Contraction and Neural Control, Chapter 12 Outline of class notes Objectives: After studying part II of this chapter you should be able to: 1. Discuss how contractile force
Enzymes: Practice Questions #1
Enzymes: Practice Questions #1 1. Compound X increases the rate of the reaction below. Compound X is most likely A. an enzyme B. a lipid molecule C. an indicator D. an ADP molecule 2. The equation below
Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery
Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be
Chapter 14- RESPIRATION IN PLANTS
Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,
1. The diagram below represents a biological process
1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set
CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT
CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure
ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2
accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There
School of Kinesiology Faculty of Health Sciences Western University. EXERCISE BIOCHEMISTRY Kin 3360B Winter, 2015
2014-15 School of Kinesiology Faculty of Health Sciences Western University EXERCISE BIOCHEMISTRY Kin 3360B Winter, 2015 Instructor: J.M. Kowalchuk Office: HSB 411C Location: SH 3317 Office Hours: by appointment
The Background for the Diabetes Detection Model
The Background for the Diabetes Detection Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 23, 2014 Outline The Background for
4. Power: Pathways that make ATP
Page 1 of 40 4. Power: Pathways that make ATP 4.1 The human body has a duel power system In hybrid cars, such as a Prius TM, power is supplied by two systems. For long-term travel, gasoline is used to
Metabolism Lecture 7 METABOLIC_REGULATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY
Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 7 Reading: Ch. 15 of Principles of Biochemistry, Principles of Metabolic Regulation, Illustrated with Glucose and
Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure
Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation
Endocrine Responses to Resistance Exercise
chapter 3 Endocrine Responses to Resistance Exercise Chapter Objectives Understand basic concepts of endocrinology. Explain the physiological roles of anabolic hormones. Describe hormonal responses to
Chapter 9 Mitochondrial Structure and Function
Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable
Syllabus Chemistry 431B Biochemistry Winter 2013. Course Prerequisite: Grade of C- or better in Biochemistry I (Chem 431A)
Syllabus Chemistry 431B Biochemistry Winter 2013 Instructor: Jamil Momand, Ph.D. Class location and time: Salazar Hall, C-265 MWF 11:40-12:30 Office Hours: La Kretz Hall, Room 270 M 10-11, T 10-11 Email:
SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman
SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed
PHOTOSYNTHESIS AND CELLULAR RESPIRATION
reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is
Biology for Science Majors
Biology for Science Majors Lab 10 AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy
-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons
Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food
Biology I. Chapter 8/9
Biology I Chapter 8/9 NOTEBOOK #1 Interest Grabber Suppose you earned extra money by having a part-time job. At first, you might be tempted to spend all of the money, but then you decide to open a bank
PHYSIOLOGY AND MAINTENANCE Vol. IV - Muscle Energy Metabolism - Atalay M. and Hänninen O.O.P.
MUSCLE ENERGY METABOLISM Atalay M. and Hänninen O.O.P. University of Kuopio, Finland Keywords: aerobic, anaerobic, ATP, cardiac muscle, creatine phosphate, energy, glycolysis, metabolism, oxidation, skeletal
* Is chemical energy potential or kinetic energy? The position of what is storing energy?
Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored
4 Week Body Contour / Lipo Light Program
Natural Health Solutions 14698 Galaxie Ave. Apple Valley, MN 55124 (952) 891-22225 4 Week Body Contour / Lipo Light Program Welcome and Congratulations! This is an important decision towards improving
Muscles How muscles contract - The Sliding Filament Theory
Muscles How muscles contract - The Sliding Filament Theory A muscle contains many muscle fibers A muscle fiber is a series of fused cells Each fiber contains a bundle of 4-20 myofibrils Myofibrils are
TRAINING. chapter. how does. affect performance? Energy
chapter 5 how does TRAINING affect performance? When individuals begin to train they are trying to improve the way their bodies function. They may wish to improve a particular way their bodies deliver
Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.
Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular
CITRIC ACID (KREB S, TCA) CYCLE
ITRI AID (KREB S, TA) YLE Date: September 2, 2005 * Time: 10:40 am 11:30 am * Room: G202 Biomolecular Building Lecturer: Steve haney 515A Mary Ellen Jones Building [email protected] 9663286 *Please
FAT 411: Why you can t live without it
FAT 411: Why you can t live without it In the many nutrition talks I have done in the past, I have received numerous questions surrounding the somewhat misunderstood macronutrient of fat. Question range
GCE PHYSICAL EDUCATION PE2 UNIT GUIDE. Content Title: Methods of training. Practical Application/Explanation. Fartlek training. Continuous training
Content Title: Methods of training Key points GCE PHYSICAL EDUCATION Different methods of training How to design specific training sessions How to design a training programme PE2 UNIT GUIDE Practical Application/Explanation
CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale
CELLULAR RESPIRATION Chapter 19 & 20 Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale 1. Cellular respiration (energy capture) The enzymatic breakdown of food stuffs in the presence
AP BIOLOGY 2015 SCORING GUIDELINES
AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of
Advanced Subsidiary GCE Biology
Advanced Subsidiary GCE Biology Unit F214 - Communication, Homeostasis and Energy - High banded OCR has produced these candidate style answers to support teachers in interpreting the assessment criteria
2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?
Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the
Chapter 8: An Introduction to Metabolism
Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism
Cellular Energy. 1. Photosynthesis is carried out by which of the following?
Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.
Bioenergetics. Free Energy Change
Bioenergetics Energy is the capacity or ability to do work All organisms need a constant supply of energy for functions such as motion, transport across membrane barriers, synthesis of biomolecules, information
Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose
Energy in a Cell Reinforcement and Study Guide Section.1 The Need for Energy In your textbook, read about cell energy. Use each of the terms below just once to complete the passage. energy phosphate adenine
Photosynthesis (Life from Light)
Photosynthesis Photosynthesis (Life from Light) Energy needs of life All life needs a constant input of energy o Heterotrophs (consumers) Animals, fungi, most bacteria Get their energy from other organisms
pathway that involves taking in heat from the environment at each step. C.
Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis
