Chapter 7: Greenhouse gases and particulate matter



Similar documents
FACTS ABOUT CLIMATE CHANGE

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES

GREENHOUSE EFFECT & GLOBAL WARMING - The internet as the primary source of information

History of Chlorofluorocarbons

The Earth s Atmosphere

HFCS, REFRIGERATION AND AIR-CONDITIONING: MINIMISING CLIMATE IMPACT, MAXIMISING SAFETY

The Atmosphere. Introduction Greenhouse Effect/Climate Change/Global Warming

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

The Greenhouse Effect. Lan Ma Global Warming: Problems & Solutions 17 September, 2007

Climate Control and Ozone Depletion. Chapter 19

CHAPTER 3 Heat and energy in the atmosphere

Submission by Norway to the ADP

Energy Pathways in Earth s Atmosphere

Global Warming and Greenhouse Gases Reading Assignment

Chapter 1.9 Global Environmental Concerns

EMISSIONS OF AIR POLLUTANTS IN THE UK, 1970 TO 2014

Calculating the Environmental Impact of Aviation Emissions

READING COMPREHENSION I SIR ISAAC NEWTON

Materials Needed: Time Needed: Adaptations: 2 flyswatters (optional) Vocabulary Definitions (below) Vocabulary Scramble Sheets (below)

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework

AP* Environmental Science: Atmosphere and Air Pollution Answer Section

Air Quality: Public Health Impacts and Local Actions

climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science.

Clouds and the Energy Cycle

Climate Lingo Bingo. Climate Discovery: Climate Future. Teacher s Guide. National Science Content Standards Addressed:

The Earth's Atmosphere. Layers of the Earth's Atmosphere

AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES

COST OF GREENHOUSE GAS MITIGATION [21jun, 10jul 1pm]

e7/ppa Workshop on Renewable Energy - TEST ANSWER -

ATM S 111, Global Warming: Understanding the Forecast

Scope 1 describes direct greenhouse gas emissions from sources that are owned by or under the direct control of the reporting entity;

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Impacts of air pollution on human health, ecosystems and cultural heritage

Understanding the Changes to Global Warming Potential (GWP) Values

THE F-GAS REGULATION AND ITS IMPLICATIONS IN FIRE SUPPRESSION APPLICATIONS

Worksheet A Environmental Problems

Fact Sheet Series for Key Stages 2 & 3

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

Climate Change and Protection of the Habitat: Empirical Evidence for the Greenhouse Effect and Global Warming

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links

Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint

The climate cooling potential of different geoengineering options

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. I - Air Pollution Caused by Industries - Jiming HAO and Guowen LI

Introduction to Non- Conventional Energy Systems

Environmental Chemistry (Air)

Climate Change Mini-Simulation: Background Guide

HYDROLOGICAL CYCLE Vol. I - Anthropogenic Effects on the Hydrological Cycle - I.A. Shiklomanov ANTHROPOGENIC EFFECTS ON THE HYDROLOGICAL CYCLE

MCQ - ENERGY and CLIMATE

FLORIDA S OZONE AND PARTICULATE MATTER AIR QUALITY TRENDS

The atmosphere has a number of gases, often in tiny amounts, which trap the heat given out by the Earth.

The Contribution of Global Agriculture to Greenhouse Gas Emissions

PRESENTATION 2 MAJOR ENVIRONMENTAL PROBLEMS

Economic Development and the Risk of Global Climate Change

Systems Thinking and Modeling Climate Change Amy Pallant, Hee-Sun Lee, and Sarah Pryputniewicz

CHAPTER 2 Energy and Earth

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Characteristics of the. thermosphere

ENERGY & ENVIRONMENT

Phosphorus and Sulfur

Calculating Greenhouse Gas Emissions

Revealing the costs of air pollution from industrial facilities in Europe a summary for policymakers

Frequently Asked Question 1.1 What Factors Determine Earth s Climate?

Copernicus Atmosphere Monitoring Service

Lesson Plan Simulating the Greenhouse Effect in a Terrarium.

The Science and Ethics of Global warming. Global warming has become one of the central political and scientific issues of

Keeping below 2 degrees

The Ambient Air Monitoring System

Birmingham City University / Students Union Aspects and Impacts Register. Waste. Impacts description

Engineers Newsletter. HVAC Refrigerants: A Balanced Approach. providing insights for today s hvac system designer. volume Refrigerant History

Overview. Suggested Lesson Please see the Greenlinks Module description.

Costs of air pollution from European industrial facilities an updated assessment

BRSP-7 Page 1. A Open B Covered C Covered / Water. Two different experiments are presented, each experiment using a different pair of models:

Air Quality in San Diego 2013 Annual Report

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE

Examining the Recent Pause in Global Warming

Data Sets of Climate Science

AP Environmental Science 2010 Free-Response Questions

Global Warming. Charles F. Keller

GLOBAL WARMING : THE SIGNIFICANCE OF METHANE

WHY IS BREATHING SO IMPORTANT?

Introduction to the Greenhouse Effect

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)

Multiple Choice Identify the choice that best completes the statement or answers the question.

Section 1 The Earth System

How To Set Out International Standards For Refrigeration

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

Emission Facts. The amount of pollution that a vehicle emits and the rate at which

ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.

TeachingEnglish Lesson plans. Climate change. Worksheet A - Climate change the evidence Match the questions to the answers about climate change.

For public information only; not an official document. March 2013

Asian Brown Cloud. Sunny Mistry. Air and Water Pollution Prevention and Control Engineering. Fall 2013

For public information only; not an official document. November 2013

degrees Fahrenheit. Scientists believe it's human activity that's driving the temperatures up, a process

Population Density, Traffic Density and Nitrogen Oxides (NOx) Emission Air Pollution Density in Major Metropolitan Areas of the United States

Tim Facius Baltimore Aircoil

Climate Change Definitions

Environmental problems and responses

GREENHOUSE GASES AND GLOBAL WARMING POTENTIAL VALUES

Transcription:

Additional material for Fundamentals of Sustainable Development, Niko Roorda, 2012. Chapter 7: Greenhouse gases and particulate matter Debates on the anthropogenic greenhouse effect and climate change mostly involve carbon dioxide CO 2. But there are many other substances that play a role in the greenhouse effect and, while carbon dioxide is the most significant of these at present, it will not necessarily remain so. Section 7.2 mentions methane (CH 4 ), a gas that could possibly play a large role in the greenhouse issue. Then there are also halogenated hydrocarbons, including CFC s, which are identified in sections 1.3 and 6.4 as degrading the ozone layer, although that is not their only crime: they also play a part in the greenhouse effect. Ozone itself - O 3 - is likewise a contributor to climate change, but in a very complex way. The ozone in the stratosphere the ozone layer blocks ultraviolet (UV) radiation, preventing it from reaching the lower troposphere and the earth. This means that the stratospheric ozone lowers the temperature. Because CFC s and other substances have degraded the ozone layer, the stratosphere absorbs less UV and has resultantly cooled slightly in the last few decades, while the temperature closer to earth has risen for the same reason a greater amount of UV is getting through. The tropospheric ozone that is located at a lower level consequently acts like a greenhouse gas and contributes to rising temperatures. Nitrous oxide (N 2 O) also plays a significant role in respect of the greenhouse effect. Water vapour And then there is water vapour, which is a major greenhouse gas, although its exact role in climate change is difficult to assess. Firstly, human beings do not have a particularly large direct influence on the amount of water vapour in the atmosphere. But they do have an indirect one, and this is large. In our changing climate, the evaporation of water is increasing dramatically in some parts of the world as a result of issues like higher temperatures, irrigation for agriculture and the larger surface areas created by dams. But in other regions this process is decreasing, thanks to droughts and desertification. Changing winds (caused by El Niño and other phenomena) and currents, as discussed in chapter 7, also affect the evaporation levels. Water vapour also influences climate change in another way cloud formation. On the one hand, clouds trap infrared radiation emitted by the earth (this is a well-known phenomenon: cloudless nights are cooler ones), while on the other, clouds deflect sunlight, contributing to the earth s albedo (another well-known phenomenon: cloudless days are hotter days). There is still much debate about whether cloud cover has increased or decreased on average in recent years, and hence little is known as yet about its influence on climate change. What is however clear is that complex feedback loops are involved, both positive and negative ones. Concrete data The table below contains some data on the most significant greenhouse gasses. The table can be downloaded as a spreadsheet named Greenhouse gases.xls from the website of the book. The spreadsheet contains further information, including links to websites from which the data in the table was derived. 1

Chemical formula Montreal Protocol Kyoto Protocol Persistence in atmosphere Global Warming Potential Abundance between the years 1000 and 1750 Abundance in 1998 Contribution to the greenhouse effect Select data on greenhouse gasses Greenhouse gas (years) (CO 2 = 1) (ppt) (1) (ppt) (1) % Carbon dioxide CO 2 Yes 100 1 280 million 368 million Methane CH 4 Yes 12 23 700,000 1,750,000 18% Halogenated hydrocarbons: 140 12,000 12% 5,000 CFC CFCl 3 etc. Yes 45-1700 14,000 0 900 HCFC CHF 2 Cl etc. Yes 9-19 700 2,400 0 150 HFC CHF 3 etc. Yes 1-260 120 12,000 0 22 5,700 PFC CF 4, C 2 F 6 Yes > 50000 12,000 40 83 Nitrous oxide N 2 0 Yes 114 296 270,000 316,000 6% Ozone: O 3 Ozone (troposphere) 0,05 25 34 11% Ozone (stratosphere) Sulphur hexafluoride SF 6 Yes > 10,000 22,200 0 4.2 0.73% Water vapour H 2 O 1-6 3-5 3-6 Total 100% Source: IPCC (2001). (1) ppt = parts per trillion = 10-12. Please note: trillion (American) = billion (UK). 54% Global warming potential Amongst other headings, the table includes one by the name of Global Warming Potential, often abbreviated to GWP. Global warming potential is the measure by which a given gas plays a role in the greenhouse effect. In more accurate terms, the GWP is the measure of how much one kilogram of a greenhouse gas contributes to the greenhouse effect. The GWP of CO 2 is set at 1, making the GWP a relative measure. The fact that the GWP of methane is 23 means that its role in the greenhouse effect is (per kilogram) 23 times greater than that of CO 2. Another way of putting it is that the GWP is expressed in carbon dioxide equivalents (CDE). The GWP not only takes into account the annual contribution made by a gas, but also its persistence in the atmosphere, which is determined by the speed at which the gas is broken down. If gas A and gas B should, per unit of time and kilogram, play an equally large role in the greenhouse effect, but if gas B remains in the atmosphere ten times longer than gas A, then the GWP of gas B is ten times as large. The total contribution (the radiative forcing) of a gas to the greenhouse effect, which is shown in figure 7.4 in the book, is determined by a number of factors: - The quantity of gas present in the atmosphere - The duration for which the gas is present in the atmosphere - The altitude at which the gas is present - The wavelength range (the colour ) at which the gas absorbs radiation 2

- Whether other gases also absorb radiation at that wavelength range Particulate matter Another factor that influences climate change is the amount of particulate matter. Particulate matter is made up of tiny particles - aerosols, including soot, plant and animal fibres and volcanic ash. Other aerosols are created by these particles through chemical reactions in the atmosphere. Aerosols also come into being as a result of desertification, with the wind and weather eroding the barren earth, blowing microscopic sand grains into the air. Particulate matter plays a complicated role when it comes to influencing the temperature of the earth. The particles are light-absorbing and consequently contribute to the rise in global temperatures, but they also reflect a portion of the sunlight and so play a role in increasing the albedo, which moderates the temperature increase. This is what is known as negative radiative forcing. You can see this negative value in the aforementioned spreadsheet the extended version of the above table that you can download. The figure is a relatively uncertain one, as it is the sum total of the radiative forcing of many different types of particulate matter. The dark-coloured soot particles, for example, have positive forcing, while the biggest negative contribution is derived from the sulphuric particles. Moreover, the aerosols also have an indirect radiative forcing because the presence of particles in the atmosphere plays a role in cloud formation. The extent of this effect as well as the form it adopts is difficult to ascertain, in part because of large regional differences. All in all, what is a given is that the presence of particulate matter has, on balance, a moderating effect on climate change. One could conclude that it is great that the concentration of particulate matter in the atmosphere is on the rise, thanks to human activities the primary ones being traffic, industry and agriculture. But there is unfortunately also a flipside, which involves the health effects. The long-term inhalation of particulate matter results in diseases such as cancer and lung diseases, cutting the lifespan of people and animals. Smog is a form of air pollution that involves a mixture of aerosols and ozone (O 3 ) or sulphur dioxide (SO 2 ) at high levels of concentration in the air, particularly in urban and industrial areas. (Although smog can contain ozone, this has nothing to do with the hole in the ozone layer.) The larger particles (the so-called PM 10 ) have a diameter of ten micrometers or less (a micrometer being onethousandth of a millimetre), and are the least hazardous. It is the smallest particles (PM 25 ), measuring 2.5 micrometers or less across, that cause the most damage. They are able to permeate into every part of the lungs and cause cardiovascular diseases, bronchitis and asthma. Consequently, particulate matter is a bigger killer than alcohol or drug abuse. In the USA, estimates vary between 22,000 and 52,000 deaths annually (Mokdad et al, 2004), while the annual number of deaths in Europe amounts to 200,000. Aside from this, the annual economic loss amounts to billions of dollars pounds and euros, thanks to sick leave and medical costs. 3

Concentration of PM25 in Europe. Source: Visschedijk, 2004 In many countries, strict limitations have been put on the allowed concentration of particulate matter in the atmosphere. Nevertheless, nonattainment is common. As an example, a map for the USA is shown, followed by a more detailed map of the state of California (source for both: EPA, 2011). PM-2.5 Nonattainment counties (the 4 green coloured areas) in the USA

PM-2.5 Nonattainment areas in California Questions o Which is more important: the health of people, or the climate of the planet? o In other words: should we be happy with high concentrations of particulate matter, if this reduces climate change? o Or should we try to lower PM concentrations, as people are dying from it? Literature EPA (2011): Green Book, http://nsdi.epa.gov/oar/oaqps/greenbk/data_download.html, retrieved 2011. IPCC (2001): Third Assessment Report - Climate Change 2001, http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/130.htm#tab41a and http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg1/221.htm#tab61, retrieved 2011. Mokdad, A.H. et al (2004): Actual Causes of Death in the United States, 2000. Journal of the American Medical Association 291 (10): 1238 45 Visschedijk, A., J. Pacynab, T. Pullesa, P. Zandvelda, H. Denier van der Gon (2004): Coordinated European Particulate Matter Emission Inventory Program (CEPMEIP). In: P. Dilara et al. (eds.): Proceedings of the PM emission inventories scientific workshop, Lago Maggiore, Italy, 18 October 2004, EUR 21302 EN, JRC 2004, pp 163-174. 5