Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié.

Similar documents
LECTURE 4. Last time: Lecture outline

ECE 333: Introduction to Communication Networks Fall 2002

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

Master s Theory Exam Spring 2006

Probability Generating Functions

The Exponential Distribution

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

TCOM 370 NOTES LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL

M/M/1 and M/M/m Queueing Systems

Network Protocol Design and Evaluation

On the mathematical theory of splitting and Russian roulette

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Structure Preserving Model Reduction for Logistic Networks

Supplement to Call Centers with Delay Information: Models and Insights

1 Gambler s Ruin Problem

The Ergodic Theorem and randomness

Lecture 13: Martingales

Lectures on Stochastic Processes. William G. Faris

Introduction to Markov Chain Monte Carlo

Stochastic Models for Inventory Management at Service Facilities

Load Balancing and Switch Scheduling

Monte Carlo-based statistical methods (MASM11/FMS091)

ALGORITHMIC TRADING WITH MARKOV CHAINS

ECE302 Spring 2006 HW4 Solutions February 6,

CS263: Wireless Communications and Sensor Networks

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Hydrodynamic Limits of Randomized Load Balancing Networks

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

Algebraic and Transcendental Numbers

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100

The Random Waypoint Mobility Model with Uniform Node Spatial Distribution

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

a. CSMA/CD is a random-access protocol. b. Polling is a controlled-access protocol. c. TDMA is a channelization protocol.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March Due:-March 25, 2015.

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

Modeling and Performance Evaluation of Computer Systems Security Operation 1

Cooperative Multiple Access for Wireless Networks: Protocols Design and Stability Analysis

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

Gambling and Data Compression

Message-passing sequential detection of multiple change points in networks

Reinforcement Learning

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

Big Data Technology Motivating NoSQL Databases: Computing Page Importance Metrics at Crawl Time

Reliability Guarantees in Automata Based Scheduling for Embedded Control Software

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

Random Access Protocols

1. Prove that the empty set is a subset of every set.

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

2WB05 Simulation Lecture 8: Generating random variables

Reinforcement Learning

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

SOME APPLICATIONS OF MARTINGALES TO PROBABILITY THEORY

Analysis of a Production/Inventory System with Multiple Retailers

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, Notes on Algebra

Theorem (informal statement): There are no extendible methods in David Chalmers s sense unless P = NP.

Techniques algébriques en calcul quantique

Lecture 22: November 10

Markov Chains. Chapter Stochastic Processes

An example of a computable

Essentials of Stochastic Processes

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS

Math 181 Handout 16. Rich Schwartz. March 9, 2010

Polarization codes and the rate of polarization

Performance Analysis of a Telephone System with both Patient and Impatient Customers

1/3 1/3 1/

6.2 Permutations continued

Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk

Chapter 1. Introduction

Gambling Systems and Multiplication-Invariant Measures

Math 431 An Introduction to Probability. Final Exam Solutions

How To Make A Multi-User Communication Efficient

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Homework set 4 - Solutions

Near Optimal Solutions

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD

Answer: that dprop equals dtrans. seconds. a) d prop. b) d trans

Stochastic Inventory Control

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

UNIT 2 QUEUING THEORY

Voice Service Support over Cognitive Radio Networks

What is Linear Programming?

How to Gamble If You Must

Transcription:

Random access protocols for channel access Markov chains and their stability laurent.massoulie@inria.fr

Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines on remote islands to transmit by radio to «master machine» without heavy coordination between them

Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines on remote islands to transmit by radio to «master machine» without heavy coordination between them Key idea: use randomization for scheduling transmissions to avoid collisions between transmitters

Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines on remote islands to transmit by radio to «master machine» without heavy coordination between them Key idea: use randomization for scheduling transmissions to avoid collisions between transmitters A randomized, distributed algorithm

Aloha s principle s0 s1 Slotted time: fixed transmission intervals s2 Station with message to send: emits it with probability p

Aloha s principle s0 s1 Slotted time: fixed transmission intervals s2 Station with message to send: emits it with probability p By end of interval: learns whether msg successfully received, or not (due to collision or other interference) Repeat until no message left to be sent

Aloha s principle s0 s1 Slotted time: fixed transmission intervals s2 Station with message to send: emits it with probability p By end of interval: learns whether msg successfully received, or not (due to collision or other interference) Repeat until no message left to be sent Minimal feedback (only listen for ack after having emitted) implicit coordination by receiver s acknowledgement

Ethernet principles [Metcalfe, Xerox Parc 73] Machine emits on shared medium randomly: After k failed attempts, waits before retransmitting for random number of slots picked uniformy from {1,2,,2 k } (so-called contention window)

Ethernet principles [Metcalfe, Xerox Parc 73] Machine emits on shared medium randomly: After k failed attempts, waits before retransmitting for random number of slots picked uniformy from {1,2,,2 k } (so-called contention window) The exponential backoff method, a refinement over Aloha

Ethernet principles [Metcalfe, Xerox Parc 73] Machine emits on shared medium randomly: After k failed attempts, waits before retransmitting for random number of slots picked uniformy from {1,2,,2 k } (so-called contention window) The exponential backoff method, a refinement over Aloha Other refinement: sense channel before transmitting (allows to compete by random access only during small fraction of total time) Principles underly 802.11x (Wi-Fi) protocols

Goals Understand performance of random access protocols for given traffic, or demand, or workload offered to system (=process of message request arrivals), Does system transmit them all? Does it reach some steady state behaviour? How long do transmissions take?

Outline Introduction to Markov chain theory Fundamental notions (recurrence, irreducibility, ergodicity, transience) Criteria for ergodicity or transience Performance of Random Access Protocols Aloha with finitely many stations Aloha with an infinite number of stations Results for Ethernet and other variants

Markov chains E a countable set (e.g., N or [n] = {1,..., n})

Markov chains E a countable set (e.g., N or [n] = {1,..., n}) Definition: {X n } n N Markov chain with transition matrix P iff n > 0, x n 0 = {x 0,..., x n } E n+1, P(X n = x n X n 1 0 = x n 1 0 ) = P(X n = x n X n 1 = x n 1 ) = p xnx n 1 where x, y E, p xy 0 and z E p xz = 1 (i.e. P is a stochastic matrix)

Markov chains E a countable set (e.g., N or [n] = {1,..., n}) Definition: {X n } n N Markov chain with transition matrix P iff n > 0, x n 0 = {x 0,..., x n } E n+1, P(X n = x n X n 1 0 = x n 1 0 ) = P(X n = x n X n 1 = x n 1 ) = p xnx n 1 where x, y E, p xy 0 and z E p xz = 1 (i.e. P is a stochastic matrix) Canonical example X 0 independent of {Y n } n 0 an i.i.d. sequence, Y n E For some function f : E E E, n 0, X n+1 = f (X n, Y n )

Markov chains E a countable set (e.g., N or [n] = {1,..., n}) Definition: {X n } n N Markov chain with transition matrix P iff n > 0, x n 0 = {x 0,..., x n } E n+1, P(X n = x n X n 1 0 = x n 1 0 ) = P(X n = x n X n 1 = x n 1 ) = p xnx n 1 where x, y E, p xy 0 and z E p xz = 1 (i.e. P is a stochastic matrix) Canonical example X 0 independent of {Y n } n 0 an i.i.d. sequence, Y n E For some function f : E E E, n 0, X n+1 = f (X n, Y n ) Illustration: reflected Random Walk on N : X n+1 = max(0, X n + Y n )

Basic properties By induction P(X n+m n = xn n+m ) = P(X n = x n ) n+m i=n+1 p x i 1 x i P(X n+m 0 = x n+m 0 X n = x n ) = P(X n 1 0 = x n 1 0 X n = x n ) n+1 X n = x n ) P(X n+m n+1 = x n+m (past and future independent conditionally on present)

Basic properties By induction P(X n+m n = xn n+m ) = P(X n = x n ) n+m i=n+1 p x i 1 x i P(X n+m 0 = x n+m 0 X n = x n ) = P(X n 1 0 = x n 1 0 X n = x n ) n+1 X n = x n ) P(X n+m n+1 = x n+m (past and future independent conditionally on present) Noting p n x,y = P(X n = y X 0 = x), semi-group property: p n+m xy = z E p n xzp m zy

Basic properties By induction P(X n+m n = xn n+m ) = P(X n = x n ) n+m i=n+1 p x i 1 x i P(X n+m 0 = x n+m 0 X n = x n ) = P(X n 1 0 = x n 1 0 X n = x n ) n+1 X n = x n ) P(X n+m n+1 = x n+m (past and future independent conditionally on present) Noting p n x,y = P(X n = y X 0 = x), semi-group property: p n+m xy = z E p n xzp m zy Linear algebra interpretation For finite E (e.g. E = [k]), Matrix p n = n-th power of P

Further properties Denote P x ( ) = P( X 0 = x) distribution of chain started at 0

Further properties Denote P x ( ) = P( X 0 = x) distribution of chain started at 0 Def: T N {+ } stopping time iff n N, {T = n} is σ(x0 n )-measurable, i.e. φ n : E n+1 {0, 1} such that I T =n = φ n (X0 n) Key example T x := inf{n > 0 : X n = x}

Further properties Denote P x ( ) = P( X 0 = x) distribution of chain started at 0 Def: T N {+ } stopping time iff n N, {T = n} is σ(x0 n )-measurable, i.e. φ n : E n+1 {0, 1} such that I T =n = φ n (X0 n) Key example T x := inf{n > 0 : X n = x} Strong Markov property Markov chain X0 with transition matrix P, stopping time T Then conditionally on T < + and X T = x, X0 T and X T independent with X T P x

Positive recurrence, null recurrence, transience, periodicity State x is recurrent if P x (T x < + ) = 1 positive recurrent if E x (T x ) < + null recurrent if P x (T x < + ) = 1 & E x (T x ) = + transient if not recurrent, i.e. P x (T x < + ) < 1 d-periodic if d = GCD(n 0 : pxx n > 0)

Positive recurrence, null recurrence, transience, periodicity State x is recurrent if P x (T x < + ) = 1 positive recurrent if E x (T x ) < + null recurrent if P x (T x < + ) = 1 & E x (T x ) = + transient if not recurrent, i.e. P x (T x < + ) < 1 d-periodic if d = GCD(n 0 : pxx n > 0) Illustration: reflected random walk on N, S n+1 = max(0, S n + Y n ) State 0 is positive recurrent if E(Y n ) < 0 transient if E(Y n ) > 0 null recurrent if E(Y n ) = 0 & 0 < Var(Y n ) < +

Decomposition in cycles of recurrent chains Fix a state x that is recurrent (P x (T x < + ) = 1), Let T x,k = instant of k-th visit to state x Trajectory X 1 : concatenation of cycles C k := {X n } Tx,k <n T x,k+1 Strong Markov property cycles C k are i.i.d.

Irreducibility Markov chain is irreducible iff x, y E, n N, x n 0 E n+1 x 0 = x, x n = y & n i=1 p x i 1 x i > 0 i.e., graph on E with directed edge (x, y) iff p xy > 0 strongly connected

Irreducibility Markov chain is irreducible iff x, y E, n N, x n 0 E n+1 x 0 = x, x n = y & n i=1 p x i 1 x i > 0 i.e., graph on E with directed edge (x, y) iff p xy > 0 strongly connected Example Standard random walk on graph G irreducible iff G connected

Irreducibility Markov chain is irreducible iff x, y E, n N, x n 0 E n+1 x 0 = x, x n = y & n i=1 p x i 1 x i > 0 i.e., graph on E with directed edge (x, y) iff p xy > 0 strongly connected Example Standard random walk on graph G irreducible iff G connected Proposition For irreducible chain, if one state x is transient (resp. null recurrent, positive recurrent, d-periodic) then all are

Stationary measures Non-negative measure π on E is stationary for P iff x E, π x = y E π y p yx

Stationary measures Non-negative measure π on E is stationary for P iff x E, π x = y E π y p yx Notation: P ν := x E ν x P x chain s distribution when X 0 ν For stationary probability distribution π, n > 0, P π (X n ) = P π (X 0 )

Limit theorems 1 Recurrence and stationary measures Irreducible recurrent chain admits a stationary measure, unique up T x to multiplicative factor y E, π y = E x n=1 I Xn=y Irreducible chain admits a stationary probability distribution iff it is positive recurrent

Limit theorems 1 Recurrence and stationary measures Irreducible recurrent chain admits a stationary measure, unique up T x to multiplicative factor y E, π y = E x n=1 I Xn=y Irreducible chain admits a stationary probability distribution iff it is positive recurrent Ergodic theorem Irreducible, positive recurrent chain satisfies almost sure convergence 1 n lim f (X n ) = π x f (x) n n x E k=1 for all π-integrable f, where π = unique stationary distribution

Limit theorems 1 Recurrence and stationary measures Irreducible recurrent chain admits a stationary measure, unique up T x to multiplicative factor y E, π y = E x n=1 I Xn=y Irreducible chain admits a stationary probability distribution iff it is positive recurrent Ergodic theorem Irreducible, positive recurrent chain satisfies almost sure convergence 1 n lim f (X n ) = π x f (x) n n x E k=1 for all π-integrable f, where π = unique stationary distribution Such chains are called ergodic

Limit theorems 2 Convergence in distribution Ergodic, aperiodic chain satisfies x E, lim n P(X n = x) = π x where π: unique stationary distribution

Limit theorems 2 Convergence in distribution Ergodic, aperiodic chain satisfies x E, lim n P(X n = x) = π x where π: unique stationary distribution Converse Irreducible, non-ergodic chain satisfies x E, lim n P(X n = x) = 0

Foster-Lyapunov criterion for ergodicity Theorem An irreducible chain such that there exist V : E R +, a finite set K E and ɛ, b > 0 satisfying { ɛ, x / K, E(V (X n+1 ) V (X n ) X n = x) b ɛ, x K, is then ergodic.

Aloha with finitely many stations Stations s S, S < New arrivals at station s in slot n: A n,s N, {A n,s } n 0 i.i.d. Probability of transmission by s if message in queue: p s Source of randomness: {B n,s } n 0 i.i.d., Bernoulli(p s ) Transmits iff B n,s = 0 where B n,s = B n,s I Ln,s>0

Aloha with finitely many stations Stations s S, S < New arrivals at station s in slot n: A n,s N, {A n,s } n 0 i.i.d. Probability of transmission by s if message in queue: p s Source of randomness: {B n,s } n 0 i.i.d., Bernoulli(p s ) Transmits iff B n,s = 0 where B n,s = B n,s I Ln,s>0 Queue dynamics L n+1,s = L n,s + A n,s B n,s (1 B n,s ) s s

Aloha with finitely many stations Assume s, 0 < P(A n,s = 0) < 1 Then chain is irreducible and aperiodic Sufficient condition for ergodicity s, λ s := E(A n,s ) < p s (1 p s ) s s Sufficient condition for transience s, λ s > p s (1 p s ) s s

Aloha with finitely many stations Symmetric case λ s = λ/ S, p s p: Recurrence if λ < S p(1 p) S 1 Transience if λ > S p(1 p) S 1 To achieve stability (ergodicity) for fixed λ, need p 0 as S Impractical! (Collisions take forever to be resolved)

Aloha with infinitely many stations Many stations, very rarely active (just one message) A n new messages in interval n, {A n } n 0 i.i.d. Source of randomness {B n,i } n,i 0 i.i.d., Bernoulli (p) Queue evolution L n+1 = L n + A n I Ln i=1 B n,i =1 Assumption 0 < P(A n = 0) < 1 ensures irreducibility (and aperiodicity)

Aloha with infinitely many stations Abramson s heuristic argument For A n Poisson(λ), Nb of attempts per slot Poisson(G) for unknown G Hence successful transmission with probability Ge G per slot Solution to λ = Ge G exists for all λ < 1/e Hence Aloha should be stable (ergodic) whenever λ < 1/e

Aloha with infinitely many stations Abramson s heuristic argument For A n Poisson(λ), Nb of attempts per slot Poisson(G) for unknown G Hence successful transmission with probability Ge G per slot Solution to λ = Ge G exists for all λ < 1/e Hence Aloha should be stable (ergodic) whenever λ < 1/e Theorem: Instability of Aloha With probability 1, channel jammed forever ( L n i=1 B n,i > 1) after finite time. Hence only finite number of messages ever transmitted.

Fixing Aloha: richer feedback Assumption: L n known Backlog-dependent retransmission probability p n = 1/L n Then system ergodic if λ := E(A n ) < 1 e 0.368

Fixing Aloha: richer feedback Assumption: L n known Backlog-dependent retransmission probability p n = 1/L n Then system ergodic if λ := E(A n ) < 1 e 0.368 Denote J n = {0, 1, } outcome of n-th channel use (0: no transmission. 1: single successful transmission. : collision)

Fixing Aloha: richer feedback Assumption: L n known Backlog-dependent retransmission probability p n = 1/L n Then system ergodic if λ := E(A n ) < 1 e 0.368 Denote J n = {0, 1, } outcome of n-th channel use (0: no transmission. 1: single successful transmission. : collision) Weaker assumption: channel state J n heard by all stations Backlog-dependent retransmission probability p n = 1/ˆL n, where estimate ˆL n computed by ˆL n+1 = max(1, ˆL n + αi Jn= βi Jn=0) renders Markov chain (L n, ˆL n ) n 0 ergodic for suitable α, β > 0 if λ := E(A n ) < 1 e 0.368

Fixing Aloha: richer feedback With same ternary feedback J n = {0, 1, }, can stability hold for λ > 1/e? Yes: rather intricate protocols have been invented and shown to achieve stability up to λ = 0.487 Largest λ for which some protocol based on this feedback is stable? Unknown (only bounds)

Ethernet and variants Return to Acknowledgement-based feedback (only listen channel s state after transmission) Variant of exponential backoff: transmit with probability 2 k after k collisions Assume A n Poisson (λ)

Ethernet and variants Return to Acknowledgement-based feedback (only listen channel s state after transmission) Variant of exponential backoff: transmit with probability 2 k after k collisions Assume A n Poisson (λ) Theorem: instability of Ethernet s variant For any λ > 0, (modification of) Ethernet is transient.

Ethernet and variants Return to Acknowledgement-based feedback (only listen channel s state after transmission) Variant of exponential backoff: transmit with probability 2 k after k collisions Assume A n Poisson (λ) Theorem: instability of Ethernet s variant For any λ > 0, (modification of) Ethernet is transient. Weaker performance guarantees Ethernet and its modification are such that with probability 1: For λ < ln(2) 0.693, infinite number of messages is transmitted For λ > ln(2), only finitely many messages are transmitted

Ethernet and variants Return to Acknowledgement-based feedback (only listen channel s state after transmission) Variant of exponential backoff: transmit with probability 2 k after k collisions Assume A n Poisson (λ) Theorem: instability of Ethernet s variant For any λ > 0, (modification of) Ethernet is transient. Weaker performance guarantees Ethernet and its modification are such that with probability 1: For λ < ln(2) 0.693, infinite number of messages is transmitted For λ > ln(2), only finitely many messages are transmitted Unsolved conjecture No acknowledgement-based scheme can induce a stable (ergodic) system for any λ > 0.

Conclusions on Random Access Protocols Mostly negative results in theory, both for Aloha and Ethernet, yet......in practice, Ethernet and Wi-Fi s 802.11x protocols perform well

Conclusions on Random Access Protocols Mostly negative results in theory, both for Aloha and Ethernet, yet......in practice, Ethernet and Wi-Fi s 802.11x protocols perform well Finite number of stations helps Time to instability could be huge ( metastable behavior) Only small fraction of channel time used for random access collision resolution: Once station wins channel access, others wait till its transmission is over

Conclusions on Random Access Protocols Mostly negative results in theory, both for Aloha and Ethernet, yet......in practice, Ethernet and Wi-Fi s 802.11x protocols perform well Finite number of stations helps Time to instability could be huge ( metastable behavior) Only small fraction of channel time used for random access collision resolution: Once station wins channel access, others wait till its transmission is over Alternative protocols based on ternary feedback have not been used

Takeaway messages Markov chain theory: framework for system and algorithm performance analysis

Takeaway messages Markov chain theory: framework for system and algorithm performance analysis Ergodicity (stability) analysis: Determines for what demands system stabilizes into steady state A first order performance index (know when delays remain stable, not their magnitude)

Takeaway messages Markov chain theory: framework for system and algorithm performance analysis Ergodicity (stability) analysis: Determines for what demands system stabilizes into steady state A first order performance index (know when delays remain stable, not their magnitude) Foster-Lyapunov criteria to prove ergodicity

Takeaway messages Markov chain theory: framework for system and algorithm performance analysis Ergodicity (stability) analysis: Determines for what demands system stabilizes into steady state A first order performance index (know when delays remain stable, not their magnitude) Foster-Lyapunov criteria to prove ergodicity Simple questions on performance of Random Access yet unsolved, and results more negative than positive

Takeaway messages Markov chain theory: framework for system and algorithm performance analysis Ergodicity (stability) analysis: Determines for what demands system stabilizes into steady state A first order performance index (know when delays remain stable, not their magnitude) Foster-Lyapunov criteria to prove ergodicity Simple questions on performance of Random Access yet unsolved, and results more negative than positive Still, analysis of Aloha has led to new insights and new designs such as Ethernet